
RESEARCH ARTICLE

Elevated Endogenous Erythropoietin
Concentrations Are Associated with
Increased Risk of Brain Damage in Extremely
Preterm Neonates
Steven J. Korzeniewski1,2,3*, Elizabeth Allred4, J. Wells Logan5, Raina N. Fichorova6,
Stephen Engelke7, Karl C. K. Kuban8, T. Michael O’Shea9, Nigel Paneth3,10, Mari Holm11,12,
Olaf Dammann12,13, Alan Leviton4, ELGAN study investigators

1 Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, MI, United States of
America, 2 Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit,
MI, United States of America, 3 Department of Epidemiology & Biostatistics, Michigan State University, East
Lansing, MI, United States of America, 4 Neurology Departments, Boston Children’s Hospital, and Harvard
Medical School, Boston, MA, United States of America, 5 Department of Neonatology, Nationwide Children’s
Hospital, Columbus, OH, United States of America, 6 Departments of Obstetrics, Gynecology and
Reproductive Biology, Brigham andWomen’s Hospital and Harvard Medical School, Boston, MA, United
States of America, 7 Department of Pediatrics, East Carolina University Brody School of Medicine,
Greenville, NC, United States of America, 8 Departments of Pediatrics, Boston Medical Center and Boston
University, Boston, MA, United States of America, 9 Department of Pediatrics, Wake Forest University,
Winston-Salem, NC, United States of America, 10 Department of Pediatrics & Human Development,
Michigan State University, East Lansing, MI, United States of America, 11 Department of Laboratory
Medicine, Children's andWomen's Health, Faculty of Medicine, Norwegian University of Science and
Technology, Trondheim, Norway, 12 Department of Public Health and Community Medicine, Tufts University
School of Medicine, Boston, MA, United States of America, 13 Neuroepidemiology Unit, Hannover School of
Medicine, Hannover, Germany

* sKorzeni@med.wayne.edu

Abstract

Background

We sought to determine, in very preterm infants, whether elevated perinatal erythropoietin

(EPO) concentrations are associated with increased risks of indicators of brain damage,

and whether this risk differs by the co-occurrence or absence of intermittent or sustained

systemic inflammation (ISSI).

Methods

Protein concentrations were measured in blood collected from 786 infants born before the

28th week of gestation. EPO was measured on postnatal day 14, and 25 inflammation-

related proteins were measured weekly during the first 2 postnatal weeks. We defined ISSI

as a concentration in the top quartile of each of 25 inflammation-related proteins on two sep-

arate days a week apart. Hypererythropoietinemia (hyperEPO) was defined as the highest

quartile for gestational age on postnatal day 14. Using logistic regression and multinomial

logistic regression models, we compared risks of brain damage among neonates with
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hyperEPO only, ISSI only, and hyperEPO+ISSI, to those who had neither hyperEPO nor

ISSI, adjusting for gestational age.

Results

Newborns with hyperEPO, regardless of ISSI, were more than twice as likely as those with-

out to have very low (< 55) Mental (OR 2.3; 95% CI 1.5-3.5) and/or Psychomotor (OR 2.4;

95% CI 1.6-3.7) Development Indices (MDI, PDI), and microcephaly at age two years (OR

2.4; 95%CI 1.5-3.8). Newborns with both hyperEPO and ISSI had significantly increased

risks of ventriculomegaly, hemiparetic cerebral palsy, microcephaly, and MDI and PDI< 55

(ORs ranged from 2.2-6.3), but not hypoechoic lesions or other forms of cerebral palsy, rela-

tive to newborns with neither hyperEPO nor ISSI.

Conclusion

hyperEPO, regardless of ISSI, is associated with elevated risks of very low MDI and PDI,

and microcephaly, but not with any form of cerebral palsy. Children with both hyperEPO

and ISSI are at higher risk than others of very low MDI and PDI, ventriculomegaly, hemi-

paretic cerebral palsy, and microcephaly.

Introduction
Just two decades ago, erythropoietin (EPO) receptors were first identified in the brain,[1] and
astrocytes were found to be capable of synthesizing EPO.[2] Subsequently, it was found that
cultured hippocampal and cerebral cortical neurons exposed to EPO were spared some of the
glutamate-induced cell death seen in neurons not exposed to EPO.[3] Thus began the concept
that EPO protects the brain against adversity.

Several follow-up studies of children who had participated in trials of recombinant EPO for
the prevention or treatment of anemia,[4–6] term newborn encephalopathy,[7] or retinopathy
of prematurity[8] have also provided evidence of neuroprotective effects. What has been miss-
ing to date, however, is any evidence that endogenous levels of EPO in the blood contribute in-
formation about the risk of perinatal brain damage.

In the ELGAN (Extremely Low Gestational Age Newborn) study, abnormal brain structure
and function were associated with intermittent or sustained systemic inflammation (ISSI).
[9–13] Since EPO has anti-inflammatory properties in the kidney [14] and in muscle [15] as
well as growth/trophic properties, we reasoned that elevated circulating levels might convey in-
formation about reduced risk of brain damage in ELGANs.

In our ELGAN sample, elevated EPO concentrations correlate with higher systemic levels of
inflammatory proteins.[16] Consequently, elevated concentrations of endogenous EPO might
convey information about inflammation as well as potential neuroprotection. We sought to
distinguish between these two possibilities by analyzing associations between elevated endoge-
nous EPO concentrations (defined as concentrations in the highest quartile for gestational age
on postnatal day 14) and multiple indicators of brain damage and neurodevelopmental dys-
function, both in the presence and in the absence of ISSI.
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Methods

The ELGAN Study
The ELGAN study was designed to identify characteristics and exposures that increase the risk
of structural and functional neurologic disorders in ELGANs. During the years 2002–2004,
women delivering before 28 weeks gestation at one of 14 participating institutions were asked
to enroll in the study. Written informed consent was obtained from parents of newborns in-
cluded in this study using procedures approved by each of the individual hospital institutional
review boards listed in the acknowledgement section. Additional details are provided elsewhere
[17]. Here, we focus on the contribution of EPO to the occurrence of indicators of perinatal
brain damage. Financial limitations allowed us to measure proteins in newborn blood only
from the 939 infants who survived and had a developmental evaluation at 24 months adjusted
age. The sample presented here consists of the 786 newborns who had protein measurements
on protocol day 14.

Newborn variables
Estimation of gestational age at birth was based on a hierarchy ordered by the quality of avail-
able information. Most desirable were estimates based on the dates of embryo retrieval or intra-
uterine insemination or fetal ultrasound before the 14th week (62%). When these were not
available, reliance was placed sequentially on a fetal ultrasound at 14 or more weeks (29%),
LMP (7%), and gestational age recorded in the log of the neonatal intensive care unit (1%).

The birth weight Z-score is the number of standard deviations the infant’s birth weight is
above or below the median weight of infants at the same gestational age in referent samples not
delivered for preeclampsia or fetal indications.[18,19]

Information was collected about blood cultures for each week through the 4th week, but not
for each day. Consequently, late bacteremia is defined as being evident during postnatal week 2
(N = 110) and week 3 (N = 75). No child had bacteria first cultured from the blood during
week 4. The recovery of an organism from blood was reported, but details about the organism
were not. Infection was identified based on documentation of a cultured organism that was
considered a potential pathogen and not a contaminant.

Blood spot collection
Drops of blood were collected on filter paper (Schleicher & Schuell 903) on the first postnatal
day (range: 1–3 days), the 7th postnatal day (range: 5–8 days), and the 14th postnatal day
(range: 12–15 days), All blood was from the remainder after specimens were obtained for
clinical indications. Dried blood spots were stored at -70°C in sealed bags with desiccant
until processed.

Protein measurements
Details about elution of the 25 inflammation-related proteins from blood spots and measure-
ment of the proteins with the Meso Scale Discovery (MSD, Rockville, MD) electrochemilumi-
nescence system are provided elsewhere.[20,21] This electrochemiluminescence system has
been validated by comparisons with traditional ELISA, [22,23] and produces measurements
that have high content validity, [20,21,24,25] and inter-assay variations that are invariably less
than 20%. Because the volume of blood spots can vary in ways that we cannot easily measure,
each protein measurement was normalized to mg of total protein. Measurements were made in
duplicate and the mean served as the basis for all tables and analyses.
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The Laboratory of Genital Tract Biology of the Department of Obstetrics, Gynecology and
Reproductive Biology at Brigham andWomen's Hospital, Boston, measured the following 25
proteins using commercially available platforms: IL-1beta (Interleukin-1beta), IL-6 (Interleu-
kin-6), IL-6R (interleukin-6 receptor), TNF-alpha (tumor necrosis factor-alpha), TNF-R1
(tumor necrosis factor-alpha-receptor1), TNF-R2 (tumor necrosis factor-alpha-receptor2), IL-
8 (CXCL8) (interleukin-8), MCP-1 (CCL2) (monocyte chemotactic protein-1), MCP-4
(CCL13) (monocyte chemoattractant protein-4) (CCL13), MIP-1B (CCL4) (Macrophage In-
flammatory Protein-1beta)(CCL4), RANTES (CCL5) (regulated upon activation, normal T-
cell expressed, and [presumably] secreted), I-TAC (CXCL11) (Interferon-inducible T cell
Alpha-Chemoattractant), ICAM-1 (CD54) (intercellular adhesion molecule-1), ICAM-3
(CD50) (intercellular adhesion molecule-3), VCAM-1 (CD106) (vascular cell adhesion mole-
cule-1), E-SEL (CD62E) (E-selectin) (CD62E), MMP-1 (matrix metalloproteinase-1), MMP-9
(matrix metalloproteinase-9), CRP (C-Reactive Protein), SAA (serum amyloid A), MPO (mye-
loperoxidase). VEGF (vascular endothelial growth factor), VEGF-R1 (vascular endothelial
growth factor-receptor1, Flt-1), VEGF-R2 (vascular endothelial growth factor-receptor2,
KDR), and IGFBP-1 (insulin growth factor binding protein-1). Total protein was measured
using the BCA assay (Thermo Scientific, Rockford, IL) as previously described.[26]

Study Groups
Four mutually exclusive study groups were formed based on the presence or absence of relative
hypererythropoietinemia (hyperEPO) and intermittent or sustained systemic inflammation
(ISSI): 1. hyperEPO only, 2. ISSI only, 3. hyperEPO+ISSI, and 4. neither hyperEPO nor ISSI
(referent group).

Newborns with hyperEPO had EPO concentrations in the highest quartile for gestational
age on postnatal day 14 (> 25 pg/mg protein among infants born at 23–24 weeks, and> 33–34
pg/mg for those born at 25–27 weeks).

ISSI was defined as a concentration of a specific inflammation-related protein in the top
quartile for gestational age, on two separate days, a week apart during the first two
postnatal weeks.

Protocol ultrasound scans
Protocol scans were performed by sonographers at each hospital using high-frequency trans-
ducers (7.5 and 10 MHz) and were collected before the 28th postmenstrual week. The cerebral
white matter in each hemisphere was divided into eight zones. In each zone, lesions could be
further characterized as hyperechoic and/or hypoechoic. Hypoechoic lesion refers to a reduc-
tion in echoes measured by ultrasonography that is typically attributed to a presumed patho-
logic change in tissue density. Ventriculomegaly was defined visually with a template that was
on the data collection form. Moderate/severe ventriculomegaly was diagnosed if the lateral ven-
tricle was at least moderately enlarged in any of four sections (frontal horn, body, and occipital
horn) on either side. Two independent readers had to agree on the presence of every lesion re-
ported here. Additional details about obtaining and reading ultrasound scans are described
elsewhere. [27]

24-month developmental assessment
Fully, 91% of surviving children returned for a developmental assessment close to the time
when they were 24-months corrected age. The Bayley Scales of Infant Development—Second
Edition (BSID-II)[28] were administered and the Mental Development Index (MDI) and the
Psychomotor Development Index (PDI) were scored by certified examiners who demonstrated
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acceptably low variability.[29] Of these children, 77% had their exam within the range of 23.5–
27.9 months. Neurological examination data were used for the topographic diagnosis of cere-
bral palsy (CP) (quadriparesis, diparesis, or hemiparesis) based on an established algorithm.
[27] Because newborns were assessed at different approximations of 24 months corrected age,
all head circumferences were converted to Z-scores based on standards provided by the CDC.
[30] The largest occipital-frontal circumference was measured to the nearest 0.1 centimeter.

Data analysis
Logistic regression models adjusted for gestational age category (i.e., 23–24, 25–26, and 27
weeks) were fit to estimate magnitudes of association (odds ratios (OR) with 95% confidence
intervals (CI)) between hyperEPO and each of three indicators of brain damage, ultrasound
scan diagnoses of ventriculomegaly and a hypoechoic lesion, and at age 2 years, microcephaly.
Multinomial logistic regression models that adjusted for gestational age category were fit to es-
timate associations between hyperEPO and cerebral palsy subtype (quadriparetic, diparetic
and hemiparetic, compared to no cerebral palsy) and very low (< 55) and low (55–69) MDI
and PDI scores compared to scores of 70 or higher.

Twenty-five additional logistic regression models (one for each inflammation-associated
protein) were fit for each of the eight brain damage indicators to evaluate risks associated with
hyperEPO only, ISSI only, and the combination of hyperEPO+ISSI. These exposures were
compared in each model to the absence of both hyperEPO and ISSI. We adjusted for gestational
age category and modest fetal growth restriction (birth weight Z-score<-1), finding that the
point estimates for the odds ratios differed minimally from those obtained when adjustment
was made only for gestational age category. Consequently, we present the odds ratios for gesta-
tional age adjustment only.

Risks of cerebral palsy subtypes and very low and low MDI and PDI were evaluated in the
same way except the models were, as before, multinomial. Odds ratios and confidence intervals
for low (55–69) mental and psychomotor development index scores are shown only in the sup-
plemental tables (Tables F2 & G2 in S1 File).

Odds ratios whose 95% confidence intervals exclude 1.0 are statistically significant.

Results

Risks of brain disorders associated with hyperEPO when not
considering ISIS (Table 1)
Children with hyperEPO were more than twice as likely as those with lower EPO concentra-
tions to have very low (< 55) MDIs and/or PDIs, or microcephaly at age two years (Table 1).
In contrast, newborns with hyperEPO did not have higher frequencies of cranial ultrasound le-
sions or cerebral palsy than those without.

Risks of brain disorders associated with hyperEPO depending the
presence or absence of ISIS (Figs. 1–4; Tables A-H in S1 File)
Three patterns of increased risk emerged when we modeled the risk of brain damage associated
with hyperEPO depending on the presence or absence of ISSI:

1. hyperEPO only was associated with significantly higher risk,

2. ISSI only was associated with significantly higher (and sometimes lower) risk, and

3. hyperEPO+ISSI was associated with significantly elevated risk.
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We summarize the application of these three patterns to each protein and indicator of brain
damage in a heat map (Fig. 5).

Ventriculomegaly (Fig. 1A)
Newborns with hyperEPO only were not at significantly different risk of ventriculomegaly,
whereas those with ISSI only (MPO, IL-1 β, IL-6, TNF- α, IL-8, MCP-1, VEGF, VEGF-R1, or-
ange) were 2–5 times more likely to have ventriculomegaly than children without either hyper-
EPO or ISSI.

Newborns with hyperEPO+ISSI (red) were at more than twice the risk of ventriculomegaly
as those with neither in six models. For half of these models, neither hyperEPO alone nor ISSI
alone was associated with higher risk, yet newborns with hyperEPO+ISSI were at more than
twice the risk of ventriculomegaly, when compared to children without either. On the other
hand, for five of the models, ISSI only was associated with increased risk, whereas hyperEPO
+ISSI was not.

ISSI alone (IL-6R), was associated with significantly lower risk of ventriculomegaly.

Hypoechoic Lesion (Fig. 1B)
In only two of twenty-five models, newborns with ISSI alone (IL-8, VEGF-R1) were at more
than twice the risk of hypoechoic lesion when compared to the referent group. Neither hyper-
EPO alone nor hyperEPO+ISSI was significantly associated with hypoechoic lesions.

Table 1. Percent of children classified by their EPO concentration for gestational age on postnatal day 14 who also had the characteristics and
outcomes listed on the left.

Characteristics EPO Quartile* Odds Ratios† for lesion on left associated with hyperEPO Row N

Lowest Middle Two Highest

Ultrasound lesion

Ventriculomegaly 9 10 11 1�2 (0�7, 2�0) 79

Hypoechoic lesion 10 7 6 0�8 0�4, 1�5) 58

Cerebral palsy type^

Quadriparesis 6 6 6 0�9 (0�4, 1�8) 48

Diparesis 4 4 3 0�7 (0�3, 1�8) 30

Hemiparesis 3 1 3 2�0 (0�7, 5�6) 15

Bayley Scales of Infant Development^

MDI < 55 8 15 24 2�3 (1�5, 3�5) 120

MDI 55–69 9 12 12 1�3 (0�8, 2�2) 88

PDI < 55 11 13 24 2�4 (1�6, 3�7) 120

PDI 55–69 10 16 17 1�5 (0�9, 2�3) 116

Microcephaly

HC Z-score < -2 8 8 18 2�4 (1�5, 3�8) 84

Column N 198 390 198 786

The odds ratios are for the occurrence of the disorder listed on the left comparing those who had hyperEPO to those who did not.

* These are column percentages, EPO quartiles were determined on day 14
† Odds Ratios (95% confidence intervals) are adjusted for gestational age category

^ cerebral palsy subtype and MDI and PDI category odds ratios were modeled using multinomial logistic regression

doi:10.1371/journal.pone.0115083.t001
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Quadriparetic cerebral palsy (Fig. 2A)
Newborns with hyperEPO alone or hyperEPO+ISSI were not at significantly different risk of
quadriparetic cerebral palsy. ISSI alone (MCP-1) was associated with more than twice the risk
of quadriparesis, whereas ISSI alone (IL-6R) was associated with significantly lower risk, when
each was compared to the risk of the referent group.

Fig 1. Odds ratios (and 95% confidence intervals) for ventriculomegaly (A.) and hypoechoic lesion
(B.) calculated with logistic regression models. The three risk groups: ISSI only: (an inflammation-related
protein concentration in the highest quartile on two days); hyperEPO only (an EPO concentration in the
highest quartile on day 14); and ISSI+hyperEPO are each compared to the referent group that consists of
newborns who had neither ISSI nor hyperEPO. All models are adjusted for gestational age.

doi:10.1371/journal.pone.0115083.g001
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Fig 2. Odds ratios (and 95% confidence intervals) of quadriparesis (A.), diparesis (B.) and
hemiparesis (C.) calculated with multinomial logistic regression models with risk groups and
adjustment for gestational age as described in Fig. 1.Missing values indicate an inability to estimate odds
due to complete separation of outcomes among exposed and unexposed in light of the small sample size.

doi:10.1371/journal.pone.0115083.g002
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Diparetic cerebral palsy (Fig. 2B)
Children with hyperEPO alone or hyperEPO+ISSI were not at significantly elevated risk of
diparetic cerebral palsy when compared to referent newborns. ISSI alone (orange), however,
was associated with threefold greater risk of diparesis in models for three proteins (TNF-α, IL-
8, ICAM-1) when compared to the referent group.

Fig 3. Odds ratios (and 95% confidence intervals) of Very LowMental Development Index (A.)and
Very Low Psychomotor Development Index (B.) calculated with multinomial logistic regression
models as described in Fig. 2. Note: Only children with a GMFCS< 1 are included in the MDI analysis.

doi:10.1371/journal.pone.0115083.g003
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Hemiparetic cerebral palsy (Fig. 2C)
hyperEPO alone (MCP-1, yellow) was associated with significantly greater risk of hemiparesis,
whereas ISSI alone (IL-6 and VEGF-R1, orange) was associated with significantly higher risk
compared to referent newborns.

On the other hand, in nine of twenty-five models, hyperEPO+ISSI (ISSI defined by IL-1β,
IL-6,TNF-R1,IL-8, MIP-1β, E-SEL, MMP-9, VEGF, VEGF-R1) was associated with more than
four-fold greater risk of hemiparetic cerebral palsy (red) compared to the referent group.

Very low Mental Development Index (MDI)(Fig. 3A)
In all but two of the twenty-five models, newborns with hyperEPO alone (yellow) had a two- to
three-fold greater risk of MDI< 55 than those in the referent group. In nineteen of the twenty-
five models, hyperEPO+ISSI (red) was associated with a two to six times greater risk of
MDI< 55 than newborns in the referent group.

In five models, newborns with ISSI alone (CRP, SAA, TNF-α, E-SEL, IGFBP-1, orange)
were at two to three times greater risk of MDI< 55 when compared to referent newborns.

Fig 4. Odds ratios (and 95% confidence intervals) of 24 month head circumference Z-score< -2 calculated with logistic regression models as
described in Fig. 1. Note: Children with a birth head circumference Z-score< -2 are excluded from this analysis.

doi:10.1371/journal.pone.0115083.g004
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Fig 5. Summary of Associations.We identify three patterns of increased risk of indicators of brain damage
associated with hyperEPO and ISSI. hyperEPO only is identified with yellow, ISSI only is identified with
orange, and the combination of ISSI+hyperEPO is identified with red. Reduced risk of an echolucent lesion
associated with hyperEPO only is identified with green. Boxes with 2 or 3 separate colors indicate that 2 or 3
patterns were identified. Note: Cells in this table identify patterns of results of unique multivariable regression
models fitted to answer whether or not children in each of three mutually exclusive study groups (hyperEPO
only, ISSI only, or hyperEPO+ISSI) were at higher or lower risk of the brain damage indicator identified at the
top of each column, relative to those in a referent group who did not have hyperEPO or ISSI, adjusting for
gestational age category.

doi:10.1371/journal.pone.0115083.g005
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Neither hyperEPO alone nor ISSI alone was associated with increased risk of low MDI (55–
69), whereas hyperEPO+ISSI was associated with a two- to three-fold increased risk in four of
twenty-five models, when newborns with each condition were compared to referent children
(Table F2 in S1 File).

Very low Psychomotor Development Index (PDI)(Fig. 3B)
In all twenty-five models, newborns with hyperEPO alone (yellow) were at more than twice the
risk of PDI< 55 compared to referent children. In 18 models, hyperEPO+ISSI (red) was asso-
ciated with a two- to four-fold greater risk of a PDI< 55, whereas newborns with ISSI alone
were at a twofold greater risk of PDI< 55 in one model (SAA).

HyperEPO+ISSI was associated with a two- to three-fold greater risk of PDI between 55 and
69 in fifteen of the twenty-five models, when newborns with each condition were compared to
referent children, while there were essentially no associations with hyperEPO alone or ISSI
alone (Table G2 in S1 File).



the other 24 inflammation-related proteins in this study. However, it is possible that IL-6R
might protect against some forms of brain damage since the classic IL-6 signaling via its mem-
brane receptor IL-6R can have anti-inflammatory and tissue regenerating effects [31] and we
had previously found a lower likelihood of motor impairment [32] and quadriparesis [33] in
ELGANS with elevated IL-6R.

Our findings of increased risk of functional and structural indicators of brain damage asso-
ciated with hyperEPO do not preclude the possibility that EPO treatment might prevent ad-
verse neurodevelopmental outcomes, as has been suggested in some observational studies,[5,6]
but indicates a need for caution in the development of trials testing effects of exogenously ad-
ministered EPO, which is likely to result in considerably higher blood, and perhaps brain con-
centrations.[34] In addition, the relationship between endogenous EPO concentrations in
blood and brain remains unclear.

Synthesis
It is unclear how hyperEPO conveys information about or actually contributes to brain dam-
age. EPO may influence brain damage risk through a number of its pleiotropic effects, includ-
ing stimulation of neuro- and angio-genesis,[35–44] or anti-inflammatory actions.[45–49]
hyperEPO might also contribute to brain damage via inflammatory phenomena.[16] Another
possibility is that hyperEPO adds information about maturity/vulnerability beyond that pro-
vided by gestational age at delivery, thus reflecting immaturity either of the brain itself, or of
the systems that have the capacity to protect it. Alternatively, unmeasured factors, for instance
the severity of the insult prompting the initial inflammatory response, may be correlated with
EPO and lead to a non-causal association between hyperEPO and brain damage. Indeed, we
view each of these possibilities as plausible.

Unfortunately, we did not record hemoglobin or hematocrit levels. Consequently, we can-
not evaluate if the elevated EPO concentrations are a consequence of anemia. Most of the ba-
bies in our study received weekly transfusions. Using the receipt of a transfusion as an
indicator of the need for a transfusion, we did not find that those with the highest concentra-
tions of EPO were more likely than others to receive a transfusion during the first two postnatal
weeks (88% vs 86%). We feel reasonably comfortable that anemia is not the driving force be-
hind elevated EPO concentrations in the blood. More likely is the possibility that inflammatory
phenomena contribute appreciably to the occurrence of hyperEPO.[16]

Strengths and limitations
The strengths of our study are: i) the large number of infants providing power to perceive a
doubling or halving of risk, ii) enrollment of infants based on gestational age and not birth
weight [50], iii) the efforts to reduce observer variability; and iv) the high quality of the protein
data.[20–25]

Limitations deserving attention include the following. First, children who died with brain
damage prior to developmental assessments at age 2 years are not included; if they differ from
survivors, bias may have been introduced. Second, as with all observational studies, we are lim-
ited in our ability to infer causation from associations. Third, the proteins we measured proba-
bly represent only a fraction of those involved in the genesis of perinatal brain damage. Fourth,
in our desire to avoid the error of inappropriately drawing the inference that hyperEPO has no
effect, we did not adjust for multiple comparisons, possibly increasing the probability of a Type
I error. However, with 95% confidence intervals, only 30 of the reported 600 odds ratios (i.e.,
5%) are expected to be statistically significant by chance alone. We found that 144 ORs
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characterized statistically significant associations—about five times more than expected. Thus,
our findings are highly unlikely to reflect random phenomena.

Conclusion
hyperEPO in very preterm newborns is associated with elevated risks of functional and struc-
tural indicators of brain damage. The pattern of risks differs, however, when hyperEPO is con-
sidered in the absence and, especially, the presence of ISSI. We cannot identify to what extent
the hyperEPO reflects inflammation, immaturity of neuroprotective systems, or immaturity/
vulnerability of the brain, or other reasons for its association with brain-related outcomes.

Supporting Information
S1 File. Odds ratios (and 95% confidence intervals) of perinatal brain damage indicators
calculated with logistic regression models as described in Figs. 1–5. The three risk groups:
ISSI only: (an inflammation-related protein concentration in the highest quartile on two days);
hyperEPO only (an EPO concentration in the highest quartile on day 14); and ISSI+hyperEPO
are each compared to the referent group that consists of newborns who had neither ISSI nor
hyperEPO. Risks of cerebral palsy and MDI/PDI subclassificaitons were modeled using multi-
nomial logistic regression. All models are adjusted for gestational age.
(DOC)
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