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Abstract

Switchgrass has increasingly been recognized as a dedicated biofuel crop for its broad adaptation to marginal lands and
high biomass. However, little is known about the basic biology and the regulatory mechanisms of gene expression in
switchgrass, particularly under stress conditions. In this study, we investigated the effect of salt and drought stress on
switchgrass germination, growth and the expression of small regulatory RNAs. The results indicate that salt stress had a
gradual but significant negative effect on switchgrass growth and development. The germination rate was significantly
decreased from 82% for control to 36% under 1% NaCl treatment. However, drought stress had little effect on the
germination rate but had a significant effect on the growth of switchgrass under the severest salinity stress. Both salt and
drought stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded
to drought stress in a different pattern. Salt and drought stress changed the expression level of miRNAs mainly from 0.9-fold
up-regulation to 0.7-fold down-regulation. miRNAs were less sensitive to drought treatment than salinity treatment, as
evidenced by the narrow fold change in expression levels. Although the range of change in expression level of miRNAs was
similar under salt and drought stress, no miRNAs displayed significant change in expression level under all tested salt
conditions. Two miRNAs, miR156 and miR162, showed significantly change in expression level under high drought stress.
This suggests that miR156 and miR162 may attribute to the adaption of switchgrass to drought stress and are good
candidates for improving switchgrass as a biofuel crop by transgenic technology.
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Introduction

Switchgrass (Panicum virgatum L.) is a warm-season perennial

grass that is native to North America. It has been widely used as a

forage crop and thrives well on marginal lands and can tolerate

semi-arid conditions. Its broad adaptation and rapid growth rate

provide stable and high supply of biomass for biofuel production

[1,2]. Despite of its increasing importance as a biofuel crop, we still

know very little about the basic biology of switchgrass under

abiotic stress conditions, such as those posed by salt and drought;

important characteristics to characterize include seed germination,

plant growth, and the regulation mechanism of gene expression

when plants are under stress. Such baseline data are needed to

gauge the effects of genetic improvements and to guide researchers

to appropriate gene candidates to manipulate for improving stress

tolerance.

MicroRNAs (miRNAs) are an extensive class of newly

discovered non-coding small RNAs that regulate gene expression

at the post-transcription levels by mRNA cleavage or translation

repression [3,4]. By regulating their target proteins, miRNAs have

been reported to be involved in diverse biological processes,

including organ development [5,6], hormone signaling [7],

defense against pathogens [8], and response to abiotic and biotic

stresses [9,10,11]. Important abiotic stresses in this regard include

salinity [12], drought [13,14], cold [15], and heavy metals [16],

nutrition, and other stresses [11].

More than 40 miRNA families have been associated with

abiotic stress in plants [17], 13 of which have been found to be

responsive to salt and drought stresses [14]. These 13 miRNAs

include miR156, miR159, miR165, miR167, miR168, miR169,

miR319, miR393, miR395, miR396, miR398, miR399, and

miR402 [14]. Recently, miR172 and miR397 were also reported

to be implicated in drought stress in Solanum and rice [18,19].

Almost all of these stress-induced miRNAs are evolutionarily

conserved, which suggests that miRNAs-mediated regulatory

mechanism may be evolutionarily conserved for corresponding

environmental stresses in plants. However, the same miRNAs

reported to respond abiotic stress in one certain species may not

have the same function in other species. To date, opposite

expression in Arabidopsis and rice under drought stress has been

observed for at least 10 miRNAs that involve in stress response

[19,20,21]. This raises the question whether these reported stress

responsive miRNAs still play tolerance roles in other plant

species.
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miRNAs in switchgrass have been recently studied using

computational and experimental approaches [22,23]. Although

the expression level of up to 16 miRNAs were studied in seedling

and adult development stages and in two different leave tissues by

RNA blot experiment, no investigations have been performed on

the expression patterns of miRNAs and their potential roles under

stress conditions in this important biofuel feedstock. In this study,

we investigated how salt and drought stresses affected the

germination and biomass production of switchgrass and how

these stresses altered the expression levels of miRNAs. We chose

12 miRNAs to study and these 12 miRNAs are conserved in dicots

and monocots. Except miR162, 11 of the 12 miRNAs have been

reported to be involved in salt or drought stress in previous studies

in model plant species [17]. miR162 was also selected because of

its important role in miRNA processing by negatively regulating

the dicer-like 1 (DCL1) gene [24].

Materials and Methods

Plants
Switchgrass cv Alamo was used in this experiment. Alamo is a

lowland cultivar of switchgrass adapted well to the southeastern

United States [25,26]. Seed surface sterilization was performed

with 70% (v/v) ethanol for 60 s, 6% (v/v) bleach for 6–8 min,

followed washed by sterile water 4 times. Healthy-appearing seeds

were germinated on 1/2 Murashige and Skoog (MS) medium

(pH 5.8) containing 0.8% agar under a 16 h light/8 h dark cycle

at room temperature for 10 d. The media were supplemented with

0.1%, 0.25%, 0.5% and 1.0% NaCl to simulate increasing degrees

of salinity stress and with 1%, 2.5%, 5% and 7.5% PEG to

simulate varying degrees of drought stress. Each treatment was

replicated for 5 time as in five individual plates and each plate

contained 20 seeds. Germinated seeds were counted for all the

plates; the root length and the weight of aboveground and

underground parts were measured for each seedling. The

aboveground parts were immediately frozen in liquid nitrogen

after measurement.

RNA isolation and real-time RT-PCR analysis
To avoid the individual difference in gene expression, at least

four seedlings were used for total RNA extraction. Total RNA was

isolated from the grinded samples using the mirVanaTM miRNA

Isolation Kit (Ambion, Austin, TX, USA) following the user

manual. The quantity and quality of total RNA were assessed

using a Nanodrop ND-1000 (Nanodrop Technologies, Wilming-

ton, DE, USA) and gel electrophoresis.

Twelve miRNAs were selected for this study, which included

miR156, miR 157, miR 159, miR 162, miR167, miR169,

miR172, miR395, miR396, miR397, miR398, and miR399. A

majority of these miRNAs have been reported to play a role

under stress conditions in model plant species. Nine of these–

miR156, miR167, miR169, miR172, miR395, miR396, miR397,

miR398, and miR399–were identified in previous studies [22,23];

the other three miRNAs were identified in the deep sequencing

small RNA dataset. Table S1 listed the primers for these 12

miRNAs.

Real-time RT-PCR was used to characterize the expression of

12 miRNAs (for sequences, see Table S1) in aboveground

biomass under salt and drought stress. Firstly, the reverse

transcription (RT) reaction was carried out using the TaqManH
microRNA reverse transcription kit (Applied Biosystems, Foster

City, CA, USA). The mixture of 12 miRNA specific RT primers

(Table S1) was used to obtain the cDNAs of miRNAs. Second,

real-time RT-PCR was run on an Applied Biosystems 7300

Sequence Detection System (Foster City, CA, USA) according to

the manufacturer’s protocol using gene specific primers. The

gene specific primers of miRNAs were designed by following the

manual of microRNA reverse transcription kit; their sequences

are shown in Table S1.

Because there is no reliable reference gene for switchgrass

miRNA analysis, to better present the results, the expression levels

of each miRNA were calculated using the mean CT values of the

12 studied miRNAs. Changes in expression level of miRNAs were

assessed using the mean value of DCt. Each miRNA was

conducted with three biological replicates for different stress

treatments. Analysis of variance (ANOVA) of single factor was

performed to compare the expression difference of miRNAs under

different salt and drought treatments.

Results

The effect of salt and drought stresses on switchgrass
growth and development

We studied several response variables in salt and drought stress

treatments: switchgrass germination rate, biomass accumulation,

development of leaves and roots, and gene expression dynamics

of multiple miRNA genes. Salt stress significantly impacted

switchgrass growth (Table 1). Under normal condition, the

germination rate was 8265.7%; however, as salinity concentra-

tions increased (with the exception of the lowest concentration of

0.1%), the germination rate was significantly decreased (p,0.001)

from 8265.7% to 62–68% under moderate salinity (0.25% and

0.5%), and then to 3668.2% at high salinity (1%). In addition to

decreasing the germination rate, whole plant weight, above-

ground- and belowground biomass, shoot:root biomass ratio, and

the root length of switchgrass seedlings also significantly

decreased with increasing salinity in a dose-dependent manner,

particularly at the high salinity treatment (Table 1). At low

concentrations (0.1% and 0.25%), salinity stress did not greatly

affect switchgrass growth and development, and the lowest (0.1%)

salinity treatment even stimulated switchgrass growth with about

10% increase of their root length and biomass; 0.25% NaCl did

not significantly affect switchgrass growth; however, high

concentrations (0.5% and 1%) of NaCl, and particularly 1%,

significantly inhibited switchgrass growth and development

(p,0.001). At the 1% NaCl treatment, the switchgrass growth

was inhibited about 50% on both aboveground and underground

biomass; root elongation was also inhibited in the 1% NaCl

treatment. Consistent with the effect of 1% salt concentration on

root length, shoot length was also significantly reduced compared

with those plants grown on the control and other low salinity

stress (data not shown).The shoot:root weight ratio initially

decreased and then increased with increasing NaCl concentra-

tions, suggesting that low NaCl concentrations (0.1 and 0.25%)

inhibited more aboveground growth than root growth and high

NaCl concentrations (0.5 and 1.0%) played a role in especially

inhibiting root growth.

Drought stress did not have a great effect on switchgrass seed

germination; however, it did significantly decrease switchgrass

biomass (p,0.001, Table 1). Although the biomass accumulation

and development of leaves and roots decreased gradually with

the increase of PEG concentrations, only 5% and 7.5% PEG

significantly inhibited switchgrass growth. The biomass accumu-

lation and development of roots decreased by about 40–50%

under 7.5% PEG concentration. However, the weight of

underground biomass decreased about 70% under the highest

PEG concentration compared with controls.

Switchgrass MicroRNA Responsible to Drought Stress
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Expression levels of miRNAs in switchgrass young
seedlings

All the 12 tested miRNAs were expressed in switchgrass young

seedlings, but their expression level varied from each other

(Figure 1). Among the assayed miRNAs, miR156 was the miRNA

with the highest expression level; compared with other miRNAs,

the expression level of miR156 was 124-fold of the average of the

12 miRNAs. miR159, miR167, miR169 and miR396 were also

highly expressed in switchgrass young seedlings. However, the

expression level of miR157, miR399 and miR397 were relatively

low and their expression levels were less than 10% of the average

expression level of the 12 tested miRNAs; of them, miR157 and

miR399 were the miRNAs with the lowest expression. miR156

and miR157 were grouped into one miRNA family because of

their high sequence similarity (Table S1) and shared targets. The

significant difference of miR156 and miR157 in switchgrass

indicates that they may be involved in different development stages

and play different roles in switchgrass growth and development.

Salt stress altered the expression pattern of miRNAs in
switchgrass

Salinity treatment affected the expression of miRNAs in

switchgrass young seedlings with a dose-dependent manner

(Figure 2). The expression of miR162 was increased as increasing

salinity concentrations with the maximum 0.9-fold up-regulation

under the highest tested salt stress condition (1%); in contrast,

Table 1. Effect of salt and drought stress on the germination and growth of switchgrass.

Treatment Germination rate
Weight of each
seeding (mg)

Seedling
aboveground
biomass (mg)

Seedling
belowground
biomass (mg)

Abovegound to
belowground biomass
ration Root length (cm)

NaCl Control 8265.7ab 6.960.92ab 5.360.44a 1.660.53ab 3.761.23ab 1.260.84a

0.1% 8367.58a 7.560.81a 5.460.41a 2.160.47a 2.760.63a 1.361.02a

0.25% 6865.7bc 6.560.72ab 4.760.43ab 1.860.43ab 2.760.55a 1.260.77a

0.5% 62610.37c 5.161.21bc 460.77bc 1.160.45ab 4.161ab 0.960.59ab

1% 3668.22d 3.961.33c 360.6c 0.961.07b 6.463.68b 0.660.5b

PEG Control 8364.47a 7.360.91a 5.560.69a 1.760.38a 3.360.61a 1.260.84ab

1% 78611.51a 6.661.08a 5.360.77ab 1.360.38a 4.360.79a 1.360.9a

2.5% 76.368.54a 6.760.88a 5.360.61a 1.460.34a 3.960.7a 1.360.9a

5% 68.8614.36a 660.54a 4.960.45a 1.160.25ab 4.460.88a 1.160.67ab

7.5% 77.566.45a 3.860.75b 3.360.41b 0.560.42b 9.464.6b 0.760.58b

Each treatment has five replicates. The result was shown in mean value and stand deviation. The data with the same letter shows no significant difference by ANOVA.
doi:10.1371/journal.pone.0032017.t001

Figure 1. Relative expression levels of 12 miRNAs in 10 day-old switchgrass shoots. Fold change was normalized against the mean value
of these 12 miRNAs. Error bars indicate standard error of three biological replicates.
doi:10.1371/journal.pone.0032017.g001
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miR397 showed decrease in expression level with the increase of

salt concentration with the maximum 0.7-fold down-regulation

under the highest salt concentration. The expression level of

miR156 and miR159 was down-regulated under 0.1% salt

concentration, whereas it was up-regulated under higher salt

concentration; in contrast, the expression level of miR172,

miR395, and miR399 was up-regulated under 0.1% salt

concentration while down-regulated under higher salt conditions.

The expression level of miR157 and miR398 was down-regulated

under lowest and highest salt concentration while up-regulated in

the moderate salt stress. Of special interest, the expression level of

miR167 was down-regulated under 0.5% or lower salt concen-

tration while was up-regulated by 0.3-fold when exposed to 1%

salt condition.

Although salinity treatment affected the expression of all tested

miRNAs, the changes in miRNA expression were small. The

highest fold change in expression was miR157 and only 2.8-fold

up-regulation was observed under moderate salt treatment. All the

other 11 miRNAs only showed less than 0.8-fold up-regulation in

expression level and the 0.8-fold up-regulation was observed in

miR162 under the most severe salt stress. miR397 was the most

down-regulated of all miRNAs evaluated with a change in

expression of 0.7-fold at 1% salt treatment; miR157 showed the

second greatest change in expression of 0.4-fold down-regulated at

0.1% salt stress.

Drought stress altered the expression pattern of miRNAs
in switchgrass

Similar to those effects under salt stress, drought stress also

altered the expression level of miRNAs in young switchgrass

seedlings, and in a dose-dependent manner (Figure 3). miR156,

miR159, and miR396 showed up-regulation expression levels

under all drought conditions, with the greatest 0.9-fold change

under 7.5% PEG; however, miR167, miR169, and miR172

displayed down-regulated expression level under all drought

conditions, with the largest 1.5-fold down regulation under the

most intensive drought condition. The expression level of miR157

was up-regulated by 0.3-fold under the highest 7.5% PEG but was

down-regulated under other lower drought conditions with a

maximum 0.6-fold change under 2.5% PEG concentration. The

Figure 2. Expression analysis of 12 miRNAs in switchgrass shoots under NaCl treatment. Fold change was normalized against the mean
value of these 12 miRNAs. Error bars indicate standard error of three biological replicates.
doi:10.1371/journal.pone.0032017.g002
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expression levels of miR395 and miR397 was only up-regulated

under 2.5% PEG, with a maximum 0.5-fold change in miR398

under 2.5% PEG; in other drought condition, both miRNAs were

down-regulated with a dose-dependent mannor, with the highest

0.5-fold change in miR395 under the 7.5% PEG concentration.

For miR-398, it was up-regulated at lower concentrations (1% and

2.5%) and was down-regulated in high PEG treatment.

The expression of miRNAs was less sensitive to drought

treatment than salinity treatment evidenced by the narrow fold

change in expression levels. The expression change ranged from

0.9-fold up-regulation to 0.6-fold down-regulation after the

drought treatments. The expression level of miR162 showed the

highest 0.9-fold up-regulation under the highest drought stress;

miR156 showed the second largest 0.7-fold change in expression

level under 7.5% PEG; all the other 11 miRNAs shows less than

0.6-fold up-regulation in expression level. The largest down-

regulated expression, 0.6-fold change, was observed in miR157 at

2.5% PEG and in miR397 at 7.5% PEG.

ANOVA analysis indicated that the expression level of two

miRNAs, miR156 and miR162, significantly changed under high

drought stress (p,0.001). Compared with the expression level

under untreated control conditions, miR156 was significantly up-

regulated under 7.5% PEG concentration; in contrast, the

expression level of miR162 was significantly inhibited by 5%

and 7.5% PEG treatment.

Discussion

One reason why switchgrass has gained attention as a dedicated

biofuel crop is that it can grow on suboptimal land that has

relatively low available water. Our results indicated that salt stress

had a significant effect on the germination rate and growth of

switchgrass in almost all tested abiotic stresses. Interestingly,

drought stress had no obvious effect on the germination rate of

switchgrass; the significant effect of drought stress on switchgrass

growth was observed only when switchgrass was exposed to high

water stress conditions. Barney and colleagues also reported that

switchgrass demonstrated great tolerance to drought stress [27].

This result suggests that switchgrass has evolved a more effective

mechanism to cope with drought stress as opposed to salt stress.

Therefore, it is interesting to further investigate the change in gene

expression, especially the gene expression regulators, under such

stress conditions.

Figure 3. Expression analysis of 12 miRNAs in switchgrass shoots under PEG treatment. Fold change was normalized against the mean
value of these 12 miRNAs. Error bars indicate standard error of three biological replicates.
doi:10.1371/journal.pone.0032017.g003
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miRNAs are an extensive class of newly discovered gene

regulators. They have been reported to play important roles under

abiotic stress in model plant species. Using qRT-PCR, we studied

the expression change of 12 conserved miRNAs in 11 days old

switchgrass seedlings exposed to salt and drought stress. Of the 12

miRNAs, 11 have been demonstrated to be involved in salt or

drought stress in previous study, eight of these in both the dicot

Arabidopsis thaliana and the monocot Oryza sativa. Our results

indicate that both salt and drought stresses altered the expression

pattern of miRNAs in a dose-dependent manner. Salt and drought

stress changed the expression level of miRNAs mainly from 0.9-

fold up-regulation to 0.7-fold down-regulation, and drought stress

altered the expression of miRNAs from 0.9-fold up-regulation to

0.6-fold down-regulation. Although the range of change in

expression level of miRNAs was similar under salt and drought

stress, no miRNAs displayed significant change in expression level

under all tested salt conditions, however, two miRNAs, miR156

and miR162, showed significantly change in expression level

under high drought stress. This suggests that miR156 and miR162

may attribute to the adaption of switchgrass to drought stress and

are good candidates for improving switchgrass as a biofuel crop by

transgenic technology.

miR156 is one class of conserved miRNAs, which play an

important role in multiple biological process. By targeting

squamosal promoter binding protein-like (SPL) genes, miR156

has been demonstrated to temporally regulate shoot development

[28], control the development timing from juvenile to adult

transition together with miR172 [29,30], secure male fertility [31],

regulate anthocyanin biosynthesis [32], and is involved in

flowering control [33]. Overexpression of miR156 in Arabidopsis,

rice, and maize led to a prolonged vegetative phase together with

the production of significantly higher number of total leaves,

which resulted in enhanced biomass accumulation [34,35,36].

miR156 was demonstrated by microarray-based analysis to

response to salt stress but not to drought stress in Arabidopsis;

miR156 was induced by 1.6-fold by salinity stress [37]. In rice,

miR156 was found to respond to drought stress and was down-

regulated by 2.1-fold by drought stress [19]. However, study on

salt stress of maize showed that miR156 was not involved in salt

response [38]. Our results indicate that the expression of miR156

was significantly induced by 1.7 fold under high drought

condition. Further studies on the expression change of down-

stream genes would help us to illustrate the mechanism of

tolerance of switchgrass to drought stress.

miR162 has been reported to involve in miRNA biogenesis by

negatively regulating dicer-like 1 (DCL1) gene [24]. It was also

implicated to play a role in cotton fiber development [39]. In our

study, miR162 is the only miRNA that has not been associated

with salt or drought stress, although it was reported to be

significantly down-regulated under cadmium stress in rice [40]. In

our study, miR162 was down-regulated under all drought stress

treatments, while the expression change was statistically signifi-

cantly only under high drought conditions. This suggests that

miR162 plays an important role during drought stress and

feedback regulation of miRNAs also functions in switchgrass to

adapt the drought stress. Given the multiple functions of miR156

and miR162, it would be interesting to investigate how the

numerous phenotypes would play out in overexpressed transgenic

switchgrass and whether these overexpressed miRNAs would

confer higher tolerance to switchgrass.

Supporting Information

Table S1 Primers used in reverse transcription (RT) and qPCR

for amplifying 12 miRNAs. The reverse primer is provided by the

kit. The nucleotides in green are the same as or complementary to

the miRNA sequences. RT and FP in the primer name indicate

that the primer is reverse transcription primer or forward PCR

primer respectively.

(DOC)
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