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MicroRNAs (miRNAs) are small, non-coding RNAs that function as key post-transcriptional
regulators in neural development, brain function, and neurological diseases. Growing evi-
dence indicates that miRNAs are also important mediators of nerve regeneration, however,
the affected signaling mechanisms are not clearly understood. In the present study, we
show that nerve injury-induced miR-431 stimulates regenerative axon growth by silencing
Kremen1, an antagonist of Wnt/beta-catenin signaling. Both the gain-of-function of miR-
431 and knockdown of Kremen1 significantly enhance axon outgrowth in murine dorsal
root ganglion neuronal cultures. Using cross-linking with AGO-2 immunoprecipitation, and
3′-untranslated region (UTR) luciferase reporter assay we demonstrate miR-431 direct
interaction on the 3′-UTR of Kremen1 mRNA. Together, our results identify miR-431 as
an important regulator of axonal regeneration and a promising therapeutic target.
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INTRODUCTION
Axon loss is the hallmark of traumatic brain and spinal cord
injury (SCI) as well as many neurodegenerative diseases includ-
ing Alzheimer’s (Coleman and Perry, 2002). A body of research
is focused on understanding the mechanisms of axon degenera-
tion and promoting axon regeneration, however, the molecular
mechanisms of neural repair remain poorly understood (Fang
and Bonini, 2012). Growing evidence indicates that microRNA
(miRNA) pathway controls regulatory mechanism involved in
neural repair and regeneration (Strickland et al., 2011; Wu et al.,
2011, 2012; Yu et al., 2011a; Zhang et al., 2011; Zhou et al., 2012).
miRNAs are short, non-coding RNAs that silence gene expres-
sion by imperfect binding to 3′-untranslated region (UTR) of
mRNA (Bartel, 2004; Filipowicz et al., 2008). miRNAs ability to
simultaneously regulate the expression of several genes suggests
that they are critical regulators of complex transcriptional net-
works (McNeill and Van Vactor, 2012). In the nervous system,
miRNAs have been implicated in neurodevelopment (Smith et al.,
2010), neurogenesis (Shi et al., 2010), and neurological disor-
ders (Hebert and De Strooper, 2007; Kim et al., 2007). Recent
observations have identified a group of miRNAs which reside
within the distal axonal domain of superior cervical ganglia
neuron suggesting miRNA role in the maintenance of axonal
structure and function (Natera-Naranjo et al., 2010). In addi-
tion, several miRNAs have been associated with axon regeneration
in peripheral nervous system (PNS) neurons (Strickland et al.,
2011; Yu et al., 2011a; Zhang et al., 2011; Zhou et al., 2012)
and axon development in cortical neurons (Dajas-Bailador et al.,
2012).

Recent studies from our laboratory have demonstrated that
ablation of Dicer, a key enzyme required for miRNA biogenesis,
markedly impairs the regenerative axon growth in vivo and in vitro,
indicating that the intact Dicer-dependent miRNA pathway is crit-
ical for successful peripheral nerve regeneration (Wu et al., 2012).
In the current study, we examine the mechanism of miRNA action
in axon regeneration. Here we show that injury-induced miR-431
stimulates regenerative axon growth by silencing Kremen1, a neg-
ative regulator of Wnt/beta-catenin signaling pathway. Both the
gain-of-function of miR-431 and loss-of-function of Kremen1 sig-
nificantly enhance regenerative axon growth in dissociated dorsal
root ganglia (DRG) neuronal cultures. Using cross-linking with
AGO-2 immunoprecipitation (CLIP), and 3′-UTR luciferase assay
we demonstrate miR-431 direct interaction on the 3′-UTR of
Kremen1 mRNA. Collectively, our observations provide the first
evidence for a role of miRNA in regulating Wnt/beta-catenin sig-
naling pathway in nerve regeneration and identify miR-431 as an
important regulator and a potential therapeutic target.

MATERIALS AND METHODS
ANIMALS
Eight-week-old CD-1 male mice were obtained from Charles River
laboratories (Wilmington, MA, USA). The animal use protocol
was approved by the institutional Animal Care and Use Com-
mittee of East Carolina University, an Association for Assessment
and Accreditation of Laboratory Animal Care-accredited facility.
Animals were housed individually under standard laboratory con-
ditions, with a 12 h light/dark schedule and unlimited access to
food and water.
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CONDITIONING NERVE LESION
Before surgery, anesthesia was induced using an intraperitoneal
ketamine (18 mg/ml)-xylazine (2 mg/ml) mixture (0.05 ml/10 g of
body weight). The procedure followed a protocol described previ-
ously (Islamov et al., 2004). Exposure of the right sciatic nerve was
performed with sterile surgical instruments through an incision
on the middle thigh of the right hind limb. Approximately 5 mm
of nerve was exposed from the sciatic notch to the trifurcation of
the nerve. The exposed sciatic nerve was crushed in the mid-thigh
for 15 s with a fine hemostat. The wounds were closed with 3MTM

VetbondTM Tissue Adhesive (3M, Saint Paul, MN, USA) and the
animals were left to recover for 5 days.

DISSOCIATED DRG CULTURES
Mouse L4/5 DRG neurons were collected 5 days after a condition-
ing sciatic nerve crush from both the intact side and injured side.
DRGs were dissociated with collagenase and 0.25% trypsin in Dul-
becco’s modified Eagle’s medium (DMEM; Invitrogen, Carlsbad,
CA, USA). The dissociated DRGs were plated on poly-L-lysine
and laminin (Invitrogen), coated plates. DRGs were grown in
DMEM/F12 containing 10% horse serum, L-glutamine, and N2
supplement (Gemini Bio-product, West Sacramento, CA, USA)
at 37◦C for 18 h. To inhibit glial cell growth cytosin β-D-
arabinofuranoside (Arac, 10 μM) and 5,6-dichlorobenzimidazole
riboside (DRB, 80 μM; Sigma, Saint Louis, MO, USA) or
50 nM 5-fluoro-2′-deoxyuridine (Sigma) were added to the growth
medium.

PC12 CELL CULTURES
PC12 cells were cultured in DMEM containing 10% horse serum,
5% fetal bovine serum 2 mM glutamine, and penicillin and strep-
tomycin (100 unitl/ml). The cells were plated on collagen-coated
cell culture dishes. For nerve growth factor (NGF)-induced differ-
entiation of PC12 cells, NGF (50 ng/ml) was added to cell culture
medium to initiate neurite outgrowth. Medium was refreshed
every 2–3 days.

TRANSFECTION OF miRNA MIMICS AND INHIBITORS
In order to determine the biological effects of each individual
miRNA on regenerative axon growth, we performed functional
analyses for injury-induced miRNAs. Gain-of-function experi-
ments were performed with Ambion® Pre-miRTM miRNA Precur-
sor Molecules (Ambion, Austin, TX, USA), which are also called
miRNA mimics. With transfection reagent, these small, chemi-
cally modified double-stranded RNA molecules can be introduced
into cells and be taken up into the RNA-induced silencing com-
plex (RISC), mimicking endogenous mature miRNAs activity.
Loss-of-function analyses were performed with Ambion® Anti-
miRTM miRNA inhibitors. The miRNA inhibitors are chemically
modified, single-stranded nucleic acids designed to specifically
bind to complementary miRNAs. The binding between endoge-
nous miRNA and miRNA inhibitors down-regulates endogenous
miRNAs activity.

All miRNA mimics and miRNA inhibitors were obtained from
Ambion. Transient transfections of DRGs were performed using
LipofectamineTM LTX and Plus Reagent (Invitrogen) according
to the manufacturer’s protocol. To extend the time window for

effective transfection of miRNA precursors and inhibitors, as well
as, initiation of miRNA machinery, we incubated DRG neurons
with 20 μM of SP600125 for the first 24 h according to a protocol
previously described (Davare et al., 2009). SP600125 is a specific
inhibitor of JNK and reversibly inhibits axonogenesis (Davare
et al., 2009). We then released the block on axonogenesis from the
SP600125 by washing out SP600125 and change culture media.
DRG neurons were then cultured for an additional 24 h to allow
axon formation.

IMMUNOFLUORESCENT STAINING AND IMAGE ANALYSIS
The cells cultured on coverslips were fixed with 4% paraformalde-
hyde for 5 min and washed with phosphate buffered saline with
Tween (PBST). After blocking with 10% goat serum for 1 h at
room temperature, the samples were incubated with the indi-
cated primary antibodies diluted at optimized concentrations at
4◦C overnight. This was followed by incubation with secondary
antibodies conjugated with FITC-, TX Red-, or Alexa Fluor®

(Invitrogen). Negative controls included samples processed in
parallel with non-immune serum or without primary antibod-
ies. After mounting the slides with anti-fading media (Invitrogen),
images were viewed with an Olympus IX81 fluorescent microscope
and captured with CellSens Dimension software (Olympus Amer-
ica Inc., Center Valley, PA, USA). The images we acquired were all
single plane fluorescent images.

Quantification of axon length and measurement of axon
branches were performed following previously described lab pro-
tocol (Murashov et al., 2005). For each coverslip, 30 images
were taken, and from each, 10–15 neurons, which were com-
pletely distinguishable from neighboring cells, were chosen for
further analysis. The axon length was quantified by tracing the
image of neurites with the ImageJ software (NIH, Bethesda,
MD, USA). The longest axon for each neuron was measured
and recorded. The number of neurite branches per neuron
was also determined from each neuronal population manually.
Only primary branches, which are routinely defined as neu-
rites originating from the neuronal soma and are at least longer
than two times the diameter of the cell body were counted
(Liu et al., 2002).

IMMUNOBLOTTING ANALYSIS
Tissue samples were homogenized in ice-cold homogenization
buffer (20 mM Tris, 2 mM EGTA, 2 mM EDTA, 6 mM β-
mercaptoethanol, 1mM PMSF, and 10% Triton) containing
protease inhibitor cocktail (Sigma), and centrifuged at 10,000 g for
10 min at 4◦C. The supernatants were collected in fresh tubes and
stored at −20◦C. Proteins concentrations were quantified using
the Bio-Rad reagent (Bio-Rad, Hercules, CA, USA) and samples
for western blot analysis were prepared by boiling with standard
stop buffer for 5 min. Equal amounts of solubilized proteins were
loaded per lane on sodium dodecyl sulfate gels and separated by
electrophoresis. The separated proteins were then transferred to
immobilonP membranes (Millipore Corporation, Bedford, MA,
USA).

Membranes were blocked in Odyssey blocking buffer (LI-COR,
NE, USA) for 1 h at room temperature on a shaker, and then
probed with a primary antibody in Odyssey blocking buffer at 4◦C
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overnight. The membranes were washed three times with PBST,
and then incubated with IRDye® conjugated secondary antibodies
for 1 h at room temperature with gentle shaking. The fluorescent
signals on membrane were detected with the Odyssey® Infrared
Imaging System (LI-COR). Densitometry values were normalized
to α-tubulin, to obtain the relative signal intensity.

LIST OF ANTIBODIES
Primary antibodies
Mouse monoclonal neuro-specific β III tubulin antibody (TUJ-1)
Covance Research Products, Inc. (Denver, PA, USA). Goat poly-
clonal antibodies against Kremen1 (R&D Systems, Minneapolis,
MN, USA). Rabbit anti-GAP-43 polyclonal antibodies (Millipore,
Billerica, MA,USA). Mouse monoclonal anti-α-tubulin antibodies
Zymed (Zymed Laboratories, Carlsbad, CA, USA).

Secondary antibodies
IRDye 800CW goat anti-Mouse IgG,IRDye 680LT goat anti-Rabbit
IgG, and IRDye 800CW donkey anti-goat IgG secondary anti-
bodies (LI-COR Corporate, NE, USA). For fluorescence studies,
secondary FITC-, TX Red-conjugated IgG (Jackson ImmunoRe-
search Laboratories, Inc., West Grove, PA, USA) or Alexa Fluor
594 donkey anti-goat from Invitrogen were applied.

Cross-linked immunoprecipitation (CLIP) analysis
Argonaute CLIP method to identify in vivo targets of miRNAs
followed procedure described previously (Jaskiewicz et al., 2012).
DRG neuronal cell cultures were transfected with 100 nM of miR-
431 mimic or a scrambled miRNA mimic negative control. Two
days post-transfection, the cells were rinsed once in PBS and then
placed in UVP CL-1000 cross-linker (UVP, Upland, CA, USA)
with the cover off. Cells were irradiated once for 400 mJ/cm2 and
once more for 200 mJ/cm2 to establish protein-RNA reversible
cross-linking. Cells were lysed in cell lysis buffer (100 mM KCl,
5 mM MgCl2, 10 mM HEPES, PH 7.0, 0.5% NP-40, 1 mM DTT,
100 U/ml RNasin RNase inhibitor (Promega), 2 mM vanadyl-
ribonucleoside complexes solution (Sigma)) supplemented with
a mixture of protease inhibitors (Invitrogen). Cells were then
detached with a cell scraper and lysate was transferred to a tube
on ice. Cell lysates were centrifuged at 16,000 g for 15 min
at 4◦C and the supernatants (the protein lysates) were trans-
ferred to sterile tubes for further immunoprecipitation. Prior to
the immunoprecipitation, protein G agarose beads (Sigma) were
equilibrated by washing twice with a wash buffer (0.5% NP-40,
150 mM NaCl, 2 mM MgCl2, 2 mM CaCl2, 20 mM Tris, pH
7.5, 5 mM DTT, with protease inhibitor) containing 1 mg/ml
yeast tRNA and 1 mg/ml BSA. After pre-clearing the protein
lysate with equilibrated protein G-agarose beads, 5 μl of each
sample was saved as an input fraction. The protein lysate was
immunoprecipitated with specific mouse monoclonal antibod-
ies against Ago-2 (Wako, Richmond, VA, USA) or control serum
and bounded by protein G agarose beads with agitation at 4◦C
overnight. After precipitation, the beads were washed three times
with washing buffer. Afterward, the bonds between RNA and pro-
tein were disrupted by heating at 50◦C for 30 min. RNA was
then extracted and purified using Trizol (Invitrogen) and used for
qRT-PCR.

Luciferase assays
Luciferase assays were performed using the pMIR-REPORTTM

miRNA expression reporter vector system (Ambion). pMIR-
REPORT firefly luciferase (FL) plasmids were purified with
Miniprep kit (Qiagen, Valencia, CA, USA) and digested with
restriction enzymes SpeI and HindIII (New England BioLabs,
Ipswich, MA, USA). Linearized vectors from the restriction
digestion were retrieved by agarose gel electrophoresis and gel
purification of DNA using Gel Extraction Kit (Omega Bio-Tek,
Inc., Norcross, GA, USA). The 3′-UTR regions of mouse Kremen1
gene were amplified from mouse Kremen1 cDNA clones (Source
Bioscience, Nottingham, UK). The primers were designed as:
5′-ATAACTAGTGCTCCGCTCCAAGCTCGAGTTTGC 3′ and 5′-
GCGAAGCTTTCTCTTTTGTAAAAGTTAAGTACC 3′. Restric-
tion enzyme sites for SpeI and HindIII were introduced into
the PCR product to facilitate directional cloning. The 3′-UTR
of Kremen1 was inserted into downstream of FL gene in the
pMIR-REPORT vector with T4 ligase (New England BioLabs),
and subsequently transformed in DH5α competent cells (Invitro-
gen). Luciferase assays were performed using the Dual-Luciferase
assay kit (Promega). PC12 cells (40,000) were cultured and co-
transfected in 24-well plates with 400 ng of FL reporter construct,
100 nM miR-431 mimics or mimic negative controls, and 40 ng of
pRL-TK control vector encoding renilla luciferase (RL; Promega).
The transfection was performed with Lipofectamine 2000. Forty
hours after transfection, the cells were harvested in passive lysis
buffer and firefly and RL activities were measured in a Turner
Biosystems 20/20n Luminometer (Turner Biosystems, Sunnyvale,
CA, USA). The luciferase data is expressed as a ratio of FL to RL to
normalize for transfection variability between samples. Luciferase
experiments were repeated at least three independent times in
triplicate.

miRNA and gene expression array analyses for DRG RNA
Total RNA for the microarray expression analysis was isolated
from L4 to L5 DRGs, pooled from 10 mice at 4 days after
sciatic nerve crush. Total RNA extraction was performed with
miRVANATM miRNA isolation kit following the manufacturer’s
instruction (Ambion). These pooled RNA samples were sent
to UNC Lineberger Comprehensive Cancer Center Genomics
Core for microarray analysis. After a quality control, they were
hybridized to 8 × 15 miRNA one-color arrays (Agilent, Santa
Clara, CA, USA). The same RNA samples were also hybridized
to 4 × 44K mouse gene expression microarrays (Agilent) at
the same Genomics Core. All microarray experiments were per-
formed in duplicate and repeated twice. Normalization and
further analyses of microarray data were performed with Gene-
Spring software (Agilent). Differentially expressed miRNAs were
determined using a combination of t tests, with FDR cor-
rection of 0.1, and further defined by p-value < 0.05 after
correction for multiple hypotheses. The analysis with Gene-
Spring allowed for identification of a different expression pat-
tern of miRNAs in the crushed groups compared with the
control groups. Statistically significant upregulated or down-
regulated miRNAs were then selected for further analysis. All
microarray data have been submitted to GEO (access number
pending).
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Real-time PCR (RT-PCR)
Total RNA was isolated from L4-L5 DRGs using mirVanaTM

miRNA Isolation Kit (Ambion). Total RNAs from DRG neuronal
cell cultures were purified with RNAqueous Micro Scale RNA
Isolation Kit (Ambion). RNA was quantified with a NanoDrop
ND-1000 spectrophotometer (Thermo Scientific, Wilmington,
DE, USA). Reverse transcription was performed with NCodeTM

VILOTM miRNA cDNA Synthesis Kit and SuperScript VILO cDNA
Synthesis Kit (Invitrogen) for miRNA expression analysis and
mRNA expression analysis, respectively. The real-time PCRs were
carried out using EXPRESS SYBER® GreenERTM qPCR SuperMix
Universal (Invitrogen) in triplicates for each cDNA sample on
Applied Biosystems 7500 real-time PCR system (Applied Biosys-
tems, Life Technologies, Carlsbad, CA, USA). Primers specific
for each miRNA and mRNA were obtained from Invitrogen.
As an internal control, primers for S12 (mitochondrial ribo-
some small subunit) were added for RNA template normalization,
and the relative quantification of gene and miRNA expressions
were calculated against S12 using a 2−��CT method. We rou-
tinely use S12 for qPCR studying axonal injuries. Other standard
controls like beta-actin and GAPDH usually change in response
to crush injury. All experiments were carried out three times
independently.

List of primers
miR-21: 5′-TAGCTTATCAGACTGATGTTGA-3′
miR-431: 5′-CAGGCCGTCATGCAAA-3′
miR-744: 5′-GGGCTAGGGCTAACAGCA-3′
miR-124: 5′-GCGGTGAATGCCAAAAA-3′
miR-29a: 5′-TAGCACCATCTGAAATCGGTTA-3′
Kremen1: 5′-ACAGCCAACGGTGCAGATTAC-3′ and 5′-TGT
TGTACGGATGCTGGAAAG-3′
GAP-43: 5′TGGTGTCAAGCCGGAAGATAA-3′ and 5′-GCTG
GTGCATCACCCTTCT-3′
S-12: 5′-TGGCCCGGCCTTCTTTATG-3′ and 5′-CCTAAGCG
GTGCATCTGGTT-3′

Statistical analysis
Data from multiple independent experiments were analyzed with
GraphPad Prism version 5 for Windows (GraphPad Software, San
Diego, CA, USA). The results were expressed as mean ± standard
error of the mean in graphic and text representations. To deter-
mine the difference between three or more groups, a one-way
analysis of variance (ANOVA) followed by Bonferroni’s multiple
comparison tests was utilized. For the analysis of two independent
groups, Student’s t-test was used. A p-value of less than 0.05 was
considered statistically significant.

RESULTS
miRNAs ARE DIFFERENTIALLY EXPRESSED IN DRG UPON SCIATIC
NERVE INJURY
We analyzed miRNA expressions in DRGs using microarrays
at 4 days after sciatic nerve crush. DRGs were collected from
both the pre-conditioned side, as well as the contralateral unin-
jured side. RNA from the contralateral uninjured side served as
a control group. At 4 days post-injury, pre-conditioned DRG
neurons show robust regenerative axon growth (Forman et al.,

1980). RNA from the pre-conditioned DRG was considered the
actively regenerating group. By comparing the miRNA expression
pattern from pre-conditioned DRG and control DRG, miRNAs
that were upregulated and down-regulated during the process
of regeneration were determined. Several miRNAs demonstrated
differential expression based on regenerative growth condition.
Using 1.5-fold cut-off, statistical analyses revealed that 19 miRNA
were differentially expressed in the pre-conditioned DRG com-
pared to the non-conditioned contralateral DRG. Of those 19,
11 miRNAs had higher expression level in pre-conditioned
group and the other eight miRNAs had lower expression level
in DRG during regeneration (Figure 1A). miR-431, miR-714,
miR-744, miR-877, miR-130b, miR-21, miR-323-3p, miR-
325, miR-409-3p, miR-154*, and miR-681 were significantly
increased 4 days post-sciatic nerve crush in pre-conditioned DRGs,
while miR-190, miR-1, miR-33, miR-32, miR-153, miR-335-5p,
miR-193, and miR-488 showed significantly decreased expres-
sion. The most upregulated miR-431 was selected for further
analyses.

We validated the microarray data for miR-431 using real-time
qPCR. We also included miR-744 and miR-21 as positive controls
and miR-124 and miR-29a as non-regulated controls in our real-
time PCR experiments. These last two miRNAs play various roles
in neurodevelopment and maintenance of neuronal cell home-
ostasis (Cheng et al., 2009; Shioya et al., 2010); however, they did
not show changes in their expression in our array data. In agree-
ment with the microarray data, miR-431, miR-744, and miR-21
were significantly upregulated in regenerating neuronal cells. We
detected 2.4-fold upregulation of miR-431, a twofold upregulation
of miR-744, and a 2.5-fold upregulation of miR-21, respectively
(Figure 1B). At the same time, RT-qPCR experiments showed
that miR-29a and miR-124 did not change their expression during
regeneration.

GAIN-OF-FUNCTION OF miR-431 INCREASES REGENERATIVE
OUTGROWTH
To investigate the role of miR-431 in regenerative axon growth,
we manipulated the level of miR-431 in dissociated DRG neurons.
We observed a positive association between miR-431 expression
and neurite outgrowth in dissociated DRG neuronal cell culture
(Figure 2A). Increased mir-431 level was achieved by apply-
ing miR-431 mimic to DRG neuronal cell cultures at a final
concentration of 100 nM. Overexpression of miR-431 signifi-
cantly increased axon length. Additionally, blocking miR-431
activity with miR-431 inhibitor significantly inhibited neurite
extension (no treatment control group: 100 ± 5%; miR-431
mimic group: 130 ± 6%; mimic negative group: 91 ± 4%;
miR-431 inhibitor group: 75% ± 7%; inhibitor negative con-
trol: 90 ± 8%; Figure 2B). Moreover, manipulating miRNA-431
levels also affected axon branching, and led to a decrease in the
number of branches per neuron due to transfection with miR-431
inhibitor (no treatment control group: 100 ± 9%; miR-431 mimic
group: 110 ± 10%; mimic negative group: 82 ± 7%; miR-431
inhibitor group: 64% ± 6%; inhibitor negative control: 86 ± 10%;
Figure 2C).

We next studied GAP-43 expression in DRG neurons with
miR-431 mimic and inhibitor treatments, as a strong association

Frontiers in Molecular Neuroscience www.frontiersin.org October 2013 | Volume 6 | Article 35 | 4

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


“fnmol-06-00035” — 2013/10/22 — 22:11 — page 5 — #5

Wu and Murashov miR-431 regulates axon regeneration

FIGURE 1 | Sciatic nerve injury induced changes in miRNA expression

profile in DRG. (A) Total RNA for the microarray expression analysis was
isolated from DRG 4 days after sciatic nerve crush. Agilent arrays were
done in duplicates and repeated twice. Normalization and analyses were
performed with GeneSpring software. miRNAs with a statistically
significant upregulation or down-regulation over 1.5-fold were listed in the
table. (B) Three miRNAs that were significantly upregulated were selected
for further validation. Real-time qPCR for miRNA validated the relative
changes in miRNA level. miRNA expression was normalized to reference

(Continued)

FIGURE 1 | Continued

gene s12. The graph indicates a significant increase of miR-744, miR-431,
and miR-21 in DRG after sciatic nerve crush, whereas the expression level
of miR-124 and miR 29a did not change (*p < 0.05, **p < 0.01, N = 3).
(C) Venn diagram of overlap in predicted miR-431 target genes and
down-regulated genes in DRG after conditioning sciatic nerve lesion. The
potential targets of miR-431 were chosen using three algorithms
http://www.targetscan.org, http://www.microrna.org, and
http://diana.cslab.ece.ntua.gr. Down-regulated genes were selected using
fold change cut-offs of >2 and significance p-values of <0.05 expression
based on microarray data for DRGs 4 days post-sciatic nerve injury. Overlap
shows 24 genes having predicted binding site for miR-431 and significantly
down-regulated expression level in DRG microarray. A one-way ANOVA
followed by Bonferroni’s multiple comparison tests was utilized. For the
analysis of two independent groups, Student’s t -test was used.

between neurite outgrowth and expression of GAP-43 has been
reported in previous studies (Benowitz and Routtenberg, 1997).
We observed significant increase in GAP-43 immunostaining
caused by transfection with miR-431 (Figure 2D). GAP-43
mRNA level was further studied with RT-qPCR. Figure 2E clearly
demonstrates a significant increase in GAP-43 mRNA in the
cultures treated with 100 nM of miR-431 mimics, as com-
pared to the group treated with the scrambled miRNA mimic
control. This relates to immunofluorescent data demonstrating
significant increase in axon outgrowth after overexpression of
miR-431.

IDENTIFICATION OF miR-431 mRNA TARGETS
We used three databases1 to generate a list of mRNAs with potential
binding site for miR-431 in their 3′-UTR. The potential candidates
were further selected based on evaluation of the gene expression
microarray data for DRGs 4 days post-sciatic nerve injury (SNI).
We hypothesized that an increased expression of miR-431 in pre-
conditioned DRG, would negatively associate with expression of
the target mRNAs in the same RNA samples. Using GeneSpring 10
software package (Agilent) we performed joint analysis of miRNA
and gene expression data. This allowed us to narrow the list of
potential targets to 24 genes. These 24 genes met both criteria, of
having a predicted binding site for miR-431 in their 3′-UTR and
significantly down-regulated expression level in DRG microarray
(Figure 1C).

To investigate which genes may be regulated by miR-431, we ini-
tially screened potential targets in neuronal PC12 cells overexpress-
ing miR-431. Transient overexpression of miR-431 was achieved
using transfection of PC12 cells with miR-431 mimic. The expres-
sion of potential targets was studied with real-time RT-qPCR. The
experiments revealed that only six genes (Braf, Eif2s2, Kremen1,
Msi2, Tnrc6b, Zkscan1) were significantly down-regulated by miR-
431 in PC12 cells (Table 1). We then applied the same approach
to test these six genes with overexpression of miR-431 in primary
DRG neurons. In the RT-qPCR experiments, overexpression of
miR-431 led to significant suppression of the expression of only
three genes including Braf, Kremen1, and Zkscan1 (Table 1). Based
on the literature data indicating that Kremen1 is an antagonist of
Wnt signaling pathway (Nakamura and Matsumoto, 2008), which

1http://www.targetscan.org, http://www.microrna.org,
http://diana.cslab.ece.ntua.gr
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FIGURE 2 | miR-431 increases axon outgrowth in DRG neurons. Effects of

miR-431 mimic and inhibitor on axon outgrowth. (A) Left panel shows the
effect of the transfection of DRG neurons with miR-431 mimic. Right panel
depicts the effect of transection with miR-431 inhibitor. Negative controls for
miR-431 mimic and inhibitor are indicated on the lower images. Cells were
stained with primary antibodies against neuronal β-tubulin and signals were
visualized with TX-Red conjugated secondary antibody (scale bar: 50 μm). The
expression of GAP-43, a marker for axon regeneration, was detected using an
anti-GAP-43 antibody and visualized with FITC-conjugated secondary

antibodies. The effect of miR-431 on axon length (B) and on axon branching
(C) was quantified. Overexpression of miR-431 significantly increased axon
extension, whereas suppression of miR-431 significantly blocked axon
branching. The fluorescence signal intensity against GAP-43 was quantified in
(D). The significant increase in GAP-43 immunofluorescence reflects increase
in regenerative axon growth. (E) Significant increase in GAP-43 expression on
mRNA level quantified by RT-qPCR (*p < 0.05, **p < 0.01, N = 50). A
one-way ANOVA followed by Bonferroni’s multiple comparison tests was
utilized.
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Table 1 | Effect of miR-431 overexpression on levels of potential target

genes in PC12 cells and primary DRG culture.

Gene PC12 cells DRG culture

Relative value SEM Relative value SEM

Braf 0.323 0.1245 0.5133 0.07055

Cwf1912 5.833 0.8762

Dlst 1.85 0.1531

Eif2s2 0.4367 0.06766 0.8333 0.2028

Fgf12 0.68 0.1531

Hip1 1.07 0.2608

Kremen1 0.3833 0.05364 0.6733 0.0393

Luc712 0.69 0.1054

Msi2 0.4133 0.05364 1.04 0.07024

Ncam1 1.103 0.2284

Nudcd3 0.91 0.1002

Slc30a10 1.163 0.02906

Son 4.033 0.5044

Tcf712 2.043 0.4937

Tnrc6b 0.58 0.0755 0.9467 0.245

Vezt 1.253 0.1141

Wnk3 0.9433 0.1601

Zeb2 0.9733 0.1742

Zkscan1 0.2967 0.06009 0.45 0.06429

Transient overexpression of miR-431 was achieved using transfection with its
mimic. Relative mRNA levels of the potential target genes were evaluated by real-
time RT-qPCR. Bold numbers indicate significant decrease in gene expression.
Only three genes Kremen1, Braf, and Zkscan1 were significantly down-regulated
in primary neuronal culture.

is critical for axonal remodeling (Purro et al., 2008), we focused our
subsequent experiments on characterization of Kremen1–miR-431
interaction.

To investigate a direct interaction between target mRNAs and
miR-431 in RISC, CLIP of the Ago-2 protein, the central com-
ponent of the RISC was carried out. Applying miR-431 mimic to
DRG neurons increased the expression level of miR-431 ∼7.75-
fold in DRG neuronal cell cultures (Figure 3A). Electrophoresis
of CLIP samples confirmed the miR-431 induced association of
Kremen1 mRNA with RISC, suggesting Kremen1 as the target
gene for miR-431 (Figure 3B). Figure 3B shows the RT-PCR
of Kremen1 mRNA presented in the total RNA (input) and IP
fractions from DRG cultures treated with miRNA mimic and
the mimic negative control. In the total RNA samples from
DRG cultures, overexpression of miR-431 reduced the amount
of stable Kremen1 mRNA when compared to the miRNA mimic
negative control group. In the Ago-2 immunoprecipitated RNA
samples, overexpression of miR-431 clearly increased the level
of Ago-2 associated Kremen1 mRNA. In the IP negative con-
trol group (non-immune serum), no detectable Kremen1 mRNA
was observed, confirming the specificity of the precipitation
(Figure 3B).

LUCIFERASES REPORTER ASSAY CONFIRMS miR-431 TARGET Kremen1
3′UTR
Kremen1 has one binding site for miR-431 at its 3′-UTR, at the
position 2530–2536 bp. It corresponds perfectly to nucleotides
2–7 of the mature miRNA in mouse, rat, and human. In addi-
tion, the seed target site is close the poly-A tail, which increases
its accessibility. To confirm miR-431 direct interaction on Kre-
men1 3′ UTR, we established a Kremen1 3′UTR-FLs construct
with the 3′-UTR of Kremen1 inserted downstream of the FL gene.
This construct allowed us to quantitatively evaluate the regula-
tory effect of miR-431 on the 3′-UTR of Kremen1. PC12 cells
were transiently transfected with miR-431 mimics or mimic neg-
ative controls, Kremen1 3′UTR-FL construct, and RL plasmid
DNA as internal control. As shown in Figure 3F, co-transfection
of miR-431 mimic and Kremen1 3′UTR-FL construct resulted in
significant decrease in FL activity. Luciferase activity reduced to
48% compared with the vector control, whereas co-transfection
of mimic negative controls and Kremen1 3′UTR-FL construct did
not affect the expression of FL gene (Figure 3F). Together, these
data suggest that miR-431 actively modulates Kremen1 protein and
RNA expression within DRG neurons through association with
Kremen1 3′UTR.

miR-431 MODULATES Kremen1 EXPRESSION AT mRNA AND PROTEIN
LEVELS IN PRIMARY NEURONAL CULTURES
To show that miR-431 regulates endogenous Kremen1 in DRG neu-
rons, we transfected cells with either miR-431 mimics, miR-431
inhibitors, mimic negative control, or inhibitor negative con-
trol. Since miRNA-mediated gene regulation can destabilize target
mRNA and reduce the level of the target mRNA, we used RT-qPCR
to determine the effect of miR-431 on Kremen1. We observed that
transient transfection with miR-431 mimic, decreased the mRNA
level of Kremen1 to 30%. Application of miR-431 inhibitors sig-
nificantly elevated the mRNA level of Kremen1 (Figure 3C). These
results demonstrated that miR-431 level is inversely correlated to
Kremen1 expression at mRNA level in DRG neurons.

We then performed proteomic analysis of Kremen1 in DRG
neurons. Whereas endogenous miR-431 was inhibited by transfec-
tion with miR-431 inhibitor, the expression level of the Kremen1
protein was significantly higher than in control groups. Quantifi-
cation of three independent experiments revealed that miR-431
reduced Kremen1 protein levels by 50% when compared with the
mimic negative control group. On the other hand, inhibition of
endogenous miR-431 resulted in a significant increase of Kremen1
expression by 45% (Figures 3D,E).

Kremen1 EXPRESSION IN DRG IN VIVO
After establishing a physical interaction between miR-431 and
Kremen1, we next investigated the expression patterns of Kre-
men1 during axon regeneration. From gene expression array
data, Kremen1 expression in DRG decreased at 4 days after SNI,
suggesting its expression was down-regulated as the peripheral
nerve regenerated. To further reveal physiological role miR-
431 Kremen1 interaction, we analyzed expression of Kremen1 at
RNA and protein levels from control and regenerating DRGs.
RT-qPCR revealed that Kremen1 RNA expression decreased four-
fold at 4 days after sciatic nerve crush, when axons exhibit

Frontiers in Molecular Neuroscience www.frontiersin.org October 2013 | Volume 6 | Article 35 | 7

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


“fnmol-06-00035” — 2013/10/22 — 22:11 — page 8 — #8

Wu and Murashov miR-431 regulates axon regeneration

FIGURE 3 | miR-431 regulates Kremen1 expression. (A) RT-qPCR
confirmed the increase of miR-431 level in DRG neuron after the
transfection of miR-431 mimic. (B) Although overexpression of miR-431
decreased Kremen1 mRNA in total cell lysates (input), it enhanced the
binding between Kremen1 mRNA and Ago-2 complex. In the Ago
immunoprecipitated fractions, there was an increased amount of Kremen1
mRNA. The lack of signal in the non-specific serum IP sample (IP neg.
control) confirmed the specificity of the IP. (C) miR-431 negatively regulated
Kremen1 expression at mRNA level. Treatment of miR-431 mimics in DRG
neuronal cultures significantly inhibited Kremen1 expression as compared
with that of control groups. On the contrary, suppression of miR-431
activity significantly enhanced the expression of Kremen1 mRNA. (D)

Western blot analysis of Kremen1 expression exhibited similar negative
correlation of miR-431 and Kremen1 expression. Cells transfected with
miR-431 mimics had decreased protein level of Kremen1, whiles cells
transfected with miR-431 inhibitors had an increased expression of
Kremen1. α-tubulin was used as the loading control and was used to
normalize densitometry values. (E) The quantification of densitometric
levels of Kremen1. (F) PC12 cells were transfected with Kremen1 3′UTR-
firefly Luciferase constructs for luciferase assays. Co-transfection with
miR-431 mimics significantly reduced the luciferase activity (*p < 0.05,
**p < 0.01), whereas co-transfection with mimic negative controls did not
affect the expression of firefly luciferase gene. A one-way ANOVA followed
by Bonferroni’s multiple comparison tests was utilized.
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FIGURE 4 | Nerve crush injury reduces Kremen1 expression. (A) Total
RNA was isolated from control or crush-injured mouse DRG, and relative
expression of Kremen1 was determined using RT-qPCR. GAPDH and S12
were used to normalize for RNA loading. (B) Western blot analysis of total
DRG lysates at 4 days post-crush injury. α-Tubulin was shown as a loading
control. As shown in the quantified densitometry data, there was a
significant decrease of Kremen1 expression during nerve regeneration.

(C) Immunofluorescent staining in dissociated DRG neurons demonstrated
the expression of Kremen1 within neurons. Kremen1 as a transmembrane
receptor was shown to be located in cell bodies, but not axons. TUJ staining
was used to visualize neuronal cells. Preconditioning of sciatic nerve clearly
promotes regenerative axon growth in DRG neurons, and this phenomenon is
accompanied by a decrease in Kremen1 expression. Scale bar: 20 μm. (**p <

0.01) For the analysis of two independent groups, Student’s t -test was used.

robust regenerative growth (Figure 4A). Similarly, we found
that Kremen1 protein was reduced in DRGs at 4 days post-
injury. The Western blot data showed a significant 80% decrease
in Kremen1 expression after SNI when compared to control
(Figure 4B).

The expression of Kremen1 in DRG neuron was further exam-
ined using indirect immunofluorescence (IIF). IIF with antibodies
against Kremen1 revealed the localization of Kremen1 in dissoci-
ated DRG neurons. In both pre-conditioned and control groups,
the immunoreactivity of Kremen1 was detected mainly in neuronal
cell bodies, however, there was less Kremen1 immunostaining in
the group with sciatic nerve crush (Figure 4C). These data further
support a functional relationship between miR-431 and Kremen1
in regenerating DRG neurons and suggest a role of Kremen1 in
peripheral nerve regeneration.

FUNCTIONAL ANALYSIS OF Kremen1 ROLE IN AXON REGENERATION
Given the effects of miR-431 on Kremen1 expression and the role
of miR-431 in neurite outgrowth, we investigated the effect of
Kremen1 knockdown on regenerative axon growth. Two groups
of DRG neurons were transfected with either siRNA specifically
targeting Kremen1 mRNA, or scrambled siRNA (negative con-
trol). The differences in the regenerative growth between Kremen1
siRNA group and control scrambled siRNA group were quanti-
fied based on axon elongation and branching. The experiments
revealed that knockdown of Kremen1 significantly increased axon
length in dissociated DRG cultures (Figure 5). The axon length in
the Kremen1 knockdown group increased ∼30% in comparison to
the scrambled siRNA control group. This effect on axon outgrowth
is similar to the effect of miR-431 overexpression on axon out-
growth reported earlier (Figure 2B). Taken together, these results

Frontiers in Molecular Neuroscience www.frontiersin.org October 2013 | Volume 6 | Article 35 | 9

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


“fnmol-06-00035” — 2013/10/22 — 22:11 — page 10 — #10

Wu and Murashov miR-431 regulates axon regeneration

FIGURE 5 | Knockdown of Kremen1 increases neurite outgrowth.

(A) Neurite outgrowth in Kremen1 siRNA and scrambled siRNA treated
DRG neurons was detected by TUJ immunostaining. Representative
images show that Kremen1 siRNA significantly decreased Kremen1
expression level, which was accompanied by an increase of axon
outgrowth. Scale bar: 20 μm. As the quantification performed in miR-431

functional analysis, we measured the length of the longest axon for
each neuron (B) and counted the number of branches for each neuron
(C). Inhibition of Kremen1 significantly increased the length of axon,
however, its effect on neurite branching was not significant. *−p < 0.05.
For the analysis of two independent groups, Student’s t -test was used.
Scale bar: 20 μm.

indicate that miR-431 mediates increase of axon growth through
Kremen1 repression.

DISCUSSION
ALTERED miRNA EXPRESSION FOLLOWING NERVE INJURY
Our microarray experiments identified a group of injury-regulated
miRNAs in DRG neurons after conditioning sciatic nerve lesion.
Alterations in miRNAs have been recently shown in several stud-
ies profiling miRNA expression after nerve injuries in the central
nervous system. Microarray based analysis of miRNA in the rat
cerebral cortex after traumatic brain injury revealed that a set of
miRNAs were differentially expressed at 6, 24, 48, and 72 h after
injury. At all-time points post-injury, miR-21 was consistently
highly expressed in the cerebral cortex (Lei et al., 2009). Changes
in miRNA expression have also been studied by microarray anal-
ysis in hippocampus after traumatic brain injury. At three and
24 h after controlled cortical impact injury, 35 miRNA exhibited

increased expression levels and 50 miRNA exhibited decreased
expression level (Redell et al., 2009). Following a contusive SCI
in adult rats (Liu et al., 2009), 60 miRNAs showed significant
changes in their expression level in the injured spinal cord at
4 h, 1, and 7 days. Among those 60 miRNAs, 30 were upregu-
lated, 16 were down-regulated, and 14 showed early upregulation
at 4 h followed by down-regulation at 1 and 7 days post-SCI
(Liu et al., 2009). Recently, observations on miRNA expression
have been extended to the PNS. miRNA expression has been pro-
filed following SNI in proximal stumps of injured sciatic nerve
and DRG by microarray and deep sequencing in several studies
(Strickland et al., 2011; Yu et al., 2011b; Zhou et al., 2012). Fol-
lowing sciatic nerve transection, 20 miRNA transcripts displayed
a significant change in expression levels at 7-day post-axotomy
in rat DRG (Strickland et al., 2011). Both miR-21 and miR-431
showed significant upregulation in DRG after SNI, compara-
bly to our current data. Taken together, Strickland’s and our
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study, demonstrate that miR-21 and miR-431 are implicated in
peripheral nerve regeneration across species. Strickland’s study
further revealed that miR-21 promoted the regenerative growth
of the injured neuron by targeting the Sprouty2 protein (SPRY2;
Strickland et al., 2011).

In our studies, we focused on miR-431, which was the most
upregulated miRNA in DRG microarray after nerve injury in our
experiments. miR-431 was initially identified as central nervous
system specific miRNA as it was cloned from brain tissue of mouse
embryos (Wheeler et al., 2006). Whole mount in situ hybridization
revealed miR-431 localization to the developing spinal cord and
brain with particularly strong expression in the pons. The pons is
particularly rich in synapses because ninety percent of the descend-
ing axons passing through the midbrain synapse on neurons in the
pons (Wheeler et al., 2006). However, to date, limited information
is available about miR-431 physiological function. Recent observa-
tion has linked expression of miR-431 to regulation of cell viability
(Tanaka et al., 2012). miR-431 was upregulated by the addition of
human fibroblast interferon (HuIFN-β) in a non-cancer HuIFN-
β sensitive cell line RSa, with concomitant suppression of IGF1R
signaling and reduction of cell viability (Tanaka et al., 2012). How-
ever, at this time, the function of miR-431 in the nervous system
remains uncertain.

THE FUNCTION OF miR-431 IN REGENERATIVE AXON GROWTH
To determine the role of miR-431 in axon regeneration, miR-
431 gain- and loss-of-function were investigated in DRG neuronal
cultures. Application of miR-431 mimics markedly increased the
intracellular miR-431 level and promoted regenerative axon out-
growth. miR-431 gain-of-function correlated with longer axons,
more branches, and higher GAP-43 expression, a marker of regen-
eration. In contrast, transfection of miR-431 inhibitors impaired
the regenerative axon growth, as significantly shorter axons and
fewer branches were observed in DRG cultures. Analyses of 24
putative targets of miR-431, showed that only six were suppressed
in PC12 cells and even less genes were suppressed in DRG primary
neurons. This could be related to the specificity of miR-431 to
these genes, and to the fact that down-regulation of less specific
targets is more easily detected in PC12 cells. The difference may
be also related to the fact that the cells were from different species;
PC12 were from rat and DRG culture was from mouse.

We have further identified Kremen1 as the target that medi-
ates the effects of miR-431 on neuronal cells. miR-431 expression
inversely relates to Kremen1. The direct interaction between miR-
431 and Kremen1 mRNA was confirmed by CLIP, and 3′-UTR
luciferase reporter assay. Kremen1 expression was down-regulated
by miR-431 at the mRNA and protein levels. This may mean that
miR-431 cleaves the mRNA of this gene rather than repressing its
translation. To the best of our knowledge this is the first observa-
tion of direct mRNA target cleavage by miR-431. At the same time,
our data do not exclude possibility that there is another miRNA
or transcription factor that may regulate Kremen1 too.

Kremen1 was originally discovered as a transmembrane protein
containing the kringle domain. Later reports confirmed that both
Kremen1 and its relative Kremen2 were high-affinity receptors for
Dickkopf1 (Dkk1), the inhibitor of Wnt/β-catenin signaling (Mao
et al., 2002). The canonical Wnt/β-catenin signaling is mediated

by two receptor families, Frizzle protein and lipoprotein-receptor-
related protein 5 and 6 (LRP5/6). Kremen1 functionally cooperates
with Dkk1 to form a ternary complex composed of Kremen1, Dkk1,
and LRP5/6, and induces rapid endocytosis and removal of the
Wnt receptor LRP5/6 from the cell membrane, which inhibits the
transduction of Wnt/β-catenin signaling. Wnt/β-catenin signaling
plays a vital role in diverse developmental and physiological pro-
cesses, including cell-fate determination, tissue patterning, and
stem cell regulation (Diep et al., 2004). Wnt/β-catenin signaling
pathway also contributes to adult neurogenesis. Blocking Wnt sig-
naling abolishes neurogenesis in adult hippocampal progenitor
cells in vitro and suppresses neurogenesis in vivo (Lie et al., 2005).
With ectopic expression of Dkk1, canonical Wnt/β-catenin sig-
naling is markedly reduced in both the hippocampus and cortex
(Solberg et al., 2008).

Studies have also established a role for Wnt signaling in regulat-
ing synaptic plasticity and axonal growth (Hall et al., 2000; Wang
et al., 2006; Budnik and Salinas, 2011). Wnt signaling regulates
axon terminal remodeling (Budnik and Salinas, 2011), formation
of growth cones and lamellipodia (Hall et al., 2000), microtubules
organization (Purro et al., 2008), and synaptic assembly (Ahmad-
Annuar et al., 2006). Loss- and gain-of-function studies in animal
models demonstrated that loss of Wnt7a results in a strong deficit
in the accumulation of synaptic markers at the cell synapses
(Ahmad-Annuar et al., 2006). In contrast, in cultured mouse
cerebellar granule cells, Wnt7a increased neurite elongation and
branching as well as the expression of synaptic markers (Lucas
and Salinas, 1997). Likewise, targeted disruption of Wnt receptor
genes in mice produced severe defects in axon growth and guid-
ance, resulting in a loss of thalamocortical, nigrostriatal tracts, and
the anterior commissure (Wang et al., 2002, 2006). Moreover, SCI
induced a time-dependent increase in Wnt expression, phospho-
rylation of Wnt receptors, and activity of β-catenin protein. Thus,
the activation of the Wnt pathway after SCI suggests the involve-
ment of Wnt pathway in nerve regeneration (Fernandez-Martos
et al., 2011).

These abundant evidences from studies in animal models,
cell and organ culture firmly established an important role of
Wnt signaling in neurite outgrowth and axonal guidance. The
function of Wnt signaling could potentially link our observa-
tion on increased miR-431 and decreased Kremen1 expression to
the enhanced axonal outgrowth. In our study, Kremen1 loss-of-
function produced an increase in axon outgrowth mimicking the
effect of miR-431 gain-of-function but did not increase branch-
ing. The axon elongation is a critical factor for axon regeneration.
The excessive branching can be detrimental to axon regeneration,
especially in the PNS. Evidence suggests that axonal elongation
and branching are differentially regulated in hippocampal neurons
(Pujol et al., 2005).

Taken together, our studies identified miR-431 as an endoge-
nous, injury-regulated inhibitor of Kremen1, which promotes
regenerative axon growth in adult sensory neurons. Further studies
are necessary to fully define the role of miR-431 in axonal regenera-
tion. These findings may not only contribute to our understanding
of fundamental biological process, but also could have impor-
tant implication for improving the therapeutic strategies for nerve
injury.
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