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Abstract

Diastolic dysfunction suggestive of diabetic cardiomyopathy is established in children with T1DM, but its pathogenesis is
not well understood. We studied the relationships of systemic inflammatory cytokines/chemokines and cardiac function in
17 children with T1DM during and after correction of diabetic ketoacidosis (DKA). Twenty seven of the 39 measured
cytokines/chemokines were elevated at 6–12 hours into treatment of DKA compared to values after DKA resolution. Eight
patients displayed at least one parameter of diastolic abnormality (DA) during acute DKA. Significant associations were
present between nine of the cytokine/chemokine levels and the DA over time. Interestingly, four of these nine interactive
cytokines (GM-CSF, G-CSF, IL-12p40, IL-17) are associated with a Th17 mediated cell response. Both the DA and CCL7 and IL-
12p40, had independent associations with African American patients. Thus, we report occurrence of a systemic
inflammatory response and the presence of cardiac diastolic dysfunction in a subset of young T1DM patients during acute
DKA.
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Introduction

Since being described four decades ago, diabetic cardiomyop-

athy (DCM) [1] has come to be recognized as an independent

phenotype of diabetic cardiac disease. DCM is characterized by an

abnormal myocardial performance unrelated to coronary athero-

sclerosis or hypertension [2–4]. There is convincing echocardio-

gram (ECHO) evidence of diastolic dysfunction in a significant

number of children, adolescents [5–8] and young adults with

T1DM [9–12]. These studies suggest that DCM, a major cause of

heart failure, has an early onset in some patients with T1DM. A

positive correlation has been reported between stable suboptimal

metabolic control and diastolic dysfunction [7,8,13]; however this

has not been a consistent finding [6,14,15].

Insulin deficiency in T1DM results in a complex metabolic

stress, including: hyperglycemia [16]; hyperlipidemia [17]; keto-

nemia [18]; and variable intermittent insulin resistance [19], each

being a metabolic risk factor in the pathogenesis of DCM. Altered

insulin signaling also perturbates cardiac metabolism, with

augmentation of free fatty acid (FFA) utilization and decrease in

glucose consumption [20]. The metabolic instability in T1DM

leads to increased oxidative stress [21] and the oxidation of various

metabolites. Oxidation products such as oxidized lipoproteins

interact with innate immune receptors [22] causing a low-grade

systemic inflammation. Type 1 diabetes is marked by an increase

of inflammatory cytokines/chemokines, such as IL-6; sCD40L

[23,24]; IL-8 [25]; IL-1a; IL-2; IL-4; IL-5; IL-10; granulocyte-

macrophage colony-stimulating factor (GM-CSF); macrophage

inflammatory protein (MIP)-1a; MIP-1b; and activation of normal

T cell expressed and secreted (RANTES) [24].

In this study we examine diabetic ketoacidosis (DKA) and the

occurrence of systemic inflammatory response (SIR) and the

presence of cardiac diastolic dysfunction. We have shown

previously that DKA and its treatment accentuates the systemic

immune inflammatory cytokines IL-1b, IL-6, TNF- a and IL-8 in

patients. In addition, we found an increased level of regulatory IL-

10 prior to treatment. With the initiation of treatment the

inflammatory cytokines increased and IL-10 decreased [26]. These

findings were recently confirmed by Karavanaki and colleagues

[27]. In addition to the increase of inflammatory cytokines, the
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inflammatory state of acute DKA is shown by findings of

complement active peptides [28]; acute phase proteins [29,30];

and T-lymphocyte activation [31,32]. We hypothesized that the

acute SIR during severe DKA and its treatment is a cause of acute

myocardial diastolic dysfunction. Reasons to study the association

of an immune insult on the myocardium in young patients with

DKA are: 1) to avoid the confounding interaction of the chronic

vascular complications of long-term T1DM; 2) to increase the

understanding of inflammatory cytokines in the pathogenesis of

clinical immune myocarditis/cardiomyopathy [33,34]; and 3) to

provide insight for timely intervention into the morbidity and

mortality of cardiovascular complications of T1DM [35]. We

addressed this question by assaying an array of systemic cytokines/

chemokines and performing echocardiograms (ECHO) during and

after correction of severe DKA using an established DKA

treatment protocol [36,37].

Materials and Methods

1. Study Sample
A total of twenty-two children and adolescents between the ages

of 9.5 and 17 years, presenting with diabetic ketoacidosis and total

CO2 = /,12 mmol/L were enrolled. The study was approved by

the IRB at East Carolina University Brody School of Medicine.

Informed consent was signed by the legal guardian and assent

from the patients over 7 years when not prohibited by severity of

illness. In such cases, patient assent was obtained when clinical

improvement permitted. Patients referred from outlying hospitals

were stabilized prior to transport after consultation with the

accepting attending physician in the Pediatric Intensive Care Unit.

Patients were managed according to previously published guide-

lines [36,37]. Pretreatment values were obtained for blood

pressure (BP), heart rate (HR), complete blood count (CBC),

glucose, electrolytes, urea nitrogen (BUN) and creatinine (Cr) at

the referring hospital. The start of therapy was defined as the

initiation of continuous intravenous insulin. In addition to a

pretreatment blood pressure (BP), BPs were recorded hourly based

on measurements with an automated oscillometric device and

appropriately sized BP cuff. BP determinations were available for

19 time periods including (6–12 hrs, during DKA treatment) (T1),

discharge (48 hrs), baseline ECHO (2–4 wks post discharge) (T2)

and baseline cytokines/chemokines (at 3 mons) (T3). Blood

glucose was obtained hourly and electrolytes, BUN and Cr were

measured every two to four hours. A repeat CBC with differential

was repeated at 24 hrs. None of the patients were known to have

hypertension, diabetic retinopathy, nephropathy or coronary

artery disease. Exclusion criteria were a history or physical

findings suggestive of an acute or chronic infection, emotional or

physical disability or autoimmune conditions other than chronic

lymphocytic thyroiditis.

2. Echocardiograms
Standard two dimensional echocardiograms with Doppler

velocity flow were obtained at times T1 (6–12 hrs, during DKA

treatment) and T2 (2–4 wks post discharge, baseline ECHO).

Patients were studied in a 45 degree sitting position. Standard two

dimensional (2D) views were obtained and ventricular ejection

fractions were calculated from the two dimensional images using a

standard volume calculation package. Doppler flow profiles were

measured just distal to the tips of the valve leaflets for peak

velocities and mitral E to A filling ratio, mitral deceleration time

and mitral valve isovolumetric relaxation time by standard

technique and averaged from the three best Doppler profiles to

study left ventricular filling.

Comparisons were made for ECHO derived measures of

systolic and diastolic performance at times T1 versus T2 (baseline

ECHO) for all 17 patients in aggregate. The individual patient

echocardiographic measures at T1 were compared to individual

measures at T2 to determine if any subset of patients had a systolic

or diastolic abnormality (T1). The echocardiograms and calcula-

tions were performed by one of the authors (DH), who was masked

with regard to the cytokine results.

3. Cytokines/chemokines and Troponin I
The first blood sample for cytokine/chemokine assay (T1) was

obtained between 6–12 hrs after the start of treatment. This time

was chosen as T1 since the logistics of transfer from another

hospital precluded obtaining an earlier sample, and this time has

been used for sample collection as the second time point in

previous studies of DKA [26,38,39]. Subsequent samples were

obtained at 2–4 wks (T2) and at 3 mon post discharge (baseline

cytokine) (T3). All samples were obtained from freely flowing

access sites, immediately placed in chilled EDTA tubes and

immediately centrifuged at 4uC at 2,000 RPM for 20 min. The

plasma was separated and stored at 280uC until assayed.

Troponin I was obtained at 12 and 24 hrs.

The cytokines and chemokines were measured using Millipore

Map detection kit (Austin, TX), based on the Luminex xMAP

technology, that employs the use of fluorescent coated beads

coated with capture antibody. The plasma samples were thawed at

room temperature. A volume of 25 microliters was mixed with the

beads, incubated overnight, washed and then detected with the use

of a biotinylated detection antibody. The reaction mixture was

incubated with Strepavidin-PE conjugate to complete the reaction

on the surface of the microbeads. The microbeads were then

passed through a laser which excites the internal dye and a second

laser excites the PE fluorescent dye. The processor identifies each

microbead and quantifies the result of the bioassay based on the

fluorescent reporter signals. The outcome of the assay was read on

the Bio-Plex 200 system from Bio-Rad using the Bio-Plex

Manager 6.0 software. Troponin I was assayed using the Siemens

Centaur Tn1-Ultra assay (Deerfield, IL).

4. Statistical Analysis
The patients’ demographic characteristics are described as

group mean +/2 standard deviation or as median values with

data range. Associations between demographic characteristics

were tested with Fisher’s Exact test or Chi-square. Blood

chemistries and cytokines/chemokines are represented as group

means +/2 standard deviations. Correlation and regression

analyses were used to determine the strength of relationships

between cytokines/chemokines and blood chemistries, systolic(S)

and diastolic(D) BPs, as well as cytokines/chemokines and ECHO

values. Longitudinal differences between blood chemistries, BPs,

and ECHO variables were tested with repeated measures

ANOVA and T-tests. Comparable non-parametric analyses were

utilized when data sets did not meet parametric criteria. Two-

factor repeated measures ANOVA were used to investigate

interactions between ECHO and cytokine/chemokine variables.

NCSS 8 Statistical Software (http://www.ncss.com) was used for

the statistical analyses.

Results

1. Patient Demographics
Four of the 22 patients were dropped from the study for various

non-medical reasons, and one was dropped because of pancrea-

titis. The study involved 17 patients with DKA and an average age

SIR and Diastolic Dysfunction during DKA
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of 13.76 yrs (range: 9.7–16.9). The mean (SD) duration of T1DM

for the 11 previously diagnosed patients is 6.36 (4.02) yrs. Six

patients were newly diagnosed at the time of admission. The mean

(SD) T1DM duration for all 17 patients was 4.12 (4.29) yrs. There

were 10 females and 7 males, 6 Caucasian (C) and 11 African

American (AA) (Table 1). Sixteen of the patients were stabilized at

a referring hospital after consultation with staff at East Carolina

Medical Center, where the patients were then transferred to the

PICU for treatment of DKA by a published protocol [36,37].

Three patients received intravenous mannitol during the treat-

ment of DKA based on the assessment by the attending of clinical

signs suggesting early clinical cerebral edema, as previously

described [36,37]. All 17 patients had uneventful correction of

DKA, frequently within 12 hours after the initiation of the

treatment [37]. Laboratory results of the patients are depicted in

Table S1. All patients had one or more positive islet cell

autoantibodies (IAA, IA-2, and GAD65) (data not shown).

Troponin I was not increased in any patient at either T1 (6–

12 hrs) or at 24 hrs (data not shown).

2. Cardiac Assessment
To assess cardiac parameters of patients with DKA, ECHO was

performed at T1 (6–12 hrs) vs T2 (2–3 wks/ECHO baseline). The

results are shown in Table 2. Heart rates (HRs) obtained during

ECHO examinations were significantly elevated (p,0.0001) at T1

(106 bpm) vs T2 (78 bpm). Two dimensional LV fractional

shortening was significantly higher at T1 compared with T2 but

within normal range at both studies, indicating increased systolic

performance with the increased adrenergic state. LV dimensions

and volumes were significantly lower at T1 consistent with changes

from dehydration and sinus tachycardia associated with DKA.

3. Diastolic Abnormality
Diastolic function by mitral valve Doppler E/A filling ratio

showed a significantly lower mean mitral E/A filling ratio at T1

compared with T2 for all 17 patients (Table 2). This is a normal

finding since mitral diastolic E/A ratio shortens progressively with

faster HRs [40,41] and all patients had sinus tachycardia at T1. A

comparison of the difference in the E/A ratio between T2 and T1

indicates that in five patients there was not a normal shortening

(decrease) of the E/A ratio during T1 compared with the baseline

at T2. This lack of normal diastolic adaptation to sinus tachycardia

identified this subgroup to have an acute diastolic abnormality

(DA) during DKA (Figure 1).

Mean mitral deceleration time (MDT) was shorter at T1

(mean = 154 msec) compared with T2 (mean = 166 msec) in the

group as a whole. This is also consistent with a normal response to

the shortening in diastolic filling time during sinus tachycardia.

However, in six patients the MDT was not shorter at T1

compared with T2, despite the significantly higher HR at T1. This

represents a significant association for abnormal MDT adaptation

to sinus tachycardia at T1 for these 6 patients (p = 0.0345).

Analysis of the difference between MDT at T1 and T2 indicated

that the magnitude of the difference was statistically smaller (MDT

did not shorten at T1 compared with T2) in these six patients

(p = 0. 0011). This relationship is depicted in Figure 2. Three

patients showed this abnormal response to an increased HR in

both of these diastolic parameters: mitral E/A ratio and mitral

DT. Therefore eight (8) patients had one or both of these

abnormal diastolic changes with sinus tachycardia and were

identified as having diastolic dysfunction or diastolic abnormality

(DA) compared with the other 9 patients with no demonstrable

acute DA (non-DA) at T1. No significant difference in HR values

were present at T1 between the 8 DA patients versus the 9 non-

Table 1. Demographic data for 17 patients in data set.

Patient No.
Age at First Data Set
(years)

Disease Duration at First
Data Set Gender Race Diastolic Abnormality Group

1 13.25 1 d M C No

2 14.42 5 y F AA Yes

3 13.58 9 y F C Yes

4 16.92 3 y M AA Yes

5 11.42 3 y M AA No

6 10.08 1 d F C No

7 16.92 1 y M AA No

8 16.33 1 d F AA Yes

9 13.08 1 d M C No

10 14.33 12 y F AA Yes

11 11.58 1 d F AA Yes

12 16.25 6 y M AA Yes

13 15.25 7 y F C No

14 9.67 1 d F AA No

15 15.5 13 y F AA Yes

16 10.75 5 y M AA No

17 14.58 6 y F C No

Average Age (SD) in
years 13.76 (2.37)

Mean (SD) Duration in
years 4.12 (4.29)

TOTAL 7 Male: 10 FemaleTOTAL 11 AA*: 6C TOTAL 8 DA Group: 9 Non-DA
Group

*Fisher’s Exact chi-square analysis indicates a significant association between the Diastolic Abnormality and the African American race (p = 0.0319).
doi:10.1371/journal.pone.0071905.t001

SIR and Diastolic Dysfunction during DKA
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DA patients supporting that a true diastolic HR adaptation

abnormality was present during DKA in the DA patients.

4. Diastolic Abnormality vs No Abnormality
The 8 DA patients versus the 9 non-DA patients showed slightly

greater mean HR values (DA at 107 bpm; non-DA at 104 bpm),

but no significant difference at T1. Mean echocardiographic

changes for the patients after grouping by the presence of DA or

non-DA are summarized in Table S2. At T1, the DA patient

group had significantly thicker left ventricular wall and septum,

larger left atrial volumes and longer mitral deceleration time

corrected for HR (MDT HRc) compared to the non-DA group. In

addition, the mean mitral E/A ratio for the DA group was lower at

T2 compared to the non-DA group, with no significant differences

at T1.

Although gender, age and duration of diabetes had no

statistically significant relationship with DA, there was a significant

association between the AA race and DA group (p = 0.0319). Also,

a significant percentage of AA patients presented with DA having

a shorter duration of T1DM (p = 0.0228). There was no significant

race or DA group differentiation with HbA1c at T1 or T3.

5. Inflammatory Cytokines
To examine levels of chemokines/cytokines, blood samples were

collected at: T1 at 6–12 hrs; T2 at 2–3 wks; and T3 at 3 mon

(cytokine/chemokine baseline). Twenty seven of the thirty nine

cytokines had the highest value at T1 (p = .0014). Ten of the

cytokines/chemokines (26%) had a statistically significant variation

Table 2. Comparative analysis for ECHO variables that had significant differences for all patients at T1 (6–12 hours post admission)
vs T2 (2–3 weeks/ECHO baseline), (N = 17 patients).

ECHO Variable Echo T1 DKA Mean(SD) Echo T2 Baseline Mean(SD) Test Result * T (p)

RR Interval (msec) 566.47 (68.67) 771.47 (159.19) 25.48 (,0.0001)

Mitral Valve E/A Ratio 1.49 (0.27) 2.15 (0.36) 26.29 (,0.0001)

2D LV diameter Diastolic (cm) 3.98 (0.61) 4.44 (0.52) 24.38 (0.0002)

2D LV diameter Systolic (cm) 2.38 (0.40) 2.81 (0.45) 25.25 (,0.0001)

LV Area Diastolic (cm2) 13.12 (2.67) 16.23 (3.23) 25.33 (,0.0001)

LV Area Systolic (cm2) 5.94 (1.60) 7.11 (2.05) 22.88 (0.0054)

LV Volume Diastolic (cm3) 36.08 (10.54) 48.91 (14.91) 24.70 (0.0001)

LV Volum Systolic (cm3) 10.93 (3.98) 14.28 (5.94) 22.93 (0.0049)

2D SF% 39.88 (5.79) 36.91 (5.28) 1.80 (0.0452)

2D LV Wall thickness Diastolic (cm) 0.77 (0.12) 0.71 (0.13) 1.88 (0.0305)

2D Septum thickness (cm) 0.74 (0.12) 0.69 (0.12) 1.75 (0.0398)

LA diameter (cm) 2.31 (0.47) 2.80 (0.43) 25.11 (,0.0001)

Aorta diameter (cm) 2.42 (0.34) 2.18 (0.33) 3.14 (0.0031)

*Statistically significant results p,0.05.
doi:10.1371/journal.pone.0071905.t002

Figure 1. Figure 1 shows that the difference in mitral E/A at T2
(Baseline) minus E/A at T1 (DKA) was significantly less
(Z = 23.1115, p = 0.0019) for the group of 5 patients with DA
at T1 compared to the other 12 patients. HRs were not different in
these 5 patients compared to the other 12 patients at T1 or T2.
doi:10.1371/journal.pone.0071905.g001

Figure 2. Figure 2 shows that the difference in MDT at T2
minus T1 for the patients identified with mitral DA. The
magnitude of the difference was statistically smaller (Z = 23.2684;
p = 0.0011 : T1 not shorter than T2) in the DA group patients implying
abnormal adaptation to sinus tachycardia at T1.
doi:10.1371/journal.pone.0071905.g002

SIR and Diastolic Dysfunction during DKA
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in mean values across time (Table 3). In addition we observed

statistically significant correlations between admission chemistries

and cytokines at T1 and T3 (Table S3). ANOVA comparisons of

cytokines/chemokines levels sorted by duration of T1DM

indicated no significant differences in concentrations between

newly diagnosed and those with longer duration (data not shown).

6. Diastolic Abnormality and Cytokine Interactions
A two factor ANOVA with repeated measures on time indicated

that nine of the 27 measured cytokine/chemokines displayed

mean values that were significantly different across time depending

on whether the patients displayed an ECHO diastolic abnormality

(DA group) or did not (non-DA group) at T1 (Figures 3a–i). The

mean GCSF, IL-1a, CCL7 (MCP3), CX3CL1 (Fractalkine), IL-

17, GM-CSF, IL-12p40 and sCD40L concentrations were

increased at T1 in the DA group compared to the non-DA group.

Conversely, the mean CXCL10 (Interferon gamma-induced

protein 10, IP-10) concentration was decreased in the DA group

at T1. At T3 there was no difference in 6 of the cytokine/

chemokines GCSF, CCL7(MCP3), CX3CL1 (Fractalkine), IL-17,

CXCL10 (IP10), sCD40L between the DA and non-DA group.

IL-1a remained higher in the DA than in the non-DA group. GM-

CSF and IL12p40 values were lower in the DA than in the non-

DA group. Additionally, at T1 (6–12 hrs), we observed statistically

significant correlations between the DA group determinant

ECHO variables of MDT or mitral E/A ratio and the cytokines

IL-12p40, sCD40L, CXCL10 (IP10), IL17, and GMCSF (Table 4).

7. Hypertension
Blood pressures were recorded for the 17 patients at 19 time

points that included 16 measurements over the first 24 hrs of

treatment; at discharge (48 hrs); at 2–3 wks (baseline ECHO) (T2);

and at 3 mon (baseline cytokine/chemokine) (T3). An elevated BP

was present on admission for 15 of the 17 patients (p = 0.0023). A

direct correlation between mean SBP and DBP was established

with a correlation coefficient r = 0.8799, (p,0.0001). Figure 4

depicts the linear regression line relating mean SBP and DBP

using the 19 points with the mean normal SBP and DBP value

plotted as it relates to the elevated patient mean SBP and DBP

values. The regression equation is DBP = (5.2363)+(0.5690)6SBP.

There were no statistically significant correlations between

duration of T1DM and either SBP or DBP.

Statistically significant differences in mean SBP, DBP across the

BP time frame were established with repeated measures ANOVA

(SBP Mean = 120 mm Hg; F = 4.73, p,0.0001; DBP

Mean = 73 mm Hg; F = 3.29, p,0.0001). Comparison of the

mean SBP and DBP measures indicate significant differences

(p,0.05) for early sample times compared to later times, as well as

the mean age related normal BP measurements (Figure 5). The

initial, T2 and T3 SBP and DBP were all significantly greater than

normal reference BPs [42] (indicating these patients were

hypertensive during the study). Intravenous mannitol for three

patients had no statistical effect on the group BP measurements

(p = 0.7322).

8. Diastolic Abnormality and BP Relationships
Grouping the 19 BP time points according to ECHO evidence

of DA resulted in the following observations based on linear

regression/correlation analyses using the variables SBP-DA or

DBP-DA and SBP-non-DA or DBP-non-DA. Figure 6 relates the

mean SBP-DA to the DBP-DA, with the mean normal SBP-DA

and DBP-DA value plotted as it related to the elevated patient

mean values. The direct correlation between mean SBP-DA and

DBP-DA is 0.9025, (p,0.0001). The value of R2, the proportion

of the variation in DBP-DA that is accounted for by variation in

SBP-DA, is 0.8146 or 82%. The regression equation is DBP-

DA = (2.0366)+(0.5963)6SBP-DA. Figure 7 relates the mean SBP-

non-DA to the DBP-non-DA, with the mean normal SBP-non-DA

and DBP-non -DA value plotted as it related to the elevated

patient mean values. The correlation between mean DBP-non-DA

and SBP-non-DA is 0.5882, (p = 0.0064). The value of R2, the

proportion of the variation in DBP-non-DA that can be accounted

for by variation in SBP-non-DA, is 0.3460 or 35%. DBP-non-

DA = (28.9868)+(0.3649)6SBP-non-DA. Figures 6 and 7 indicate

that the two regression lines are different, in variability, slope and

intercept. The non-DA regression in Figure 7 is more variable

(S.E. Reg. = 3.488) than the DA regression (S.E. Reg. = 2.425) in

Figure 6. A general linear test (GLT) comparing the intercepts and

slopes of the non-DA regression line to the DA regression line was

Table 3. Repeated Measures ANOVA results (F-ratio and
probability) for cytokines with significant differences across
time. T1 (6–12 hours post admission); T2 (2–3 weeks); T3 (3
months).

Cytokine F-Ratio Probability
Sample
Time: Mean (SE)

EOTAXIN 7.73 0.0018 T1 52.47 (4.94) ++

T2 43.17 (4.19)

T3 38.54 (4.52)

GM-CSF 6.00 0.0064 T1 77.68 (14.26)* ++

T2 48.32 (10.60)

T3 43.93 (11.14)

IFN-gamma 5.85 0.0071 T1 42.43 (12.81)* ++

T2 30.22 (10.15)

T3 24.99 (8.50)

IL-6 5.45 0.0092 T1 26.29 (11.14) ++

T2 20.43 (8.79)

T3 17.57 (8.91)

IL-8 13.21 ,0.0001 T1 16.12 (4.16)*++

T2 9.38 (3.46)

T3 6.40 (2.73)

IL-17 5.45 0.0096 T1 17.05 (6.09) ++

T2 10.81 (4.95)

T3 9.71 (4.10)

CCL7 (MCP-3) 5.16 0.0119 T1 19.18 (2.78) ++

T2 15.65 (2.47)

T3 12.80 (2.17)

MDC 11.92 0.0001 T1 1034.45(81.19)*++

T2 1456.85 (106.93)

T3 1303.77 (123.44)

sIL-2ra 4.08 0.0271 T1 25.19 (11.12)++

T2 2.97 (2.41)

T3 1.38 (1.22)

VEGF 3.38 0.0473 T1 262.57 (62.51)++

T2 209.20 (66.48)

T3 181.62 (43.48)

*- Mean (T1) significantly different (p,0.05) from (T2) mean; ++ - Mean (T1)
different (p,0.05) from mean cytokine baseline measurement (T3). N = 17
subjects.
doi:10.1371/journal.pone.0071905.t003

SIR and Diastolic Dysfunction during DKA
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significant (p = 0.033), indicating a significant difference between

the DA group and the non-DA group SBP/DBP relationships.

The DBP of the DA group is strongly related to the SBP

(R2 = 0.8146), elevated SBP is related to elevated DBP. However,

the SBP and DBP of the non-DA group are less related to each

other (R2 = 0.3460), with strong relationships between SBP and

DBP at the highest measures of SBP.

Examination of the 19 BP time periods grouped according to

ECHO evidence of DA resulted in the following observations

based on repeated measures ANOVA analysis, and depicted in

Figures 8 & 9. Although the SBP trend identified for all 17 patients

collectively did not change from early measures of SBP being

significantly greater than later measures of SBP, differences

became evident after grouping the subjects by DA or non-DA

group. During hrs 4, 5, 6, 7, and 8, the mean DA group SBP was

significantly greater (p,0.05) than the non-DA group SBP

(Figure 8). The DBP trend established for all 17 patients also did

not change from higher values early to lower values later. However

with grouping, the significant differences between the DA group

and the non-DA group were evidenced earlier specifically during

the initial measurement through hour 5 (DA range: 84–78 mmHg;

non-DA range: 76–68 mmHg), followed by a close agreement for

the remaining time measures (Figure 9).

In summary, ECHO and cytokine/chemokine comparisons

indicated significant differences over time in patients with DKA.

Further, the ECHO analysis identified a group of patients

displaying a DA. Grouping patients according to the presence or

absence of a DA and testing for interaction effects with cytokines/

chemokines indicated that 9 of the cytokines/chemokines

responded differently over time. Blood pressure analysis also

indicated significant differences over time as well as a differential

response depending on the presence of the DA. There is a

significant association between both AA race and duration of

T1DM with DA.

Figure 3. a–i. *Identifies statistically significant (p,0.05) differences between DA and Non-DA groups for the same time point (5a–i). + identifies
statistically significant (p,0.05) differences within DA or Non-DA groups across time points (5a–i). T1 (6–12 hrs post admission); T2 (2–3 wks); T3 (3
months).
doi:10.1371/journal.pone.0071905.g003
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Discussion

Previous ECHO studies in young T1DM patients focused on

assessing diastolic function during a stable metabolic state at one

time and were comparing them with age-matched controls

[6,7,43,44]. The most common abnormality of diastolic function

found in the prior studies of children with T1DM was a lower

mitral E/A ratio; that is the comparison of the ECHO Doppler

rapid LV filling (E) to the velocity of the late atrial component of

LV filling (A). In contrast, our ECHO studies were performed

during the acute metabolic crisis and immunologic dysregulation

of DKA, and were then compared with the ECHO following

correction of DKA in the same patient. The mitral E/A ratios

have predictably been shown to decrease as HR increases [41].

Mitral deceleration time (MDT), another common measure of

diastolic LV function, is a measure of the decay slope of the LV

rate, and also decreases with the rapid filling velocity of the

increased HR. Eight of our patients lacked these normal responses

to sinus tachycardia in one or both of these parameters when

compared with their (baseline) ECHO at 2–4 weeks after DKA

(T2). Since the sinus tachycardia during DKA was no different in

these 8 patients than in the other 9 patients, the 8 patients were

considered to have an abnormal diastolic (DA) response to sinus

tachycardia and were studied in relation to the systemic

inflammatory cytokines/chemokines (6–12 hrs, during DKA

treatment) T1, (2–4 wks post discharge) T2, and (at 3 mons after

DKA) T3. Consistent with these diastolic changes, the DA group

had larger LA volumes than the non-DA group at T1 consistent

with impaired diastolic relaxation/filling. The Doppler flow

abnormalities we identified during DKA (T1) indicated an

abnormal diastolic function in relation to the baseline ECHO

study (T2).

Although our initial goal was to study diastolic function during

DKA, we also found lower baseline mitral E/A ratios in the DA

patients at T2, compared to the non-DA patients. This is

consistent with prior studies of diastolic function in children and

adolescents with stable T1DM [7,44]. Importantly, Wojcik et al.,

reported correlations between ECHO abnormalities and HbA1c

values from the two years prior to the ECHO [44]. As in our

study, no correlation was found with the HbA1c at the time of the

ECHO. The correlations of diastolic dysfunction with: 1) HbA1c

values considerably prior to the ECHO; 2) the longer durations of

diabetes associated with diastolic dysfunction [7]; and 3) the

improvement of the DA following correction of DKA suggest a

diastolic adaptation prior to the development of clinical dilated

cardiomyopathy, possibly as the result of a subclinical chronic

inflammatory pattern in a subset of genetically predisposed

patients.

Markers of oxidative stress and the duration of T1DM in rodent

models support early abnormal diastolic function prior to

contractile abnormalities [45,46]. However, previous ECHO

studies in children with T1DM and stable metabolic control differ

as to the effect of metabolic control on diastolic function [6–

8,43,44]. Although both hyperglycemia and ketoacidosis were

considered sources of oxidative and inflammatory stress [16,47],

we found no correlation between the admission BG, HbA1c and

pCO2, nor between the (T1) BG and pCO2 and the DA. This

supports the view that the metabolic risk factors for DCM require

a longer interval to impact diastolic function, as suggested by

Wojcik’s et al., study [44]. This finding does not rule out an acute

additive effect of SIR.

The present study extends observations of the activation of the

immune system resulting in a SIR that involves upregulation of

inflammatory cytokines during the treatment of DKA [26–28,30].

Nine of the cytokine/chemokines that were increased at the time

of the DA 6–12 hours into treatment (T1) are involved in the

pathogenesis of EAM [48] and cardiomyopathy [49,50]. Four of

these nine interactive cytokines (GM-CSF, G-CSF, IL12p40,

IL17) are associated with Th17 cell response. Autoimmune

disorders, including T1DM, were thought to be primarily driven

by a Th1 response. This was challenged by the discovery of Th17

cells and their implication in the pathogenesis of multiple

autoimmune diseases [51]. IL-6 and IL-1b induce retinoic acid

receptor-related orphan receptor C2 (RORC2) and IL-17

activation in memory T cells, whereas TGF-b and IL-21 in

combination induce differentiation of Th17 cells from naive T cells

[52]. Both IL-6 and IL-1b were increased in our previous DKA

study when samples were collected prior to treatment [26].

Children with T1DM had increased IL17 transcript in their

memory T cells. In addition, RORC2 and IL22 were produced by

activated as well as memory T cells from T1DM children [53].

There are conflicting results about role of IL17 in the pathogenesis

Table 4. Significant Spearman correlations between
cytokines displaying association effects and DA determinant
ECHO variable Mitral E/A and Mitral Deceleration Time (MDT).

Relationship @ T1
Spearman Correlation
Coefficient p value*

MDT: IL12P40 r. = 20.7233 p = 0.0078

MDT: sCD40L r. = 0.5360 p = 0.0323

Mitral E/A: IP10 (CXCL10) r. = 20.6158 p = 0.0111

Mitral E/A: IL12P40 r. = 0.5440 p = 0.0293

Mitral E/A: IL17 r. = 0.5068 p = 0.0451

Mitral E/A: GMCSF r. = 0.6135 p = 0.0196

Relationships for the DA group determinant ECHO variables and cytokines were
calculated.
*Only statistically significant (p,0.05) correlations are tabulated. All
comparisons are at T1. An inverse relationship (2r value) implies higher
cyotikine concentrations at shorter/normal mitral deceleration time (MDT) and
mitral E/A times. Direct relationship (+r value) implies higher cytokine
concentrations at longer/abnormal MDT and mitral E/A ratios. The strongest
correlation is IL12p40 and MDT (r. = 20.7233), accounting for 52% of the
variation noted between the two variables.
doi:10.1371/journal.pone.0071905.t004

Figure 4. Figure 4 shows the linear regression plot for SBP and
DBP over time. Mean age related normal value is plotted in relation to
patient SBP/DBP values for comparison.
doi:10.1371/journal.pone.0071905.g004
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of diabetes in the NOD mouse model. IL-17A deficient NOD

mice do not develop diabetes, while blocking IL-17 with

monoclonal antibodies protected young NOD mice from diabetes

development [54,55]. The potential explanation of this discrep-

ancy is an additive effect of IL17F to diabetes pathogenesis, since

the blocking antibodies were not specific to IL17A. Diabetes can

be also transferred by Th17 cells injected into NOD SCID

recipients [56]. New onset T1DM patients have an increased

proportion of IL-17A secreting T cells in their blood [57],

although we did not find any correlation of increased Th17

cytokines during DA with the new onset of T1DM compared to

previously diagnosed T1DM patients. IL17A is essential for

progression to dilated cardiomyopathy [58] and is also involved in

the pathogenesis of acute and chronic vasculitis and angiotensin II-

induced hypertension [59–61].

GM-CSF, key hematopoietic factor, has recently been connect-

ed with the IL23-IL17A inflammatory pathway. Recent evidence

suggests that many of the inflammatory functions of Th17 cells are

actually attributable to GM-CSF [62]. Levels of G-CSF are

increased in myocarditis/cardiomyopathy and acute myocardial

infarction [63]; G-CSF has been described as another major

component of Th17 host defenses. The control of granulocytic

responses comprises a major effector arm of Th17 immunity by

expanding the neutrophil compartment and chemotactic recruit-

ment of neutrophils by CXCL1/KC and CXCL8/IL8 [64]. IL-

12p40 functions as a bioactive and regulatory component of IL-12,

a chemoattractant for macrophages, and provides negative

feedback by competitively binding to the IL-12 receptor [65]. Of

greatest importance in DKA, the IL-12p40 subunit combines with

the p19 protein to form IL-23 [66], driver of Th17 cell expansion

Figure 5. Figure 5 shows the mean SBP (mmHg) and DBP (mmHg) across 19 time points. For comparison, age specific normal
measurements are included as the last measurement on the X-axis.
doi:10.1371/journal.pone.0071905.g005

Figure 6. Figure 6 shows the linear regression plot for SBP-DA
and DBP-DA over time. Mean age related normal valued is plotted in
relation to patient SBP-DA/DBP-DA values for comparison.
doi:10.1371/journal.pone.0071905.g006

Figure 7. Figure 7 shows the linear regression plot for SBP-Non
DA and DBP-Non DA over time. Mean age related normal valued is
plotted in relation to patient SBP-Non DA/DBP-Non DA values for
comparison.
doi:10.1371/journal.pone.0071905.g007
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and maintenance [67,68]. IL-23 is involved in the pathogenesis of

autoimmune myocarditis [69] via the expression of Th17 cells

[70]. Two of the nine interactive cytokines/chemokines (Fractalk-

ine and MCP3) that we found to be associated with diastolic

dysfunction in DCA are related to monocyte trafficking, an

important step in the pathogenesis of experimental autoimmune

myocarditis (EAM) [71]. Fractalkine is a highly expressed

adipochemokine of monocytes and non-cardiomyocytic non-

inflammatory cells in human inflammatory cardiomyopathy

[72,73]. MCP3, one of three members of a subfamily of beta-

chemokines, activates a range of cell types [74] and is an attractant

for human CD4+ and CD8+ T lymphocytes [75]. Reduced

degradation of MCP-3 increases myocardial inflammation in

experimental myocarditis [76,77]. Each of the other three

interactive cytokines (IL-1a, sCD40L, and IP-10) is also involved

in experimental and/or clinical cardiovascular disease [78–82].

Further studies are warranted to determine if these nine cytokine/

chemokines are candidate biomarkers for DCM. The importance

of such markers in diabetic cardiovascular disease has been

reported by Schram et al. [83].

Suys et al. reported significant ECHO changes in female

children in comparison to males with T1DM [6]; however, we

found no association between gender, age or duration of T1DM

with DA. We did identify a significant association between race

(AA) and DA (p = 0.0319), suggesting a genetic predilection and

possible differences in cardiac response. The study by Ness et al.

(2004) [84] is important relative to the association between AA

children and the cytokines associated with DA. They reported the

Figure 8. Figure 8 shows mean SBP (mmHg) for groups DA and Non-DA across 19 time points. Age specific normal measurements are
included as the last measurement in on the X-axis.
doi:10.1371/journal.pone.0071905.g008

Figure 9. Figure 9 shows mean DBP (mmHg) for groups DA or Non-DA across 19 time points. Age specific normal measurements are
included as the last measurement on the X-axis.
doi:10.1371/journal.pone.0071905.g009
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differential distribution of allelic variants in cytokine genes among

non-diabetic AA and Caucasians, specifically that AA females are

significantly more likely to carry allelic variants that up-regulate

pro-inflammatory cytokines, and also to have genotypes known to

down-regulate the anti-inflammatory IL-10.The lack of a pre-

treatment sample prevented the correlation of the anti-inflamma-

tory cytokine IL-10, which protects against EAM [85], with DA.

Both our previous DKA study [26] and that of Karavanaki et al.

[27], reported pre-treatment elevations of IL-10 and decreasing

concentrations with the initiation of treatment.

Based on no difference between the HR of DA and non-DA

groups at T1, and considering HR as a marker of hydration,

dehydration does not appear to be a factor in the DA. A statistical

difference did exist between the degree of hypertension of the DA

group and the non-DA group through the first 8 hours of

treatment, after which a difference in the BPs of the two groups

remained but was not statistically significant. It is important to

note that the mean BPs for DA and non-DA at T2 and T3 were

statistically elevated in relation to age-matched normal control

values [86]. Our prospective findings are in keeping with the

retrospective study by Deeter et al. [87] of a slight but sustained

BP elevation following correction of DKA. Linear regression plots

between the SBPs and DBPs and also between SBPs-DA and

DBPs-DA have strong correlations, and thus agree with Deeter et

al. [87] of no increases in DBP without increases in SBP. Even

though there was no significant difference in the BPs between DA

and non-DA patients at T1, the uncertain duration of BP elevation

prior to admission precludes determining an impact of BP on

mitral E/A and/or MDT. In a canine study of methoxamine-

induced acute systolic BP elevation of 30 mm or greater, there was

no acute effect on E/A ratio, when heart rate was kept constant by

pacing, and a decrease in MDT suggesting that our observed

changes in these parameters in the DA patients were not due to BP

elevation [88].

Our study was not intended to evaluate the relationship

between acute changes in cytokines/chemokines and BP. Howev-

er, in addition to the increased secretion of counter-regulatory

hormones in DKA [89] several other perturbations are candidates

for mediating pre-treatment hypertension: 1) insulin resistance and

endothelial dysfunction; 2) the increased oxidative stress caused by

hyperglycemia [90,91]; 3) and the ability of acetoacetate to

increase the expression of the vasoactive peptide ET1 from

capillary endothelial cells [92]. The literature also supports a role

for inflammatory cytokine stimulation of the hypothalamic-

pituitary-adrenal axis [93,94] and adrenal medullary chromaffin

cells [95]. In contrast to the recognized anti-inflammatory effect of

insulin on endothelium in critical illnesses [96–98], our results

confirm observations of increased inflammatory cytokines/che-

mokines during intravenous insulin [26,27,30]. Regarding the

relationship of the SIR and the possible pathogenesis of

myocarditis [99], it is important to note that two metabolites of

poorly controlled diabetes-hyperglycemia [100] and free fatty

acids (FFA) [101] amplify toll-like receptors (TLR) in monocytes

and results in the potential for: TLR-4-mediated myocardial

apoptosis and DCM [102]; and the enhancement of the expression

of anaphylatoxin C5a [103] and other complement peptides that

are increased systemically during DKA and its treatment [28].

C5a, in turn, could increase IL-17 and other inflammatory

cytokines [104]. The involvement of IL-17 in the pathogenesis of

EAM and dilated cardiomyopathy [58] and its potential involve-

ment in DCM would be analogous to the insult of acute burn that

activates leukocyte TLRs, and the resulting production of

numerous cytokines/chemokines, including effectors in burn

cardiomyopathy [105–108].

Finally, transient cardiogenic compromise has been suggested as

an explanation for the subclinical interstitial pulmonary edema

(IPE) that occurs prior to treatment of DKA, is accentuated during

treatment [109–111] and corresponds to the time interval of SIR

[26,27]. The diastolic abnormality with increased LA volume and

increased pulmonary venous pressure could contribute to subclin-

ical IPE. The logistical limitation of obtaining a pretreatment

ECHO and a cytokine/chemokine sample precludes determining

the onset of DA and thus certainty of a relationship between DA

and IPE. Based on the SIR during the same time interval in the

treatment of DKA [26–28,30] as the increase in IPE [111],

inflammatory cytokines/chemokines could be independent candi-

dates for pulmonary epithelial perturbation and IPE.

Conclusions

This study is the first to report an acute DA associated with the

systemic inflammatory cytokines/chemokine response in a subset

of young T1DM patients during the acute metabolic and

immunologic stress of DKA. This does not rule out the role for

a metabolic insult in the pathogenesis of DCM. Further studies are

required to determine whether the acute SIR of severe DKA

produces a subclinical autoimmune myocardial insult as the result

of individual cytokines, or a particular cytokine pattern, which

could progresses asymptomatically to DCM [112].
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