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The interceptive task of hitting a baseball requires temporal and spatial precision through 

effective pitch tracking strategies and swing mechanics to achieve success. Overall, these factors 

dictate the quality of the contact and therefore successful performance of the task. The permitted 

response time for a batter to visually react and analyze the trajectory of the ball, produce the 

movement of the swing, and create quality contact is a fraction of a second. In this study, 

temporal analysis and the measurement of sensorimotor factors indicative of skill was completed 

in different pitch conditions to understand the changes that occur as a result of whether the pitch 

type is known. Additionally, correlations between sensory and motor kinematics of the baseball 

swing were examined. Sixteen participants were divided in to two subgroups based on their 

highest level of baseball experience. The sub-elite group consisted of individuals whose highest 

level of playing experience was at the high school varsity level, while the elite group included 

collegiate players up to the NCAA Division I level. Utilizing live pitching in an indoor batting 

facility, a 12-camera motion capture system, and eye tracking glasses, each subject completed 20 

totals trials across a known fastball, known curveball, and unknown mixed conditions. For the 

fastball trials only, pelvis rotation and angular velocities along with the load phase, load-release 

difference, land phase, launch phase, and swing duration were measured and represent the motor 



 

variables while head and eye rotation and average angular velocity represent the sensory 

variables measured. Results demonstrated significant differences in head rotation, average head 

angular velocity, pelvis rotation, and load-release difference between the known and unknown 

conditions, significant differences in the load phase, land phase, and total swing durations, as 

well as the load-release difference between elite and sub-elite batters, along with a significant 

interaction between skill level and pelvis rotation for pitch condition (p < 0.05). Additionally, 

relationships were found between eye and head rotation with pelvis and swing phase kinematics 

for both the elite and sub-elite groups (p < 0.05). Overall, understanding the kinematic 

differences between pitch conditions and skill level can lead to more effective training strategies 

to enhance performance.  
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Chapter I: Introduction  

 The interceptive task of hitting a baseball is widely regarded as one of the most 

challenging in all of sports. It is a skill that requires a batter to produce square contact between 

two round objects, the bat and the ball, which are both traveling at high speeds. This alone 

presents a level of difficulty that would surpass the coordination skills of many individuals. To 

augment this difficulty, in recent years the average Major League Baseball (MLB) four-seam 

fastball velocity has hovered around 93 miles per hour, according to Tom Verducci from Sports 

Illustrated (Verducci, 2018). This pitch speed allows the batter a response time of approximately 

440 milliseconds with the current dimensions of a baseball field, which is reduced as the 

pitcher’s release point and the batter’s contact point with the ball shortens the distance of 60.5 

feet between the front of the pitching rubber and rear of home plate. Hitting a baseball consists of 

sensorimotor coordination in a full-body movement that requires temporal and spatial accuracy 

with minimal latency. 

Hitting a baseball can be simulated in the simplest training form as a closed motor skill 

by using a batting tee. However, in reality, it is an open motor skill that requires a sensorimotor 

response. In a simple response task scenario, the sensorimotor response process only requires a 

stimulus detection and motor execution stages. A simple response batting task can be simulated 

with the use of a pitching machine as the trajectory and speed of the baseball are controlled. 

However, hitting a baseball in a game scenario is not this simple, and the trajectories will not 

likely be the same. Therefore, a batter must also determine the location of the pitch which 

dictates whether or not a swing should a occur similar to a go/no go discrimination task that 

incorporates an extra stage of stimulus discrimination in the response process. If a pitch crosses 

the plate outside of the strike zone a swing should be avoided, and the pitch should be taken.
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Variation in the pitch location amplifies the difficulty associated with a simple response task and 

results in an increased in required response time for success. With regard to different pitch types, 

both the speed and trajectory of a pitch can be altered which upgrades the task further to a choice 

response task, adding an additional stage of response selection in the process and further 

increasing the required reaction time for success (Miller & Low, 2001). Inter-trial variability is 

increased with pitch type and location which increases the complexity of the task. 

Considering that in the most favorable conditions it is possible for an individual  to 

produce the simplest voluntary response to a visual stimulus in 150 milliseconds and that in 

reality this response time is around 250 milliseconds, there is little time for a batter to visually 

track a pitch and then produce the swing to create contact with the ball, especially in a realistic 

scenario of choice sensorimotor response which has shown to increase reaction time (Miller & 

Low, 2001; Donders, 1969; Henry & Rogers, 1960). With a fastball permitting less than 440 

milliseconds to respond and response processing demands requiring at least 250 milliseconds, 

although this reaction time requirement is likely longer, there is less than 200 milliseconds 

allotted for the production of the correct response movement. Additionally, the movement time 

associated with pressing button from which this response time data is derived is less than that of 

a baseball swing due to movement complexity of a coordinated, full body motion; movement 

time is dependent on response complexity (Anson, 1982). However, it is important to note that 

the movement time of the response remains consistent with the progression from a simple to a 

choice response task (Henry & Rogers, 1960; Gavkare, Nanware, & Surdi, 2013). Research 

indicates that these movement times can be improved through practice and training (Fischman & 

Lim, 1991). Athletes have displayed faster response times compared to nonathletes in both visual 

and whole-body response tasks (Mowbray & Rhoades, 1959; Gavkare et al., 2013; Akarsu, 
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Caliskan, & Dane, 2009).  Traditional baseball batting training strategies emphasize the 

mechanics of the swing through repetitional practice, permitting a batter limited success with an 

improbable task.  

Significance of the Problem 

As a result of the temporal constraints associated with the task of hitting a baseball, the 

advantage is given to the pitcher in terms of success; the closed motor skill of pitching is less 

complex than the open motor skill of batting (Gentile, 1987). In recent years, the pendulum has 

swung further in favor of the pitcher in terms of performance. It is commonly believed that 

higher pitch velocities has resulted in this trend, but statistics show that the average pitch 

velocity in the MLB has not changed in recent years. Different pitch types seem to be providing 

the edge to pitching as a result of this choice sensorimotor task phenomenon that is limiting 

success. As previously stated, altering the pitch type causes variance in the flight path and time, 

making the task of hitting a baseball more difficult. It has been established that as the number of 

possible choices associated with a movement increases, the decision time of that movement also 

increases (Hick, 1952; Hyman, 1953). The more possible pitch types a batter can potentially see 

from a particular pitcher during an at-bat increases the difficulty of hitting the baseball and limits 

success. Combining the variation of pitch types with the contemporary strategy of batters to hit 

for power over contact and strive for home runs has resulted in diminished league-wide batting 

statistics. 

With the exhaustive MLB sabermetrics that characterize the game of baseball, it can be 

seen that over the past decade fastball velocities have relatively remained the same, but the 

percentage of breaking balls thrown has increased while fastball usage has decreased. 

Furthermore, the batting average against breaking balls is about 50 points less than a fastball 
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(Verducci, 2018). Pitchers are taking full advantage of this phenomenon as the 2018 MLB 

batting average is the lowest it has been since 1972 and the strikeout rate has consistently 

increased to an all-time high of 8.81 strikeouts this past season; almost one of every three outs 

recorded results from a batter not being able to hit the ball (Baseball-Reference). Other 

approaches to the game have also aided in the reduction of batting performance, such as the 

defensive strategies in the form of the shift for certain batters which has helped limit batting 

average. Therefore, as opposed to traditional training methods that emphasize reducing the 

movement time of the response process proving to be insufficient in increasing performance, 

training should also incorporate methods to increase the reaction time of the response process to 

produce a more effective response permitting increased success. 

The task of hitting a baseball permits success rates of only 30% in the most elite batters; 

these rates seem to be dropping as pitching continues to dominate the game. Although the hitting 

performance of MLB players is deteriorating, the average salary of these players continues to 

increase and has almost doubled from $2.37 million in 2003 to $4.52 million this season 

(Statista). According to Forbes, the value of the MLB is just under $50 billion (Forbes). In an 

occupation where salary is dictated by performance, and a slight statistical increase in hitting 

performance corresponds with millions of dollars, there is an existing pressure to gain a 

competitive edge by players. This is not always accomplished by legal or ethical means; 

performance enhancement drugs have traditionally plagued the game of baseball and its elite 

hitters as contemporary training strategies are inadequate. Considering the amount of money 

invested into this game and its players, for example this year’s record breaking $430 million deal 

for Mike Trout, it is essential to level the playing field between the open motor skill of hitting 
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and the closed motor skill of pitching where the latter has the clear competitive edge; the need 

for developing effective hitting training strategies to improve performance is apparent. 

Previous Research 

Given the value of quality batting there are several approaches to training to improve 

success. The most effective training methods can be developed by identifying variables that are 

relevant to performance and correlate with skill level. The traditional training method widely 

utilized by coaches, encompassing the motor aspect of the baseball swing, focuses on strength 

training to decrease the movement time of the sensorimotor response by reducing the rotational 

swing motion duration through the production of a faster swing; this generates enhanced 

kinematics to produce better contact. Batting performance has displayed a correlation with the 

strength of the forearm, wrists, and the rotational strength of the torso and pelvis (Szymanski & 

DeRenne, 2010; Szymanski et al., 2007; Szymanski et al., 2006). The alternative and more recent 

training modality, encompassing the sensory aspect of the baseball swing, focuses on vision 

training to decrease the required reaction time of the sensorimotor response by increasing the 

tracking duration through improved pitch tracking.  

Vision training has shown to decrease the required reaction time for success, as well as 

correlates to increased hitting performance (Maman, Gaurang, & Sandhu, 2001; Kohmura & 

Yoshigi, 2004; Clark, Ellis, Bench, Khoury, & Graman, 2012). However, as vision training is 

contemporary, its relationship to sports performance is still controversial (Khanal, 2015; 

Knudson & Kluka, 1997; Wood & Abernethy, 1997). In order to further develop more effective  

training strategies, sensorimotor variables related to skilled batting in baseball need to be 

identified. 
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Research dedicated to identifying relevant variables to hitting a baseball has, similarly,  

been based on either sensory or motor aspects of the baseball swing independently. Studies 

emphasizing vision comprise the majority of the sensory aspect of batting and analyze how a 

batter tracks a pitch. There are four types of eye movements; these are smooth pursuit, saccadic, 

vergence, and vestibulo-ocular movements. Vergence movements refer to the simultaneous 

rotations of the eyes in opposite directions to focus on an object at different distances, while 

vestibulo-ocular movements accommodate for head movements to maintain focus. Saccadic eye 

movements are rapid movements between focal points. Conversely, the slower movements used 

to track an object as it moves are smooth pursuit eye movements (Pruves, 2001). The most 

prominent type of eye movements utilized while tracking a baseball are smooth pursuit 

movements, which are essential for pitch tracking early in the pitch flight, and saccadic eye 

movements (Bahill & McDonald, 1983; DeLucia & Cochran, 1985; Croft, Button, & Dicks, 

2010; Schalen, 1980). 

Regarding eye movements, there is variance in the tracking strategies used by players. 

Skilled hitters have pitch tracking strategies associated with a greater reliance on smooth pursuit 

eye movements and less saccades allowing for more accuracy between ball trajectories and gaze 

vectors (DeLucia & Cochran, 1985; Takhashi, Uemura, Fujishiro, 1983). These batters have also 

displayed an enhanced head and eye rotational coordination to produce a greater gaze velocity 

that is indicative of skill and allows for an increased tracking duration where gaze would 

typically fall behind and rely on saccades, also resulting is less gaze error. Batters do not use 

vergence eye movements and vestibulo-ocular suppression has been observed, supporting the 

idea of improved head coordination and the importance of smooth pursuit tracking. (Bayhill & 

LaRitz, 1984; Hubbard & Seng, 1954; Uchida, Kudoh, Higuchi, & Kanosue, 2013; Uchida 
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Kudoh, Murakami, Honda, & Kitazawa, 2012; Fogt & Perrson, 2017; Fogt & Zimmerman, 2014; 

Takahashi et al., 1983; Mann, Heaton, Kryskow, Maule, & Ghaiar, 2013). Additionally, it has 

been observed that eye movement latency from the pitch release is reduced in skilled hitters 

(Uchida et al., 2013; Uchida et al., 2012; Land & McLeod, 2000). The ideology behind the 

relationship of the sensory component of the baseball swing and performance is increasing the 

decision time and decreasing the reaction time by tracking the ball earlier through shorter eye 

latencies, and also by tracking the ball longer through greater gaze velocities. 

While visual studies encompass the sensory aspect, biomechanical studies comprise the 

motor aspect of batting and analyze how a batter produces a swing. The swing is generated from 

the utilization of a kinetic chain originating from ground reaction forces and terminating in the 

ball, with the goal of maximizing its exit velocity, as energy is transferred from the lower 

extremities to the upper extremities to produce the movement of the bat (Welch, Banks, Cook, & 

Draovitch, 1995; Fortenbaugh, Fleisig, Onar-Thomas, & Asfour, 2011). Due to the nature of the 

task, temporal analysis of this baseball swing kinetic chain is common. With regards to timing, a 

swing is often broken into different phases for temporal analysis (Nakata, Miura, Yoshie, 

Kanosue, & Kudo, 2013; Fleisig, Hsu, Fortenbaugh, Cordover, & Press, 2013; Shaffer, Jobe, 

Pink, & Perry, 1993). The specific phases can differ however a simple disintegration of the 

swing includes a loading, landing, and launching phase. The loading phase consists of a motion 

in the direction opposite the ball and ends when peak displacement in that direction occurs; the 

batter’s front foot typically raises off the ground. The landing phase consists of a motion towards 

the ball and ends when the front foot reestablishes contact with the ground. The launching phase 

consists of the rotational motion that produces the swing and ends when bat-ball contact occurs. 

With regard to these phases, the loading and landing phases occur regardless of if a batter 
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decides to take a pitch or produce a swing. If the decision to swing is made, the launching phase 

will be executed. Therefore, pitch tracking to visually analyze the trajectory and decide whether 

to swing occurs during the loading and landing phases. 

It is commonly believed that the trunk, more specifically the pelvis, play a crucial role in 

a batter’s hitting performance and generating power throughout the phases of the swing 

(Williams & Underwood, 1986). Greater pelvis displacement, as well as a pelvis rotational 

velocity, has been observed to correlate with skill (Nakata, Miura, Yoshie, Higuchi, & Kudo, 

2014; Inkster, Murphy, Bower, & Watsford, 2011). These advanced pelvis kinematics allow for 

an increased bat end velocity to produce greater batted ball exit velocities. Therefore, bat end 

velocity has also been identified to be indicative of skill level (Szymanski, DeRenne, Spaniol, 

2009; Szymanski et al., 2010; Welch et al., 1995; Tabuchi, Matsuo, & Hashizume, 2007). The 

ideology behind the relationship of the motor component of the baseball swing and performance 

is decreasing the movement time by decreasing the launch phase duration through greater pelvis 

displacement and velocity resulting in greater bat end velocities. 

Previous baseball research has also examined the effects of manipulating the response 

process, through different pitch conditions, on swing kinematics. However, the results have been 

inconclusive as one study observed reduced kinematics from an inhibited response due to higher 

pitch speeds while the other observed enhanced timing due to the known pitch condition 

(Miaynishi & Endo, 2016; Takuo, Norihisa, Sekiya, & Mitsura, 2008). Neither study examined 

pitch tracking or swing kinematics as a result of the whether the pitch is known. Also, neither 

study incorporated skill level of the batters as a factor. Furthermore, previous research fails to 

examine the effects of sensory kinematics exhibited through pitch tracking on the motor 

kinematics produced through the swing, presenting an additional void in the literature.  
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Scope of the study 

Hitting a baseball is an interceptive sensorimotor task that consists of coordination in a 

full body movement, requiring temporal and spatial accuracy. Previous research has led to the 

identification of both sensory and motor variables that are determinant of skill and generates the 

idea that the batter utilizes visual kinematics to increase the pitch tracking duration and motor 

kinematics to decrease the swing movement duration, which is the emphasis of training 

strategies. It is essential to examine the phenomenon of alterations in the response process, 

dictated by changes in the sensorimotor task, and how swing kinematics are affected. As hitting a 

baseball requires sufficient sensorimotor coordination, it is important to fully comprehend how 

the movements of the response, in terms of the swing mechanics, are dependent on the reaction 

to the stimulus, in terms of pitch tracking. The ideology of this relationship is that greater visual 

kinematics, in regard to rotational displacement and velocity, to enhance the detection of sensory 

information of a pitch will permit a batter more temporal and spatial accuracy allowing for 

enhanced motor execution through greater swing kinematics. Through a thorough understanding 

of this sensorimotor coordination, additional training modalities can be discovered to increase 

batting performance. Analyzing the kinematic alterations that occur from different sensorimotor 

conditions, along with relationship between the sensory and motor aspects of hitting a baseball as 

they relate to performance, can potentially turn the tide in favor of the batter in a game currently 

dominated by pitching. 

Hypothesis and purpose  

The purpose of this study was to perform kinematic analysis and measure the 

sensorimotor factors indicative of skill, along with the durations of the swing phases, in different 

pitch conditions to understand the changes that occur as a result of whether the pitch type is 
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known, with elite and sub-elite batters. A second purpose of this study was to analyze the 

sensorimotor relationship between the visual and biomechanical kinematics associated with 

hitting a baseball that influence performance. All kinematic data was analyzed for pitch type and 

skill level. It was hypothesized that increased rotational displacements and velocities are 

associated with the known condition and elite group. Another hypothesis is that the known 

condition and elite group will produce longer loading and landing phases with shorter launching 

phases. It was also hypothesized that visual kinematics positively correlates with swing 

kinematics. 

  



 
 

 
 

Chapter II: Review of Literature 

Response time in sensorimotor tasks 

 Sensorimotor skills are a significant component of performance in sports. Baseball 

batting requires adequate sensorimotor skills with precise timing while rapidly responding to a 

pitch. Simplistically, these skills refer to an individual’s efficiency in a task that involves a 

response to a stimulus. However, this response is more complex and involves the stages of 

sensation perception, response selection, and response execution according to the model 

provided by Wickens (Wickens, 1980). This complexity leads to questions about how quickly an 

individual can produce a response, which is the basis of Donders’ contributions. He conducted a 

fundamental research study that was the first to measure response times of different tasks 

through various forms of stimuli such as somatosensory, auditory, and visual stimuli. The results 

of the experiment showed differences between the times associated with the type of stimulus, as 

well as the task. The five subjects showed that in a simple task the average response time to a 

light visual stimulus was 154 milliseconds. This time increased with the task complexity 

(Donders, 1969). 

 Baseball batting, however, is not a simple response task. A batter must decide whether 

the pitch is going to be a inside the strike zone, dictating whether or not a swing should occur. 

This situation represents a discriminate task more commonly referred to as a go/no go task. 

Building off of Donders’ findings, a similar study was conducted to analyze the differences in 

response times between a simple, go/no go, and choice response tasks using a computer screen 

and appearing letters that corresponded with a key to press. The results showed an increase in the 

response times from simple tasks to choice response tasks. The average response times were 347, 

395, and 441 milliseconds for the simple, go/no go, and choice conditions respectively,
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supporting the findings of Donders (Miller & Low, 2001).  

 The previously described go/no go task of baseball batting becomes further complex with 

the inclusion of pitch type. As different pitches vary in velocity and trajectory, altering the type 

of pitch will upgrade this scenario to a choice response task as the batter must elicit the correct 

response based on the pitch type, thus increasing the response time and decreasing the success of 

the batter. Hick’s Law further describes this phenomenon and was established through a study 

that analyzed response times with different choice reaction tasks by altering the number of 

potential choices. This was completed using a display screen and a different key for each finger 

that corresponded with a specific stimulus; each key represented the number of possible choices. 

Response times were measured at all levels from one choice to 10 choices. The results showed a 

logarithmic relationship describing the increasing amount of time it takes to respond to a 

stimulus as the number of choices (Hick, 1952). Similarly, using visual display with lights for the 

stimuli and altering the number of potential choices, as well as the probability of those choices 

occurring, a similar relationship was determined. It was concluded that the response time was 

impacted by the number of choices possible and the probability of those choices occurring 

(Hyman, 1953).  

 As hitting a baseball is a full body movement, compared to the methods used in the 

studies that derived this response time data of a finger pressing a button, movement complexity 

is a factor in the response time. A study used a simple task requiring a finger movement response 

and compared the duration to that of an arm movement response to examine the effects of 

movement complexity. A button was used for the finger movement while a tennis ball hung by a 

string that was attached to the button was used for the arm movement. The results showed an 

increase in the response time associated with the complexity of the movement. A 20% increase 
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in response times were observed between finger and arms movements, as well as an addition 7% 

increase for more complex arm movements. The results also showed that the type of movement 

utilized impacted response times more so than the speed of the movement (Henry & Rogers, 

1960). 

 As the task of swinging a baseball bat requires full body movement and coordination, it 

can be described as a complex task and would therefore require greater response times in 

comparison to a simple finger movement. As hitting a baseball is dependent on precise timing 

and a quick response, the question emerges of whether or not these response times can be 

improved or if individuals have an innate ability that makes them more inclined to be successful 

at hitting a baseball. While some would argue that individuals are predisposed, research suggests 

that response times can be decreased. With the inclusion practice over time and a similar setup as 

Hick used in his choice response task experiment, a study was able to show a reduction in the 

response time of the same task with practice. Additionally, it was noted that the increase in 

response time with the number of potential choices described by Hick and Hyman did not occur 

with significant practice when there were between two and four possible choices (Mowbray & 

Rhoades, 1959). A number of research studies have identified sensorimotor differences between 

athletes and nonathletes as a result of extensive practice. Response times were measured at 318.1 

and 369.4 milliseconds for athletes and nonathletes respectively using a computer screen to 

display the stimuli and a button for the response (Akarsu, Caliskan, & Dane, 2009). Similarly, 

using a red and green light for buttons corresponding to each hand, athletes responded quicker 

than nonathletes in all conditions (Gavkare, Nanaware, & Surdi, 2013).  

  As the sensorimotor skills required for quality performance vary depending on the 

specific sport, it is important to analyze the response times of individuals from different sports 
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domains. Generally, sport specific tasks can be broken into two distinct categories, open and 

close motor skills; hitting a baseball represents an open motor skill as the task is initiated by the 

pitcher. A study looking at volleyball players and sprinters, representing the closed and open 

skill-dominated sports respectively, used a speed, anticipation, and reaction time test to measure 

six sensorimotor tasks. The results showed that sprinters had decreased auditory response times 

than volleyball players, but no differences in visual response times were observed. Additionally, 

the anticipatory skills displayed by volleyball players were superior to those of sprinters. These 

support the ideology that sensorimotor skills are trainable and can be improved with effective 

practice (Nuri, Shamehr, Ghotbi, & Moghadam, 2013). 

The question remains as to how these sensorimotor enhancements translate to the 

performance in an athletic setting. A study dedicated to investigating this conducted visual 

examinations, as well as physical examinations for movement timing, on college, high school, 

and rejected baseball players and compared these results to the statistics of batting average, 

slugging percentage, and runs batted in. However, no correlation between the batting 

performance statistics and the results of the vision and timing tests although differences in the 

vision and timing between groups were observed was found (Winograd, 1942). Conversely, 

similar research used the Nike Sensory Station, which measures nine sensorimotor tasks, and 

compared these results to various baseball statistics. Correlations exist between various 

sensorimotor skill and batting performance values of on-base percentage, walk rate, and strikeout 

rate; the majority of the relationships were observed with strikeout rates while response time 

correlated with walk rate statistics were observed (Burris et al., 2018). Similarly, the same 

sensorimotor assessment was used to distinguish characteristics between pitchers and hitters at 

the high school, collegiate, and professional levels. However, the only relationships observed 



 
 

15 
 

that distinguished pitchers from hitters occurred at the professional level with visual clarity and 

depth perception; no relationship was observed with response time at any level (Klemish et al., 

2018). Additionally, the relationship between various batting statistics and visual skills using 

Vizual Edge software was examined in 2014. The vision scores determined by the computer 

program found correlations with batting average, strike out rate, on-base percentage, and on-base 

plus slugging percentage; batting average was shown to correlate with response time (Spaniol et 

al., 2014). 

Sensory aspect of skilled batting 

The question of what visual characteristic are exhibited by skilled batters is age-old as 

baseball research is not new to the scientific community. In 1925, a preliminary study at 

Columbia University analyzed Babe Ruth through eye tests and determined that his eyes were 

12% faster and 90% more efficient than average humans, resulting in an enhanced pitch tracking 

ability allowing for greater performance. This data was determined by measuring response time 

to a light stimulus by pressing a button. Additionally, eight letters would be displayed on a 

screen for 50 milliseconds. Ruth was able to read six as compared to the average of four and a 

half letters (Johanson & Holmes, 1925). 

As hitting a baseball requires the capability of visually tracking a pitch, understanding the 

eye movements that while batting is important to identify factors relating to skill. There are four 

possible types of eye movements; these are smooth pursuit, saccadic, vergence, and vestibulo-

ocular movements. Vergence movements refer to the rotations of the eyes to focus on an object 

at different distances, while vestibulo-ocular movements accommodate for head movements to 

maintain focus. Saccadic eye movements are rapid movements between focal points. Conversely, 

the slower movements used to track an object as it moves are smooth pursuit eye movements; the 
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latter two movements allow a batter to track a baseball as it is pitched (Pruves, 2001). A greater 

reliance on either saccadic or smooth pursuit eye movement is influenced by the target velocity 

of the object being tracked (Takahashi, Uemura, & Fujishiro, 1983). A study attempted to 

determine whether it was necessary to track the entirety of a pitch for success by using a screen 

to obstruct the view of the ball during different sections of the pitch. It was observed that batters 

can use information obtained from tracking a portion of the pitch trajectory to determine the 

point of contact (DeLucia & Cochran, 1985). Because of this, there is variance in the tracking 

strategies used by players (DeLucia & Cochran, 1985; Croft, Button, & Dicks, 2010). 

Vision has been frequently studied to identify factors relevant to batting performance. In 

1954, Hubbard and Seng analyzed professional and collegiate baseball players through video 

observation during batting practice in a preliminary study. They concluded that due to the high 

angular velocities of the ball relative to the batter, the inability to track occurred between 8 and 

15 feet from home plate (Hubbard & Seng, 1954). As players are not able to track the ball 

throughout the pitch, some batters will have a greater reliance on saccadic movements to predict 

the location. A study incorporating a photoelectric system was used to measure eye movements 

as they tracked a red laser on a screen as it moved. Eye tracking that consists of more saccadic 

movements is associated with higher error in gaze position and timing than eye tracking with 

players who can produce smooth pursuit eye movements for longer durations at higher velocities 

(Bayhill & McDonald, 1983, Croft, Button, & Dicks, 2010; Takahashi, Uemura, & Fujishiro, 

1983).  

Although the ability to smooth pursuit track at high velocities is critical to batting 

performance, by moving a dot across a screen at different target speeds it was identified that 

humans are not able to accurately, at a 90% gain of the target velocity, track an object moving 



 
 

17 
 

greater than 50 degrees per second (Schalen, 1980). However, this also shown to occur at 100 

degrees per second in another study (Meyer, Lasker, & Robinson, 1985). Saccadic eye 

movements were primarily used at higher velocities (Schalen, 1980; Meyer, Lasker, & Robinson, 

1985; Fogt & Persson, 2017; Fogt & Zimmerman, 2014; Maruta, Heaton, Kryskow, Maule, 

Ghajar., 2013).  

 Building on his previous research, Bahill wanted to further study eye movements, as well 

as include head rotations, as a batter tracked a baseball. Using graduate students, collegiate 

baseball players, and a professional baseball player, they simulated a fastball and analyzed pitch 

tracking. The fastball was simulated using a pulley system connected to a monitor. Eye 

movements were monitored through infrared emitters and photodetectors while the head 

movements, using light-emitting diodes, were captured by a camera mounted on the ceiling. This 

experiment did not accurately mimic a batting scenario as it was indoor, no swing occurred, and 

the ball was attached to a horizontal pulley system neglecting gravitational effects; there was no 

vertical displacement of the ball and only horizontal movements were analyzed. The pitch was 

also set to a point high and outside with no variance to better observe the head rotations and eye 

movements. It was concluded that batters use both their head and eyes to track a pitch. On 

average, students tracked the ball to a point 9 feet in front of the plate before their gaze fell 

behind; their maximum velocities were 70 degrees per second as their eyes traveled at 50 degrees 

per second while the head moved at 20 degrees per second. The professional player showed 

superior tracking skill in that he could track the ball longer, to a position 5.5 feet from home 

plate, with quicker smooth pursuit movements, having maximum gaze velocity of 150 degrees 

per second from eye and head rotations of 120 degrees per second and 30 degrees per second 
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respectively. It is important to note that this was quicker than any previous recorded eye 

movements in humans (Bahill & LaRitz, 1984).  

 Supplementing the gaze velocity research in baseball players, two studies were conducted 

to compare the gaze velocities of athletes and nonathletes by projecting Landolt C rings, a shape 

closed on three sides with an opening on the fourth similar to the letter ‘C,’ across a screen. The 

participants were instructed to determine the orientation of the C ring, it terms of the direction 

the opening of the ring, as it cross the visual field at different from 100 to 900 degrees per 

second; a correct response threshold was set at 75% at any given velocity. Baseball players were 

able to determine the correct orientation on average at 520 and 413 degrees per second as 

compared to the 486 and 393 degrees per second in nonathletes for the experiments conducted in 

2012 and 2013 respectively (Uchida, Kudoh, Higuchi, & Kanosue, 2013; Uchida Kudoh, 

Murakami, Honda, & Kitazawa, 2012). It is important to note that correct response rates at 700 

degrees per second fell below chance level for nonathletes only and neither group had achieved 

above chance level at 800 degrees per second or greater; this infers that baseball players were 

able to view objects at a greater velocity. 

An additional finding in the Bahill and LaRitz study was that the professional player 

better replicated his movements with more consistency between each of his trials, inferring a 

developed coordination of enhanced movements in expert baseball players. Batters did not use 

vergence eye movements and vestibulo-ocular suppression was observed, supporting the idea of 

improved head coordination and the importance of smooth pursuit tracking (Bahill & LaRitz, 

1984). Therefore, eye and head movement coupling has been a topic of research with hitting a 

baseball.  
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This vestibulo-ocular suppression was also observed in a study that observed head and 

eye movements in college baseball players at 50 millisecond intervals. The study used a pitching 

machine to project tennis balls, eye tracking glasses for eye movements, and inertial sensors for 

head rotations. The tennis balls had either red or black numbers and they players were instructed 

to view the ball, not swing, and name the color and number; the players were not able to state the 

color and number accurately in the study. It was observed that players primarily track the ball 

with larger head movements while eye movements facilitate tracking later in the pitch trajectory 

(Fogt & Zimmerman, 2014).  

These results were seen in a similar study that also included a swing condition. While 

tracking without a swing batters used their heads primarily while the larger eye movements did 

not occur until later in the pitch. However, the swing trials showed that head movements were 

larger than those of the eyes throughout the entirety of the pitch. The study also found that gaze 

was directed near the ball in the take trials until approximately 150 milliseconds prior to the ball 

crossing the plate when saccade established gaze ahead of the ball, whereas gaze near the ball 

was maintained longer to approximated 50 to 60 milliseconds prior in the swing trials (Fogt & 

Persson, 2017).  

Head and eye rotations were also analyzed to explain the coordination possessed by 

expert batsmen in a 2013 Cricket study. Using a bowling machine for consistency, the study 

analyzed the eye and head rotations of elite and recreational batsmen using the Mobile Eye 

tracking system. The elite batsmen displayed the ability to couple the movement of the head 

rotation to the position of the ball more precisely (Mann, Spratford, & Abernethy, 2013). This 

literature also supports the idea of coordinated movements of both the head and eyes to produce 
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higher gaze velocities to track a pitch (Bahill & LaRitz, 1984). Therefore, research has observed 

a relationship between batting performance and gaze velocity.  

Temporal aspect of skilled batting 

As gaze velocity limits tracking towards the end of a pitch’s trajectory, eye movement 

latency places limitations at the beginning. Due to the nature of the task, timing is an essential 

determinant of batting success rates and indicative of sensorimotor coordination. Baseball 

literature consists of various studies that analyze coordination through both sensory and motor 

aspects of batting in relation to time. It is commonly thought that baseball player have improved 

reaction times represented by eye movements occurring earlier in relation to the pitch flight. 

However, a study in 1987 looked at eye latencies between expert and novice batters and found 

no difference between the reaction times of the two groups; novices and experts had an average 

of 152.46 and 151.47 respectively (Shank & Haywood, 1987). Similar results of a 150-

millisecond average latency were observed in baseball players during the study conducted by 

Bahill and McDonald, which also concluded that this latency can be reduced with practice 

(Bahill & McDonald, 1983).  

More recently, timing had been researched in both a baseball and cricket experiment. The 

cricket study used a bowling machine and eye tracking glasses in a batting cage while the 

baseball study used a projection screen to move Landolt C rings across it at different orientations 

and target speeds to analyze eye movements. Eye latency was measured at target speeds from 

200 to 900 degrees per second between athletes and nonathletes. The baseball players had 

reduced latencies for target speeds of 200 to 600 degrees per second and were the only group to 

produce eye movements at the 700 degrees per second velocity; at 700 degrees per second the 

rings were projected too quickly for a nonathlete to produce and eye movement before it crossed 
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the screen. Neither group were able to view objects moving at 800 degrees per second or greater 

(Uchida, Kudoh, Higuchi, & Kanosue, 2013). Contradicting the previous latency research in 

1987, each of these studies concluded that skill level was associated with eye movements 

occurring at shorter latencies (Land & McLeod, 2000; Uchida, Kudoh, Higuchi, & Kanosue, 

2013). Therefore, a relationship between enhanced batting performance and earlier eye 

movements has been observed. 

Biomechanical elements of a baseball swing have also been analyzed in relation to time. 

Batting coordination through head position has been studied as it relates to skill level. Head 

position is separate from head movements. The head moves rotationally to track a ball while the 

head position changes as a result of the weight shifting in a translational manner during swing 

biomechanics. The head position of skilled and novice batsmen was investigated using high 

speed cameras. Head position was mapped in both horizontal and vertical directions. The peak 

value horizontally was measured as the head position furthest from the pitcher, while the head 

position closest to the ground represented the peak position vertically.  

The latencies at which these values occurred, as well as the difference between the 

horizontal peak position and position at impact, were calculated. The variability of these values 

from each pitch was recorded. Differences were found between the skilled and novice groups in 

horizontal peak latency, difference between peak and impact positions, and variability in both 

directions. The skilled batters had a horizontal peak value occurring on average at 662 

milliseconds before impact and moved their heads 12.5 centimeters towards the pitcher, while 

the novice group had a peak latency average of 408 milliseconds and moved their heads 6.0 

centimeters. The horizontal peak value represents the shifting of the weight to the back foot in 

the loading phase at the start of a swing. This occurred earlier in skilled players indicating they 
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started their swings sooner because of enhanced timing. The difference between the peak value 

and impact position represents the weight shifting forward during the launching phase of a 

swing. The skilled players had greater forward displacement before impact. The variability of 

horizontal peak latency was 72 and 157 milliseconds and the variability of the vertical peak 

values was 1.3 and 2.1 centimeters for the skilled and novice groups respectively. This indicates 

that skilled players are much more consistent with their swing motion and timing, exhibiting 

enhanced coordination (Nakata, Miura, Yoshie, & Kudo, 2012). It is unknown whether this is 

due to improved sensory or motor skills. 

A full body electromyographical study was designed to analyze the coordinated sequence 

of muscular activity during a swing. A sequence of activity beginning in the pelvis, migrating 

then to the trunk, and finishing with arm activation was observed (Shaffer, Jobe, Pink, & Perry, 

1993). Due to the implicit full body coordinated movement characteristic of a baseball swing, 

Nakata was also involved in a study that analyzed the muscle activity of 8 lower limb muscles 

through electromyography. The muscle activity of skilled batsmen was compared to that of 

unskilled batsmen at four different phases during the swing. Like his head position study, the 

onset of muscle activity showed that the swing timing occurred earlier in the skilled group at 

each phase (Nakata, Miura, Yoshie, Kanosue, & Kudo, 2013).  

Ground reaction forces have also been measured in baseball research to analyze swing 

timing. Batters utilize the ground reaction forces to generate power which is eventually 

transferring to the arms to product a swing. As the ground reactions forces initiate the swing, 

analyzing the time these occur relative to the pitch is important. To examine this in collegiate 

baseball players, force plates, a pitching machine, and a high-speed camera were used to 

demonstrate the relationship between swing timing and pitch speed through ground reaction 
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forces at different phases of the swing. The step that initiates the swing to shift the weight 

forward was dependent on the speed of the pitch. As the temporal variability at the beginning 

phase of the swing existed between trials, there was a reduction in this variability as the swing 

progressed through the later phases until contact. It was concluded that a compensatory 

mechanism is exhibited by skilled batters with regards to timing the swing to create contact 

regardless of pitch speed (Katsumata, 2007). This supports the idea of enhanced sensorimotor 

coordination essential to timing among skilled batters. 

Incorporating pitch types that alter the speed and trajectory of a pitch causes the task the 

timing of the swing to produce contact much more difficult. To demonstrate this, similar research 

was conducted to analyze the timing differences of the swing, measured through ground reaction 

forces, as a batter faced fastballs and changeups. The study used live pitching in an indoor setting 

with force plates. Supporting the previous findings, batters shifted their weight backwards to 

initiate their swing at the same time, however the forward step occurred at different times based 

on the pitch speed. This occurred earlier in the changeup trials as compared to the fastball trials 

relative to contact (Fortenbaugh, Fleisig, Onar-Thomas, & Asfour, 2011).  

This phenomenon can be attributed to difficulty visually distinguishing pitch type 

resulting in spatial and temporal errors that limit success. A baseball batting simulation was 

utilized to examine this further. Using collegiate baseball players, variance in the pitch speed 

resulted spatial errors that were greater than temporal errors. This infers that the pitch trajectory 

of altering pitch types has a greater influence on performance than does speed. The findings 

included that accuracy was improved when additional information about the pitch type was 

provided; it can be derived that enhanced pitch tracking will increase this accuracy, and therefore 

performance (Gray, 2002).  
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Complementarily, research has investigated temporal differences in relation to velocities 

of the trunk and bat during a known and unknown pitch type; swing phases were also analyzed. 

Greater variance in phase durations were observed with the unknown pitch type. However, while 

consistencies were observed when the pitch was known, the average velocity of the pelvis and 

the maximum velocity of the bat were greater in the unknown condition; the study attributed this 

to more time being dedicated to the sensory aspect of the task permitting less time for the motor 

component (Miaynishi & Endo, 2016). Controversially, a relationship has also been documented 

between swing kinematics and the pitch speed in a study via motion capture and a pitching 

machine set to one of two speeds. The greater pitch speed, which also permits a shorter 

movement time for success, was associated with reduced pelvis and bat kinematics to maximize 

accuracy that is limited by time, even with the trajectory known (Takuo, Norihisa, Sekiya, & 

Mitsura, 2008). Therefore, as one study observed increased kinematics as a compensatory 

response and the other observed decreased kinematics as an inhibited response, research has been 

controversial on the effects of the response process on swing kinematics. 

The specific swing phases determined are subjective to the researcher and differences do 

exist between research studies. However, a combining the phases that are consistent across all 

baseball batting phase methodologies, a simple disintegration of the swing results in three 

phases; these are the loading, landing, and launching phases. The loading phase of the swing is 

initiated as the batter’s weight shifts in the direction opposite the pitcher and terminates when 

peak displacement in that direction occurs; the front foot will often lift off the ground during this 

phase. The landing phase initiates when the batter’s weight is shifted back towards the pitcher 

and terminates when the front foot re-establishes contact with the ground. The launching phase is 

initiated as the batter’s pelvis begin the rotational motion of the body and terminates at the point 
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of contact between the bat and the ball (Miyanishi & Endo, 2016; Shaffer, Jobe, Pink, & Perry, 

1993; Nakata, Miura, Yoshie, Higuchi, & Kudo, 2014; Messier & Owen, 1985; Fleisig, Hsu, 

Fortenbaugh, Cordover, & Press, 2013). This simple swing disintegration allows for the temporal 

analysis of specific swing events and characteristics. 

Motor aspect of skilled batting 

Identifying which kinematic values of the swing impact performance it is essential to 

understand the well-established kinetic chain that transfers energy throughout the body to create 

a powerful swing. Lower limb electromyography and ground reaction forces are often analyzed 

in baseball research from a power generation perspective; however, the baseball swing is a 

coordinated whole-body motion where energy is transferred from the lower limbs to the upper 

limbs. This literature also supports the idea of power being generated by the pelvis (Williams & 

Underwood, 1986). Through motion capture and electromyography, it has been determined that 

the batter’s weight shifts backward and forward through the swing, the pelvis and trunk rotate to 

produce the swinging motion of the upper body and bat; energy transfers from the ground 

reaction forces to the lower extremities, which is transferred to the trunk and terminates in the 

arms (Messier & Owen, 1985; Shaffer, Jobe, Pink, & Perry, 1993; Welch, Banks, Cook, & 

Draovitch, 1995; Reyes, Dickin, Crusat, & Dolny, 2011). Therefore, pelvis and trunk 

biomechanics are often analyzed during a baseball swing.  

Differences in trunk kinematics have been observed in relation to batting skill. A research 

study measured the differences in trunk rotation between skilled and unskilled batsmen using 

high-speed cameras and body markers. The difference between the angular displacements in the 

upper torso and pelvis were larger in the skilled group at 126.1 degrees and 99.6 degrees 

respectfully. These values are compared to the upper torso 79.5 degrees and pelvis 61.0 degrees 
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of angular displacement. While the displacement was greater, the timing of the maximum pelvis 

angle during loading was occurred later at 392 milliseconds before impact in the skilled group. 

The maximum angle in the unskilled group occurred earlier at 518 milliseconds before impact. 

The great displacement is shorter time resulted in differences of the peak angular velocities of 

984 degrees per second in the skilled group compared to 587 degrees per second in the unskilled 

group. It is important to note that skilled players displayed more consistent timing of peak 

angular velocity of within 7 milliseconds compared to variability of 62 milliseconds in the 

unskilled group. This further supports the improved sensorimotor coordination relationship with 

performance (Nakata, Miura, Yoshie, Higuchi, & Kudo, 2014). 

Expanding on this, another study incorporated bat velocity into a similar study where 

knee, pelvis, and elbow kinematics were calculated using infrared cameras and body markers. 

The purpose of the study was to identify kinematic differences with skill level. There were 

differences in bat velocity. Skilled players produced greater bat velocities at 36.8 meters per 

second compared to 33.8 meters per second. The maximum angular velocity of the pelvis 

approached significance at 897.2 degrees per second and 836.2 degrees per second in the skilled 

and unskilled groups respectively (Inkster, Murphy, Bower, & Watsford, 2011).  

A comparison between adult and youth hitters identified kinematic differences with the 

pelvis and bat. Adults produced an average peak pelvis velocity of 857 degrees per second, 

whereas the youth group produced 717 degrees per second. The bat velocity at the point of 

contact was 30 and 25 meters per second on average for the adult and youth groups respectively 

(Escamilla et al., 2009). It is a common ideology that bat velocity is indicative of batting 

performance. An increased bat velocity correlates with an increased decision time, decreased 

swing time, and increased batted-ball velocity; as the objective is to produce quality contact with 
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the ball, there is a relationship between batted-ball velocity and skill level of batters (Szymanski, 

DeRenne, Spaniol, 2009). 

Effective strategies for baseball swing training 

 Various strength training techniques attempt to improve the motor aspects of baseball 

batting linked to performance. Upper body strength has been identified as a factor of bat 

velocity. Wrist and forearm strength was measured and compared to bat velocity over a 12-week 

resistance training period. All groups displayed increases in bat velocity, as well as increased 

wrist and forearm strength, over the training period; however, the group that received additional 

resistance training, specifically for the wrist and forearm, did not show further increases in bat 

velocity (Szymanski et al., 2006). It is inconclusive as to whether additional wrist and forearm 

training is beneficial to batting performance (Szymanski & DeRenne, 2010). Chest strength was 

also analyzed and compared to bat velocity. However, while the results of one group showed a 

relationship between chest strength and bat velocity via a one repetition maximum bench press, 

the second group did not (Miyaguchi & Demura, 2012).  

 As pelvis kinematics are indictive of batting performance, trunk strength training 

programs have also been examined and compared to bat and pelvis velocity. After a 12-week 

resistance training period, both groups showed increased in pelvis velocity and bat velocity, 

while the group receiving additional rotational medicine ball exercises displayed greater 

improvements (Szymanski et al., 2007). Similarly, a 12-week resistance training study identified 

that full-body resistance training with emphasis on rotational strength and power to increase bat 

velocity. Additionally, sufficient swing practice increases bat velocity and should supplement 

resistance training (Szymanski et al., 2010).  
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 Vision training, on the other hand, attempts to improve the sensory aspects of baseball 

batting linked to performance. As sensorimotor skills are essential in all sports, the efficacy of 

vision training has been analyzed as it relates to performance. There have been a number of 

instances across many sports where vision training has improved performance, however 

additional research is necessary to fully understand the impact that vision training can have 

(Knudson & Kluka, 1997; Khanal, 2015). A study to investigate this used visual training over a 

4-week period and compared the performance in 17 different optometric, sport-specific 

perceptual, and sports-specific motor tests before and after the training period. The results 

showed no improvements occurred after training compared to the baseline performance (Wood 

& Abernethy, 1997).  

 While many studies are inconclusive on the impact vision training has on performance, 

there have been a number of studies that have shown vision training to improve performance in 

sports, including the hitting statistics of baseball players. Supporting this, improvements in visual 

skills occurred in collegiate baseball players during or after eight weeks of vision training using a 

Speesion software designed to improve visual functions compared to a control group (Kohmura 

& Yoshigi, 2004). Similarly, in 2008, the training effects the Vizual Edge software had on 

batting performance were evaluated in collegiate baseball players over a five-week training 

period. Results showed increases in batted-ball velocity as compared to the control group 

(Spaniol, Bonnette, Ocker, Melrose, & Paluseo., 2008). Comparable results have also been 

observed in tennis players as serve precision increased after eight weeks of vision training 

(Maman, Gaurang, & Sandhu, 2010). Supplementing this, the University of Cincinnati’s baseball 

team completed 6 weeks of vision training, through various optometric methods, prior to the 

2011 season and compared the results of the 2010 statistics to that of the 2011 season. Increases 
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in team batting average by 34 points and slugging percentage by 33 points occurred while all 

other teams in the conference decreased performance; slugging percentage decreased by 82 

points across other teams. All batting statistics analyzed increased by at least 10% (Clark, Ellis, 

Bench, Khoury, & Graman, 2012).  

 In today’s game, it is a common strategy or goal of batters to maximize distance and 

strive for home runs. Thus, recent emphasis has been placed on batted-ball exit velocity and 

launch angle to maximize range trajectories (Szymanski, DeRenne, & Spaniol, 2009; Sawicki, 

Hubbard, & Stronge, 2003). While batted-ball launch angle is solely determined by the point of 

contact between the bat and ball, it can be improved through greater spatial accuracy provided by 

enhanced pitch tracking to better determine contact location. Batted-ball exit velocity is a result 

of the kinematics of the of the swing and can be improved through strength training to increase 

swing efficiency and generate greater power. With the limited success characteristic of batting, 

players are constantly looking for a competitive edge as 50 points on a batting average is 

equivalent to a salary in the millions. Therefore, it is important to develop effective training 

strategies identified from scientific research to improve performance.  

Modalities for baseball swing measurements 

 The accuracy of measurement techniques to identify sensorimotor characteristics that 

relate to performance is important, especially when dealing with fractions of a second. Eye 

tracking glasses has become increasingly popular in recent years allowing researcher to analyze 

eye movements and gaze characteristics. Although these can be costly and possess inconvenient 

software that is not user-friendly, it can be used to examine the visual functions during athletic 

performances (Discombe & Cotterill, 2015). Eye tracking glasses can accurately measure eye 

movements and gaze vectors, and therefore gaze errors associated with tracking a target (Fogt & 



 
 

30 
 

Zimmerman, 2014). The use of dynamic areas of interest (AOI) within the eye tracking software 

to locate a target object allow for the calculation of gaze errors by comparing the gaze position 

vector to the area of interest (Papenmeier & Huff, 2010). Additionally, eye tracking software has 

the capability to detect saccadic movements, as well as smooth pursuit velocity in a reliable 

manner (Discombe & Cotterill, 2015; Versino et al., 1993).  

It is also convenient that these eye tracking software are compatible with three-

dimensional motion capture systems which allows for the analysis of both visual and body 

movements simultaneously. Motion capture systems are the primary method to measure 

kinematic data such as displacement and velocity. Numerous studies have accurately measure 

kinematic baseball swing data through high-speed motion capture systems in a reliable manner 

(Tabuchi, Matsuo, & Hashizume, 2007; Nakata, Mirua, Yoshie, Higuchi, Kudo, 2014; Inkster, 

Murphy, Bower, & Watsford, 2011, ; Fortenbaugh, Fleisig, Onar-Thomas, & Asfour, 2011, 

Takuo, Norihisa, Sekiya, & Mitsura, 2008). 

Summary 

 Baseball batting research continues to identify factors that are indicative of skill level. 

Temporal analysis helps identify sensorimotor factors that influence performance. Training 

methods are developed from this to enhance these factors and improve batting performance. 

Increased decision time is an underlying idea behind improved performance from a sensory 

aspect (Szymanski et al., 2006; Szymanski et al., 2010). The decision time of a batter is directly 

related to the ability to track the pitch. A pitch that is tracked for a longer duration will provide 

more information on the trajectory of the ball to produce a more efficient action. A batter 

increases decision time through enhanced head and eye coordinative movements to track the ball 

later in its trajectory at higher velocities with reduced gaze errors. Alternatively, this can be 



 
 

31 
 

accomplished by initiating tracking earlier in the pitch. From a motor standpoint, another 

underlying idea behind improved performance is decreasing the swing time (Szymanski et al., 

2006; Szymanski et al., 2010). This can be accomplished through greater pelvis and bat 

kinematics. As traditional baseball batting research identifies sensory and motor aspects 

separately, bridging the gap between these components can help identify additional sensorimotor 

characteristics with the potential to develop more effective training strategies to improve 

performance.



 
 

 
 

Chapter III: Methods 

 Previous baseball research consists of experiments designed to either look at the sensory 

factors or the motor factors of hitting a baseball. After a thorough evaluation of previous research 

on this topic, it appears there have been no previous experiments designed to look at the 

relationship between the visual and motor components of the baseball swing. Additionally, 

research linking baseball swing kinematics as they correlate to pitch type is scarce and 

controversial.  

Subjects 

 Sixteen male participants were recruited for this study. All participants had minimum 

playing experience at the high school level and were between the ages of 18 and 35 years old. 

The participants were recruited from both the collegiate student population, as well as 

individuals with collegiate varsity and club baseball experience. Both right-handed and left-

handed batters were included in this study. All participants were heathy and free of any injuries 

at the time of data collection. The participants were divided into two groups classified as elite 

and sub-elite batters based on playing experience; the nine participants who had collegiate 

playing experience were categorized into the elite group, while the remaining seven participants 

with high school playing experience composed the sub-elite group. This study was approved by 

the University Institutional Review Board of East Carolina University. All participants were 

required to sign an informed consent of all testing procedures before data collection (see 

Appendix A). One participant was unable to complete to collection protocol due to insufficient 

skill level. Additionally, there was no eye and head data collected for one participant due to a 

malfunction of the eye tracking glasses; only pelvis and swing phase kinematics were measured.
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Measurement protocol 

Data collections consisted of a one-day protocol with each collection lasting approximately one 

hour. Participants were instructed to not engage in any physical activity on the day of testing 

prior to data collection. Data collections took place at Next Level Training Center (Greenville, 

NC) in a 60-foot batting cage (Figure 1). Upon arrival, participants answered a demographics 

questionnaire and signed an inform consent (see Appendix A). The participant then changed into 

spandex and motion capture markers were placed at anatomical landmarks using a custom 

marker set consisting of 71 total markers on the body, bat, and ball (see Table 1); a 12-camera 

Oqus Qualisys motion capture system (Qualisys AB, Gothenburg, Sweeden) was used to record 

kinematic data at 100hz. SMI Eye Tracking Glasses 2 Wireless ETG16-1026 (SensoMotoric 

Instruments, Boston, MA) recording at 120hz were secured on the subject before calibrating the 

body marker set. The calibration only markers were then removed and followed by five practice 

swings prior to calibrating the eye tracking glasses; eye tracking calibration was repeated after 

every five swings. Data collection consisted of 20 live pitches in three different conditions; five 

known fastballs, five known curveballs, and ten unknown mixed condition. As this study only 

included fastball trials, the curveballs were thrown to elicit a natural response to the unknown 

mixed condition. The same pitcher was used from a 40-foot distance for each participant and a 

radar gun was incorporated to ensure pitch velocity consistency within 3 mph for 45 mph 

fastballs and 40 mph curveballs. Quality of contact was recorded by both the participant and 

recorder after each swing using a Likert scale of zero to three, zero being a miss and three being 

solid contact. 
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Figure 1. Images from data collections at Next Level Training Center. 
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Table 1

Marker Label Marker Location Marker Label Marker Location

bat1 knob of bat r.eye.ant right eye tracker anterior

bat2 middle of bat proximal r.eye.post right eye tracker posterior

bat3 middle of bat distal r.eye.inf right eye tracker inferior

bat4 end of bat proximal l.eye.ant left eye tracker anterior

bat5 end of bat distal l.eye.post left eye tracker posterior

l.eye.inf left eye tracker inferior

Marker Label Marker Location Marker Label Marker Location

r.illcrest* right illiac crest jug jugular notch

r.asis right anterior superior iliac spine c7 7th cervical spine vertebre

r.psis right posterior superior iliac spine r.scap right scapula body

l.illcrest* left illiac crest r.scap.inf right scapula inferior angle

l.asis left anterior superior iliac spine l.scap left scapula body

l.psis left posterior superior iliac spine l.scap.inf left scapula inferior angle

Marker Label Marker Location Marker Label Marker Location

r.ac right acromioclavicular joint l.ac left acromioclavicular joint

r.gtub* right greater tuberosity l.gtub* left greater tuberosity

r.ltub* right lesser tuberosity l.ltub* left lesser tuberosity

r.hand right hand l.hand left hand

r.wrist.med right ulna styloid process l.wrist.med* left ulna styloid process

r.wrist.lat right radius styloid process l.wrist.lat left radius styloid process

r.forearm.dist right forearm distal tracker l.forearm.dist left forearm distal tracker

r.forearm.prox right forearm proximal tracker l.forearm.prox left forearm proximal tracker

r.elbow.lat right elbow lateral epicondyle l.elbow.lat left elbow lateral epicondyle

r.elbow.med* right elbow medial epicondyle l.elbow.med left elbow medial epicondyle

r.arm.dist right humerus distal tracker l.arm.dist left humerus distal tracker

r.arm.prox right humerus proximal tracker l.arm.prox left humerus proximal tracker

Marker Label Marker Location Marker Label Marker Location

r.gtroch right greater trochanter l.gtroch left greater trochanter

r.leg.ant right thigh anterior tracker l.leg.ant left thigh anterior tracker

r.leg.post right thigh posterior tracker l.leg.post left thigh posterior tracker

r.knee.med right femur medial condyle l.knee.med left femur medial condyle

r.knee.lat right femur lateral condyle l.knee.lat left femur lateral condyle

r.shank.prox right shank proximal tracker l.shank.prox left shank proximal tracker

r.shank.dist right shank distal tracker l.shank.dist left shank distal tracker

r.ankle.med right medial malleolus l.ankle.med left medial malleolus

r.ankle.lat right lateral malleolus l.ankle.lat left lateral malleolus

r.foot1 right 1st metatarsal distal l.foot1 left 1st metatarsal distal

r.foot5 right 5th metatarsal distal l.foot5 left 5th metatarsal distal

r.heel right calcaneus l.heel left calcaneus

 Note.  * calibration only

Custom Marker Set for Motion Capture

Right Leg Left Leg

Left ArmRight Arm

TorsoPelvis

Eye Tracking GlassesBaseball Bat
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Data processing 

 For each trial, the frames in which pitch release and contact occurred were determined 

visually from video data in Qualysis for analysis. Eye rotation was calculated from the eye 

position vectors exported from SMI BeGaze software. Eye rotation was calculated as the 

magnitude of eye displacement from pitch release to contact in the horizontal plane only; this 

value was divided by the pitch flight duration to obtain average angular velocity for each trial.  

 

𝑒𝑦𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = |𝑒𝑦𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡|
𝑑𝑒𝑔𝑟𝑒𝑒

60 𝑝𝑖𝑥𝑒𝑙𝑠
  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑦𝑒 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑒𝑦𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

(𝑏𝑎𝑡 − 𝑏𝑎𝑙𝑙 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑓𝑟𝑎𝑚𝑒– 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑓𝑟𝑎𝑚𝑒)
∗ 120ℎ𝑧  

 

Qualisys Track Manager was used to label the marker trajectories using a custom 

Automatic Identification of Markers (AIM) model (see Table 1), which automatically tracks 

labeled markers based on trajectory throughout each trial; determination of the swing duration 

and loading, landing, and launching phases were also accomplished through video analysis 

within Qualisys. To determine the load phase duration, the difference between frame when the 

batter began to shift his weight backward initiating the swing movement with regard to the hip 

marker and the frame when the load point occurred (the point at which the hip marker is furthest 

from the pitcher) was calculated and divided by the frame rate of 100 frames per second to 

determine the time in seconds. Similarly, the land phase duration was calculated from the 

difference between the load point frame and the frame when the front foot initially re-establishes 

contact with the ground, while the launch phase duration was calculated from the difference of 

the front foot contact frame and the bat-ball contact frame, and each were divided by the frame 

rate to determine the time in seconds. The load-release difference was calculated as the 



 
 

37 
 

difference in time between the load point frame and pitch release frame by dividing by the frame 

rate (see Figure 2). 

    

Figure 2. Example of the different swing phases (initiation, load point, land point, contact point). 

 

𝑙𝑜𝑎𝑑 𝑝ℎ𝑎𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = (𝑙𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡 𝑓𝑟𝑎𝑚𝑒– 𝑠𝑤𝑖𝑛𝑔 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑎𝑚𝑒 )/100ℎ𝑧 

𝑙𝑎𝑛𝑑 𝑝ℎ𝑎𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = (𝑙𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑓𝑟𝑎𝑚𝑒– 𝑙𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡 𝑓𝑟𝑎𝑚𝑒)/100ℎ𝑧 

𝑙𝑎𝑢𝑛𝑐ℎ 𝑝ℎ𝑎𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = (𝑏𝑎𝑡 − 𝑏𝑎𝑙𝑙 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑓𝑟𝑎𝑚𝑒– 𝑙𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑓𝑟𝑎𝑚𝑒)/100ℎ𝑧 

𝑠𝑤𝑖𝑛𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑎𝑑 𝑝ℎ𝑎𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑙𝑎𝑛𝑑 𝑝ℎ𝑎𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑙𝑎𝑢𝑛𝑐ℎ 𝑝ℎ𝑎𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

𝑙𝑜𝑎𝑑 − 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = (𝑙𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡 𝑓𝑟𝑎𝑚𝑒– 𝑝𝑖𝑡𝑐ℎ 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑓𝑟𝑎𝑚𝑒)/100ℎ𝑧 

 

Marker trajectory data was exported to Visual3D (C-Motion Inc., Germantown, MD) 

where a model was built for the head and pelvis for kinematic analysis (Figure 3). The head 

model was built from the six markers on the eye tracking glasses. To define the proximal joint 

and radius the left and right inferior markers were used, while the left and right anterior markers 

were used to define the distal joint and radius. All six of the eye tracking markers were included 

as tracking markers to define the head segment. For the pelvis model, the proximal joint and 

radius was defined using the left and right iliac crest markers, while the left and right greater 

trochanter markers were used to define the distal joint and radius. The left and right ASIS and 

PSIS markers were used as tracking markers to define the pelvis segment. This model was used 

to determine head and pelvis angular positions at pitch release and bat-ball contact points, 
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average head angular velocity from pitch release to bat-ball contact, peak pelvis angular velocity, 

and pelvis angular velocity at bat-ball contact using Euler’s method of Cardan angles; head and 

pelvis data was exported and analysis included rotations, relative to the global coordinate system, 

around the vertical axis in the transverse plane only. 

    

Figure 3. Image of the Visual3D skeletal model. 

 

The bat-ball contact and pitch release points were determined for each trial in Qualisys 

Track Manager and entered in Visual3D as events within a pipeline that was built to calculate the 

following data. Head rotation was determined by the difference in angular position between the 

release and contact event points, while pelvis rotation was determined by the difference in 

angular position between the load and contact points. The peak pelvis angular velocity was the 

maximum instantaneous velocity exhibited by the batter between the release and contact events, 

whereas the pelvis angular velocity was the instantaneous velocity of the pelvis at the contact 

event point. Rotation data was calculated in degrees, velocity in degrees per second, and 

durations in seconds for each trial.  
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ℎ𝑒𝑎𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =  ℎ𝑒𝑎𝑑 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 –  ℎ𝑒𝑎𝑑 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑎𝑑 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  ℎ𝑒𝑎𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 / (𝑏𝑎𝑡 − 𝑏𝑎𝑙𝑙 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑓𝑟𝑎𝑚𝑒 –  𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑓𝑟𝑎𝑚𝑒)  ∗  100ℎ𝑧 

𝑝𝑒𝑙𝑣𝑖𝑠 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =  𝑝𝑒𝑙𝑣𝑖𝑠 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑐𝑡  –  𝑝𝑒𝑙𝑣𝑖𝑠 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑙𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡 

 

Statistical analysis 

 There were 12 total variables that were incorporated for statistical analysis; these 

consisted of eye rotation, average eye angular velocity, head rotation, average head angular 

velocity, pelvis rotation, peak pelvis angular velocity, pelvis angular velocity at contact, load 

phase duration, land phase duration, launch phase duration, total swing duration, and the load-

release difference. Kinematic data was calculated for the fastball trials only, excluding the 

curveball trials, for analysis to examine the relationship between the sensory and motor aspects 

of hitting a baseball. The predictors, or independent variables, consisted of the sensory data 

provided from eye and head rotation. The criterion, or dependent variables, consisted of the 

motor data provided from the pelvis and swing phase kinematics. Regression analysis was used 

to determine a sensorimotor relationship for both the elite and sub-elite groups independently. 

Due to the multiple predictor and criterion variables, multivariate multiple regression was 

performed in a stepwise manner within SPSS V25 (IBM Corp., Armonk, NY). 

Each kinematic variable was also averaged across fastball trials only, excluding the 

curveball trials, for both the known and unknown conditions for each participant, providing each 

participant with a known and unknown average for each kinematic measurement; this data was 

also categorized as elite or sub-elite for analysis. A two (skill level) by two (pitch type) repeated 

measures analysis of variance (ANOVA) was performed to determine statistically significant 

differences of this data with regards to pitch condition and skill level using SPSS.  



 
 

 
 

Chapter IV: Results 

Two-Way Repeated Measures ANOVA 

Known vs. Unknown Comparison. The known versus unknown analysis revealed 

differences in head rotation, average head angular velocity, pelvis rotation, and load-release 

difference between the known and unknown pitch conditions (see Appendix B). No differences 

in eye rotation (p = 0.779) or average eye angular velocity (p = 0.898) was observed. Head 

rotation was greater (F(1, 12) = 12.186, p < 0.01) in the unknown condition (M = 22.35°)  in 

comparison to known condition (M = 18.00°). Average head angular velocity was also greater in 

the unknown condition with an average of 28.05 degrees per second compared to 22.31 degrees 

per second in the known (F(1, 12) = 7.387, p = 0.019) (Figure 4a). 

 

Figure 4a. Bar graphs of the averaged data from the ANOVA for eye and head kinematics  

(*p < 0.05, **p < 0.01). 
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Pelvis rotation was smaller (F(1, 13) = 12.447, p < 0.01) in the unknown condition (M = 

85.65°) in comparison to known condition (M = 89.61°) (Figure 4b). No differences in  

peak pelvis angular velocity (p = 0.112), pelvis angular velocity at contact (p = 0.413), the load 

phase (p = 0.355), land phase (p = 0.681), launch phase (p = 0.182), and total swing durations (p 

= 0.257) between the known and unknown conditions were found. 

 

Figure 4b. Bar graphs of the averaged data from the ANOVA for pelvis kinematics  

(*p < 0.05, **p < 0.01). 

 

Elite vs. Sub-Elite Comparison. The elite versus sub-elite analysis revealed differences in 

the load phase duration, land phase duration, total swing duration, and load-release difference 

between the elite and sub-elite groups (see Appendix B). No differences in eye rotation (p = 

0.960), average eye angular velocity (p = 0.913), head rotation (p = 0.610), average head angular 

velocity (p = 0.426), pelvis rotation (p = 0.297), peak pelvis angular velocity (p = 0.181), and 

pelvis angular velocity at contact (p = 0.579) were observed. The load phase duration was greater 
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in the elite group with 0.615 seconds on average from the initial loading movement compared to 

0.421 seconds in the sub-elite group (F(1, 13) = 8.397, p = 0.012). The land phase duration was 

greater in the elite group with 0.406 seconds on average compared to 0.269 seconds in the sub-

elite group (F(1, 13) = 7.709, p = 0.016). No differences in the launch phase duration (p = 0.873) 

were found. Total swing durations were greater (F(1, 13) = 11.227, p < 0.01) in the elite group 

with (M = 1.265 sec) compared to the sub-elite group (M = 0.942 sec) (Figure 4c).  

 

Figure 4c. Bar graphs of the averaged data from the ANOVA for swing phase kinematics  

(*p < 0.05, **p < 0.01). 
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Both the known versus unknown and elite versus sub-elite comparisons show differences 

in the load-release difference. The load-release difference occurred earlier, prior to the pitch 

release, in the unknown condition at -0.020 seconds on average compared to 0.016 seconds after 

the pitch release in the known (F(1, 13) = 7.840, p = 0.015). The load-release difference also 

occurred earlier, prior to the pitch release, in the elite group at -0.049 seconds on average 

compared to 0.068 seconds after the pitch release in the known (F(1, 13) = 5.276, p = 0.039) 

(Figure 4c).  

Interaction Results. There was a significant interaction between the effects of pitch type 

and skill level on pelvis rotation F(1, 13) = 9.344, p = 0.009. The elite group exhibited greater 

pelvis rotation in the known condition with 92.4 degrees compared to the unknown condition of 

87.6. This was not observed in the sub-elite group with 85.5 and 85.2 for the known and 

unknown conditions, respectively (Figure 5). 

 

Figure 5. Interaction plot of pelvis rotation. 

 

Multivariate Multiple Regression 

 Elite Regression Analysis. A multivariate multiple regression was run to predict pelvis 

and swing phase kinematics from eye and head rotation for the elite and sub-elite groups 
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independently. While the analysis for the elite group revealed no relationships between eye 

rotation and peak pelvis angular velocity (p = 0.448), pelvis angular velocity at contact (p = 

0.518), the load phase duration (p = 0.786), the total swing duration (p = 0.766), or the load-

release difference (p =0.974), this study demonstrated a positive correlation between eye rotation 

with pelvis rotation, F(1, 81) = 6.147, p = 0.015, R2 = 0.071 (Figure 6a).  

Both eye and head rotation were predictive of the land and launch phase durations in the 

elite group (see Appendix B). Greater eye rotation with less head rotation correlated with a 

shorter launch phase, F(2, 80) = 6.687, p < 0.01, R2 = 0.143, while greater eye rotation with less 

head rotation correlated with a longer land phase, F(2, 80) = 10.896, p < 0.01, R2 = 0.214. Both 

eye and head rotation also added to the prediction of the land phase duration independently, 

however only eye rotation predicted launch phase durations independently, p < 0.05;  head 

rotation was not independently significant (p = 0.243) (Figure 6a). 

Head rotations in the elite group were predictive of peak pelvis angular velocity and the 

load-release difference. Smaller head rotations correlated with greater peak pelvis angular 

velocities, F(1, 81) = 15.887, p < 0.01, R2 = 0.164, and a smaller load-release difference F(1, 81) 

= 6.546, p = 0.012, R2 = 0.075 (Figure 6a). However, no relationships between head rotation and 

pelvis rotation (p = 0.686), pelvis angular velocity at contact (p = 0.086), the load phase duration 

(p = 0.132), or total swing duration (p = 0.786) were observed. 

 

 

 

 

 



 
 

45 
 

 

  

  

 

Figure 6a. Scatter plots from the regression analysis for the kinematic variables in which a 

relationship was found in the elite group. 
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Sub-elite Regression Analysis. In the sub-elite group, while a relationship was not 

observed between eye rotations and peak pelvis angular velocity (p = 0.088), pelvis angular 

velocity at contact (p = 0.930), the land phase duration (p = 0.290), launch phase duration (p = 

0.532), total swing duration (p = 0.302), or the load release difference (p = 0.916), both eye and 

head rotations were predictive of pelvis rotation and the load phase duration. Smaller eye and 

head rotations correlated with greater pelvis rotation, F(2, 64) = 18.029, p < 0.01, R2 = 0.360. 

However, only head rotation added to the prediction of the pelvis rotation independently, p < 

0.05; eye rotation was not independently significant (p = 0.066). A positive relationship was 

observed between eye and head rotations with the load phase duration, F(2, 64) = 5.966, p < 

0.01, R2 = 0.157. Both eye and head rotation also added to the prediction of the load phase 

durations independently, p < 0.05 (see Appendix B) (Figure 6b). 

Head rotations in the sub-elite group were predictive of peak pelvis angular velocity, 

pelvis angular velocity at contact, the land phase duration, total swing duration, and the load-

release difference. Smaller head rotations were correlative of greater peak pelvis angular 

velocity, F(1, 65) = 6.856, p = 0.011, R2 = 0.095, and greater pelvis angular velocity at contact, 

F(1, 65) = 4.873, p = 0.031, R2 = 0.070. Greater head rotations showed a relationship with a 

longer land phase duration, F(1, 65) = 8.142, p < 0.01, R2 = 0.111, longer total swing duration, 

F(1, 65) = 11.147, p < 0.01, R2 = 0.146, and smaller load-release difference, F(1, 65) = 10.216, p 

< 0.01, R2 = 0.136 (Figure 6b). However, no relationship between head rotation and the launch 

phase (p = 0.272) was observed.  
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Figure 6b. Scatter plots from the regression analysis for the kinematic variables in which a 

relationship was found in the sub-elite group. 
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Quality of Contact 

 The frequency of quality of contact was calculated for each level with the known and 

unknown conditions, as well as the elite and sub-elite groups independently. The results showed 

that elites in the known condition produced higher quality of contact with 76% of the contacts 

rated a two or three, and 70% in the unknown condition. Similarly, the sub-elites produced 

higher quality of contact in the known condition with 58% of the contacts rated two or three, and 

53% in the unknown condition. Overall, elites produced a higher ratio of quality of contact rated 

a two or three. 

 

Figure 7. Pie charts of quality of contact frequencies.

      

      



 
 

 

Chapter V: Discussion 

 This is the first study that examined the sensorimotor kinematic changes of the baseball 

swing as a result of alterations in the response process across the same pitch type with skill level. 

Similar research has looked at alterations of a known and unknown pitch condition but lacked 

the factor of skill level and did not incorporate visual kinematic measurements in the analysis 

(Miaynishi & Endo, 2016; Takuo, Norihisa, Sekiya, & Mitsura, 2008). Additionally, this is the 

first known study to examine correlations between sensory and motor kinematics while hitting a 

baseball.  

 Greater quality of contact appears to occur when the pitch is known as compared to the 

unknown pitch condition, as well as with the elite group over the sub-elite group. Therefore, it 

seems that sensorimotor kinematics associated with the known pitch type provide an advantage 

for the hitter and allows for a more successful swing. As a result, those characteristics exhibited 

by the elite group and during the known pitch condition are likely the model in which training 

modalities should strive to replicate. 

Sensory Implications 

The results demonstrated that the head rotates more during the unknown condition as 

compared to the known. The increase in head rotation is likely to be compensatory as a result of 

the increase in required reaction time for success in the more complex sensorimotor condition. 

The head would likely rotate more to increase the pitch tracking duration, enhancing the visual 

processing of the pitch in an attempt to determine its unknown spatial and temporal properties. 

The increase in head rotation is also explanatory of the increase in average head angular velocity 

in the unknown condition; the response times were similar due to the inclusion of only fastballs, 

therefore if the head rotates more, the average head angular velocity is expected to increase as
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well. However, this same phenomenon was not observed in the amount of eye rotation, nor the 

average eye angular velocity, that occurs between the two conditions. It is suggested that head 

movement is the compensatory mechanism with response process alterations while the eyes 

move more consistently with regard to both skill level and pitch condition. The observed eye 

movement consistency contradicts the previous notions that faster eye movements and shorter

latencies allow baseball players increased success with hitting a baseball (Uchida et al., 2013; 

Uchida et al., 2012).

Motor Implications 

As hypothesized, pelvis rotation was greater in the known condition in comparison to the 

unknown condition. The advantage of knowing the temporal information of the pitch is that it 

potentially allows the batter more time to maximize the rotation of the pelvis in response to less 

time dedicated to visual processing of the pitch. Based on the findings from the classic study by 

Donders, along with similar results found by Miller and Low, the motor time is constant 

regardless of task complexity while the reaction time is responsible for the increase in response 

times (Donders, 1969; Miller & Low, 2001).  

This is supported by the current study as the launch phase, represented by the rotational 

motion of the swing, remained unaltered across the different response conditions, while the load 

and land phases increased. Therefore, to maintain the swing movement time while exhibiting 

greater rotation, the angular velocities must also be increased. It would be expected for peak 

pelvis angular velocity to be greater in the known condition, however this was not demonstrated 

by the results. The peak rotational velocities of the pelvis may be more characteristic of a batter, 

representative of strength or mechanics, as there were no differences in peak pelvis angular 

velocity or pelvis angular velocity at contact between the two conditions. Additional research 
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should be done to analyze when peak pelvis angular velocity occurred during the swing sequence 

to determine if there are any trends exhibited with altering the pitch condition or skill level. 

Attributing rotational velocities of the swing to prior experiences is supported by the 

schema theory that indicates the movement time associated with complex movements can be 

reduced with sensorimotor coordination facilitated through practice (Schmidt, 1975; Light, 

Reilly, Behrman, & Spirduso, 1996). The schema theory implies that discrete movements are 

dictated by accumulated experiences which facilitate decision making through memory 

(Schmidt, 1975). This theory suggests that prior batting practice in a realistic scenario to refine 

the recall schema can help a batter improve the swing movement, which in turn guides future 

attempts. With sufficient practice, movements such as hitting a baseball can become an especial 

motor skill through the schema theory (Keetch, Schmidt, Lee, & Young, 2005). The schema 

theory was used to display such especial motor skill development in baseball context as 

experienced pitchers showed more accuracy throwing from regulation distances as opposed to 

shortened and lengthened distances (Simons, Wilson, Wilson, and Theall, 2009). 

The results also revealed an interaction between skill level and pelvis rotation for pitch 

condition. The elite group exhibited greater rotation of the pelvis in the known condition in 

comparison with the unknown, although this was not observed in the sub-elite group as rotation 

remained constant across both conditions. However, as previously mentioned, pelvis rotation was 

greater in the known condition as compared to the unknown across all participants in this study; 

this difference can be attributed to alterations in the elite group alone. This suggests that pelvis 

rotation is indicative of skill level and increased success, supporting previous literature (Nakata, 

Miura, Yoshie, Higuchi, & Kudo, 2014; Inkster, Murphy, Bower, & Watsford, 2011). However, 

pelvis rotation did not exhibit any trends as to if this increase was due to a greater loading 
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rotational movement or a greater rotational movement during the launch phase. The increase in 

pelvis rotation seems to be more likely related to the individual swing strategies exhibited on a 

player to player basis. 

Temporal Implications 

As a timing mechanism, the batter appears to synchronize the load point with the release 

point of the pitcher, indicating that the load phase is in response to the pitcher’s wind up. The 

load-release difference is also affected by task complexity. This study demonstrated that the load 

point occurred before the pitch release in the unknown condition, while in the known condition 

batters reached that point after the release point. Similar to head rotation, this is likely 

compensatory as an attempt to allow the batter more time to be allocated for the land phase, as 

the launch phase duration remains consistent. The load-release difference was also affected by 

skill level. This study demonstrated that the elite group reached the load point before the pitch 

release, while this occurred after the pitch release for the sub-elite group. It can be inferred that 

shifting the weight back sooner in the swing process to reach the load point earlier, just prior to 

pitch release, is advantageous to success while hitting a baseball. 

It was hypothesized that the longer the pitch can be tracked visually, a more accurate and 

powerful swing can be produced. The batter visually tracks the pitch to determine its spatial and 

temporal properties to decide how to and whether or not to swing. The load and land phase will 

occur in both the take condition, during which a batter decides not to swing, as well as the swing 

condition to achieve the task of hitting a baseball. The difference is in the launch phase which 

only occurs in the swing condition to produce the actual swing movement. As the load phase is 

in response to the pitcher’s windup until the load point occurs at pitch release, the land phase 

occurs during the pitch flight when the pitch tracking occurs. Once the decision is made to 
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swing, the launch phase follows as the swing motion is initiated when the front foot reestablishes 

ground contact at the end of the land phase (Nakata et al., 2013; Miyanishi & Endo, 2016; 

Shaffer, Jobe, Pink, & Perry, 1993; Messier & Owen, 1985). From this, it can be concluded that 

the reaction time, associated with determining spatial and temporal characteristics while tracking 

the pitch during flight, is simultaneous to the land phase to influence the movement of the swing 

during the launch phase. Therefore, it seems advantageous for a longer land phase duration to 

enhance pitch tracking, achieved by reaching to load point earlier.  

Supportively, the load and land phase durations were affected by skill level. The elite 

group exhibited longer load and land phase durations than their sub-elite counterparts. As 

previously mentioned, these phases occur simultaneously to visually tracking the pitch. 

Therefore, increasing these durations allows for more time to determine the pitch characteristics 

and increase success. As the launch phase remains consistent across skill level, the elite group 

begins their response earlier in reaction to the pitcher’s windup to accommodate for these 

increased load and land phase durations. As a result, the total swing durations were greater in the 

elite group as opposed to the sub-elite batters. 

Sensorimotor Implications 

With regard to the impact of sensory kinematics on motor kinematics, this study 

demonstrated that less head rotation for both the elite and sub-elite groups were predictive of 

greater peak pelvis angular velocity which skilled batters have exhibited (Inkster, Murphy, 

Bower, & Watsford, 2011; Nakata, Miura, Yoshie, Higuchi, & Kudo, 2014). The elite group 

displayed that the rotation of the eyes and the head are predictive of the launch phase duration, 

during which the swing motion occurs. As eye rotation decreases and head rotation increases, the 

launch phase duration increases.  Previous research indicates that quicker swing motions, 
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producing a shorter launch phase, are indicative of skill level and increased success; enhanced 

eye rotations have also been linked to skill level (Nakata, Miura, Yoshie, Higuchi, & Kudo, 

2014; Inkster, Murphy, Bower, & Watsford, 2011; Uchida et al., 2013; Uchida et al., 2012). A 

similar phenomena was demonstrated for greater pelvis rotations indicative of skill (Nakata, 

Miura, Yoshie, Higuchi, & Kudo, 2014). This further implies that head rotation increases are 

disadvantageous to success with hitting a baseball. However, as the head and pelvis rotates 

during the same time in the swing sequence, perhaps limiting the head rotation simply allows for 

greater pelvis rotation to occur as these rotations are in the opposite direction of one another. 

Additional research should be concluded to examine this relationship further. 

 A relationship opposite to that of head and eye rotation with the launch phase was 

observed with the land phase in the elite group. Increasing the land phase duration, which is 

advantageous to hitters, is associated with smaller head rotation and greater eye rotation, again 

supporting the idea of enhanced eye rotation with limitations on head rotation being indicative of 

skill. However, the land phase duration showed a positive association with the sub-elite group 

head rotation; additionally, the load-release difference was positively associated with head 

rotation of elites while negatively associated with sub-elites. The differences displayed between 

the groups with the land phase duration and load-release difference may be explanatory of the 

differentiation of skill level. While the head and eye rotations seem to work inversely of each 

other, the sub-elite group demonstrated positive correlations with both head and eye rotation with 

the load phase. This could potentially be explanatory of inferior sensorimotor coordination 

shown in novices (Bayhill & LaRitz, 1984; Hubbard & Seng, 1954; Uchida, Kudoh, Higuchi, & 

Kanosue, 2013; Uchida Kudoh, Murakami, Honda, & Kitazawa, 2012). It is important to note 
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that all relationships displayed only weak to moderate correlations and R2 values, as shown in 

Table 4 (see Appendix B). 

Practical Implications 

The information provided in this study can potentially help shape training modalities to 

improve performance. From a temporal standpoint, training a batter to initiate their load phase 

movement earlier in the pitcher’s windup and to reach the load point prior to the release of the 

pitch seems to benefit the batter. According to the findings of this study, training should 

emphasize controlled landing phase movements to increase the duration and allow for a more 

accurate swing. Supported by previous research, training should also aim to maximize the 

rotational kinematics of the pelvis to increase the energy transferred from the body to the 

baseball, as well as to reduce the required movement time allowing for more time to be allocated 

to pitch reaction. An emphasis on the kinematics of the head and the eyes seems warranted 

through training modalities as well. Vision training has the potential to enhance the eye 

movements that occur, requiring less compensatory head movements; training to improve pitch 

recognition can assist in limiting head rotations and maximize the pelvis kinematics to increase 

success. Sufficient practice has been shown to reduce the effects of Hick’s Law, allowing for a 

more efficient response with an increase in possible choices, or in this case possible pitch types, 

through decreased reaction times (Mowbray & Rhoades, 1959). Due to a greater quality of 

contact observed in the known pitch condition, it appears that training kinematic alterations 

associated with the unknown swing to mimic the mechanics during the known condition could be 

a viable strategy. Additional research is necessary to determine what training strategies can 

facilitate such changes to improve the success of batting, as well as to fully understand the 

relationships between the sensory and motor components while hitting a baseball. 
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Limitations and Future Recommendations 

There were some limitations associated with this study. The sample size presents a 

limitation to this study as there were only sixteen participants recruited, resulting in only seven 

and nine subjects for the sub-elite and elite groups respectively. Although participants were 

categorized based on playing experience, there still exists skill variability within the two groups. 

Despite the fact the same pitcher was used with all participants, disparity in the pitches occurred. 

Additionally, the collection environment presented challenges to the ability of motion capture 

system tracking the bat throughout each trial to incorporate bat velocity, and the eye tracking 

glasses limited the field of view for batters while tracking the pitch. Controlling for certain 

factors this study utilized a shortened pitching distance and an indoor batting cage environment 

which may not accurately simulate a live game scenario. Therefore, future research should 

incorporate an on-field setting to accurately mimic the task.  

The method for which eye rotations were calculated neglected direction. Analyzing eye 

rotations more accurately can help to shed light on the interactions between sensory and motor 

characteristics; a more in-depth analysis with the determination of smooth pursuit velocities and 

saccadic eye movements is required. Relatively, this study did not include gaze error between the 

gaze vector position and the ball location during the pitch flight. This could potentially provide a 

more thorough description of the connection between sensory and motor components of the 

baseball swing. Additional improvements could be made through the synchronization of the eye 

tracking glasses with the motion capture system instead of analyzing eye movements 

independently and recording motion capture data at a higher frame rate can potentially provide 

more accurate data. This study also only measured horizontal rotational data in the transverse 

plane; measuring rotation in all planes can provide more accurate data as well.  
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Correlating quality of contact with swing kinematics, which is the ultimate goal of the 

task, seems to be a direction for future research and can also help determine characteristics 

indicative of success; it is possible to achieve this by measuring exit velocity and incorporating 

technologies such as Rapsodo. To build on the findings of this research study, incorporating 

additional pitch types and including kinematic analysis of the torso and bat, as well as the 

kinetics associated with the ground reaction forces produced, would likely provide a more 

complete understanding of skilled batting and the relationship between the sensory and motor 

aspects of hitting a baseball. The relationships between head rotation and the land phase duration 

and load-release difference is another factor to be examined next to explain why opposite 

relationships were observed with skill level in this study. The next step in analyzing the 

phenomenon associated with pitch types leads to the utilization of simulations through virtual 

environments. Virtual reality systems are potentially a viable option to help train batters in pitch 

recognition with regards to observing a pitcher’s arm motions, release points, and ball 

trajectories. Additionally, developing training modalities that correlate to enhanced kinematics 

indicative of increased performance observed in this study is another path future research can 

follow to build on this study. 

Conclusions 

As previously mentioned, pitchers appear to be dominating the game statistically by 

exploiting the choice reaction time increase via a greater variety of pitch types in their arsenal. 

The goal of training should be to limit the required reaction time for success by training to 

enhance the sensory components of the swing process. Overall, this study demonstrated 

kinematic differences associated with the baseball swing as a result of skill level and the 

complexity of the sensorimotor response task. Training to extend the pitch tracking duration to 
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limit spatial and temporal inaccuracies, and to maximize rotational kinematics for a quicker 

swing movement, can potentially improve performance. Initiating the swing and reaching the 

load point earlier, as well as limiting head rotation and maximizing pelvis rotation, has been 

shown to be advantageous to the hitter. Additional research is needed to provide a more thorough 

understanding of the relationship between sensory and motor kinematics, as well as to develop 

effective training methods that improve these swing qualities which are indicative of skill level 

and success rates, limited by the choice response phenomena, in a game currently dominated by 

pitching.
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APPENDIX A: DATA COLLECTION DOCUMENTS 

 

 

East Carolina University 

 

 

 

Informed Consent to Participate in Research 
Information to consider before taking part in research that has no more than 

minimal risk. 

 

 
Title of Research Study: Kinematic Analysis of the Baseball Swing with Pitch Type and Skill Level 

Principal Investigator: Ryan Silberg 

Institution/Department or Division: Kinesiology 

Address: 332 Ward Sports Medicine Building, East Carolina University 

Telephone #: 252-737-4616 

 
Researchers at East Carolina University (ECU) study problems in society, health problems, environmental problems, 

behavior problems and the human condition.  Our goal is to try to find ways to improve the lives of you and others.  

To do this, we need the help of volunteers who are willing to take part in research. 

 

Why is this research being done? 

The purpose of this study is to evaluate the kinetics, kinematics and visual biomechanics of the baseball and 

softball swings in four separate training conditions in a population of healthy young adults who are current 

or former baseball or softball players. The decision to take part in this research is yours to make. By doing this 

research, we hope to learn more about the kinetics and kinematics of the baseball and softball swings in different 

practice conditions. 
 

Why am I being invited to take part in this research? 
You are being invited to take part in this research because you meet the inclusion criteria and appear to be free of 

contraindications to participating in this study.  Inclusion criteria for this study are: being between ages 18-35, played 

competitive baseball or softball at or after the age of 16, and being recreationally active.  

 

Are there reasons I should not take part in this research?  

I understand that I should not take part in this research if I am not between the ages of 18 and 35 years old, 

generally healthy, or recreationally active.  
 

What other choices do I have if I do not take part in this research? 
You can choose not to participate. 

 

Where is the research going to take place and how long will it last? 
The research procedures will be conducted at Next Level Training Center, 1750 Wimbledon Dr, Greenville, NC 

27858.  You will need to come to Next Level Training Center once for approximately two hours, including the 

completion of this Informed Consent Form. 

 

What will I be asked to do? 
You are being asked to do the following: 

1. Have your height and weight measured. 

2. Provide demographic information. 
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What possible harms or discomforts might I experience if I take part in the research? 
It has been determined that the risks associated with this research are no more than what you would experience in 

everyday life. You should not experience any discomfort from any aspect of this study.  If you do experience 

discomfort please inform the study staff.  

 

What are the possible benefits I may experience from taking part in this research? 
We do not know if you will get any benefits by taking part in this study.  This research might help us learn more about 

how similar baseball or softball swings are in different training conditions. There may be no personal benefit from 

your participation but the information gained by doing this research may help others in the future. 

 

Will I be paid for taking part in this research? 
We will not be able to pay you for the time you volunteer while being in this study. 

 

What will it cost me to take part in this research?  
It will not cost you any money to be part of the research.  
 

Who will know that I took part in this research and learn personal information about me? 
To do this research, ECU and the people listed below may know that you took part in this research and may see 

information about you.  With your permission, these people may use your private information to do this research: 

• Any agency of the federal, state, or local government that regulates human research.  This includes the 

Department of Health and Human Services (DHHS), the North Carolina Department of Health, and the Office 

for Human Research Protections. 

• The University & Medical Center Institutional Review Board (UMCIRB) and its staff, who have 

responsibility for overseeing your welfare during this research, and other ECU staff who oversee this 

research. 

• Christopher Curran, the primary investigator, Zac Domire, the faculty supervisor, and sub-investigators Patrick 

Rider, Nick Murray, Nate Harris, and Ryan Silberg. 

 

How will you keep the information you collect about me secure?  How long will you keep it? 
Data files will be kept for 5 years after the study is completed. The investigators will keep your personal data in strict 

confidence by having your data coded.  Instead of your name, you will be identified in the data records with an 

identity number.  Your name and code number will not be identified in any subsequent report or publication.  The 

main investigator and the research students will be the only persons who know the code associated with your name 

and this code as well as your data will be kept in strict confidence.  The computer file that matches your name with 

the ID number will be encrypted and the main investigators will be the only staff that knows the password to this file.  

The data will be used for research purposes. 

 

What if I decide I do not want to continue in this research? 
If you decide you no longer want to be in this research after it has already started, you may stop at any time.  You will 

not be penalized or criticized for stopping.  You will not lose any benefits that you should normally receive.  

 

Who should I contact if I have questions? 
The people conducting this study will be available to answer any questions concerning this research, now or in the 

future.  You may contact the Faculty Coordinator, Zac Domire at 252-737-4564 (work days between 8am and 5pm) or 

the principal investigator, Christopher Curran at 252-737-4616 (work days, between 8am and 5pm). 
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If you have questions about your rights as someone taking part in research, you may call the Office for Research 

Integrity & Compliance (ORIC) at phone number 252-744-2914 (days, 8:00 am-5:00 pm).  If you would like to report 

a complaint or concern about this research study, you may call the Director of the ORIC, at 252-744-1971. 
 

I have decided I want to take part in this research.  What should I do now? 
The person obtaining informed consent will ask you to read the following and if you agree, you should sign this form:   

 

• I have read (or had read to me) all of the above information.   

• I have had an opportunity to ask questions about things in this research I did not understand and have received 

satisfactory answers.   

• I know that I can stop taking part in this study at any time.   

• By signing this informed consent form, I am not giving up any of my rights.   

• I have been given a copy of this consent document, and it is mine to keep.  

 

 
          _____________ 

Participant's Name  (PRINT)                                 Signature                            Date   

 

 

Person Obtaining Informed Consent:  I have conducted the initial informed consent process.  I have orally reviewed 

the contents of the consent document with the person who has signed above, and answered all of the person’s 

questions about the research. 

 

             
Person Obtaining Consent  (PRINT)                      Signature                                    Date   
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ECU Performance Optimization Lab  Updated: 7/4/2019 
F17 Swing Study 

Participant Demographics 

Sub #:  Date:  Collector:  

BASEBALL  /  SOFTBALL 

Height (m):  

Mass (kg):  

Age:  

Vision Prescription:  

Floor to ASIS:  

Floor to Lat Epicondyle of Knee:  

Mid Thigh Height (tee height)  

When was your last season of competitive play? Fall / Spring   _______ 

How many years did you play competitively?  

What was the highest level that you competed at for 

school? 
 

What was the highest level that you played at outside of 

school? 
 

What level were you playing at when you stopped playing?  

How many months/year did you play at your highest level?  

What was your primary position when you stopped 

playing? 
 

What was your batting average during your last 

competitive season? 
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ECU POL Swing Study  Updated: 7/4/2019 
Collection Notes 

BBSB Swing Collection Notes 

SubID:____________  Date:______________  Collector:_________ 

 

Mocap Notes: (marker replacement, bad trials, QTM notes, etc.) 

 

 

 

 

 

 

 

 

  

 

 

Eye-Tracker Notes: (errors, use of phone, etc.)     RECALIBRATIONS 

 

 

 

 

 

 

Added into AIM Model 

Static_Cal   Static_NoCal   Tee  

Dynamic_Cal   Dynamic_NoCal   PopTee  

      SoftToss  



 
 

 
 

APPENDIX B: STATISTICAL ANALYSES TABLES 

Table 2

Descriptive Statistics

Kinematic Variable Mean SD Mean SD

Eye Rotation (deg) 7.212 4.656 7.853 3.903

Average Eye Angular Velocity (deg/s) 13.585 8.586 14.463 7.076

Head Rotation (deg) 18.005 7.539 22.346 9.031

Average Head Angular Velocity (deg/s) 22.308 12.195 28.053 14.521

Pelvis Rotation (deg) 89.609 9.363 86.648 7.265

Peak Pelvis Angular Velocity (deg/s) 598.228 90.174 582.326 76.784

Pelvis Angular Velocity at Contact (deg/s) 310.185 66.093 300.196 57.397

Load Phase (s) 0.529 0.161 0.546 0.159

Land Phase (s) 0.354 0.114 0.349 0.116

Launch Phase (s) 0.24 0.076 0.254 0.103

Total Swing (s) 1.123 0.247 1.149 0.24

Load-Release Difference (s) 0.016 0.112 -0.02 0.113

Kinematic Variable Mean SD Mean SD

Eye Rotation (deg) 7.495 4.182 7.598 4.539

Average Eye Angular Velocity (deg/s) 13.877 7.601 14.289 8.374

Head Rotation (deg) 19.312 9.854 21.729 5.191

Average Head Angular Velocity (deg/s) 23.03 14.67 29.05 10.616

Pelvis Rotation (deg) 89.997 6.381 85.326 10.37

Peak Pelvis Angular Velocity (deg/s) 613.944 59.468 554.778 101.332

Pelvis Angular Velocity at Contact (deg/s) 297.996 73.1 315.983 36.75

Load Phase (s) 0.615 0.115 0.421 0.142

Land Phase (s) 0.406 0.105 0.269 0.066

Launch Phase (s) 0.243 0.081 0.251 0.104

Total Swing (s) 1.265 0.147 0.942 0.223

Load-Release Difference (s) -0.049 0.093 0.068 0.104

Unknown

Sub-EliteElite

Known
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Table 3

Two-Way Repeated Measures ANOVA

Kinematic Variable Sum of Squares df Mean Square F p-value

Eye Rotation (deg) 1.107 1 1.107 0.082 0.779

Average Eye Angular Velocity (deg/s) 0.746 1 0.746 0.017 0.898

Head Rotation (deg) 90.371 1 90.371 12.186 0.004**

Average Head Angular Velocity (deg/s) 191.405 1 191.405 7.387 0.019*

Pelvis Rotation (deg) 45.847 1 45.847 12.447 0.004**

Peak Pelvis Angular Velocity (deg/s) 1336.815 1 1336.815 2.908 0.112

Pelvis Angular Velocity at Contact (deg/s) 611.298 1 611.298 0.716 0.413

Load Phase (s) 0.002 1 0.002 0.919 0.355

Land Phase (s) 0.000089 1 0.000089 0.177 0.681

Launch Phase (s) 0.001 1 0.001 1.985 0.182

Total Swing (s) 0.005 1 0.005 1.404 0.257

Load-Release Difference (s) 0.009 1 0.009 7.84 0.015*

Kinematic Variable Sum of Squares df Mean Square F p-value

Eye Rotation (deg) 0.068 1 0.068 0.003 0.96

Average Eye Angular Velocity (deg/s) 1.091 1 1.091 0.012 0.913

Head Rotation (deg) 37.572 1 37.572 0.274 0.61

Average Head Angular Velocity (deg/s) 232.985 1 232.985 0.678 0.426

Pelvis Rotation (deg) 157.106 1 157.106 1.183 0.297

Peak Pelvis Angular Velocity (deg/s) 25204.138 1 25204.138 1.995 0.181

Pelvis Angular Velocity at Contact (deg/s) 2329.387 1 2329.387 0.323 0.579

Load Phase (s) 0.271 1 0.271 8.397 0.012*

Land Phase (s) 3.288 1 3.288 187.927 0.016*

Launch Phase (s) 1.77 1 1.77 104.1 0.873

Total Swing (s) 0.751 1 0.751 11.227 0.005**

Load-Release Difference (s) 0.098 1 0.098 5.276 0.039*

Elite vs. Sub-Elite

Known vs. Unknown

Note. * p < 0.05. ** p < 0.01
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Table 4a

Kinematic Variable B SE B β F R
2 p-value

Pelvis Rotation (deg) 0.007 0.003 0.266 6.147 0.071 0.015

Land Phase (s) <0.001 <0.001 0.219 4.094 0.048 0.046

Launch Phase (s) <0.001 <0.001 -0.246 5.239 0.061 0.025

Kinematic Variable B SE B β F R
2 p-value

Peak Pelvis Angular Velocity (deg/s) -2.379 0.597 -0.405 15.887 0.164 < 0.001

Land Phase (s) -0.003 0.001 -0.274 8.132 0.075 0.005

Load-Release Difference (s) 0.232 0.091 0.273 6.546 0.075 0.012

Kinematic Variable F R
2 p-value

Land Phase (s) 10.896 0.214 <0.001

Launch Phase (s) 6.687 0.143 0.002

Eye and Head Rotation

Head Rotation

Eye Rotation

Significance of Regression Analysis for Eye and Head Rotation Predicting Pelvis and Phase Kinematics in Elite

Table 4b

Kinematic Variable B SE B β F R
2 p-value

Load Phase (s) <0.001 <0.001 0.245 4.161 0.06 0.045

Kinematic Variable B SE B β F R
2 p-value

Pelvis Rotation (deg) -0.805 0.151 -0.551 28.274 0.303 <0.001

Peak Pelvis Angular Velocity (deg/s) -4.659 1.779 -0.309 6.856 0.095 0.011

Pelvis Angular Velocity at Contact (deg/s) -2.261 1.024 -0.264 4.873 0.07 0.031

Load Phase 0.006 0.002 0.306 6.704 0.093 0.012

Land Phase (s) 0.003 0.001 0.334 8.142 0.111 0.006

Swing Duration (s) 0.009 0.003 0.383 11.147 0.146 0.001

Load-Release Difference (s) -0.322 0.101 -0.369 10.216 0.136 0.002

Kinematic Variable F R
2 p-value

Pelvis Rotation (deg) 18.029 0.36 <0.001

Load Phase (s) 5.966 0.157 0.004

Eye Rotation

Head Rotation

Eye and Head Rotation

Significance of Regression Analysis for Eye and Head Rotation Predicting Pelvis and Phase Kinematics in Sub-Elite
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