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Abstract: One dimensional exponential families on finite sample spaces are studied using
the geometry of the simplex ∆◦n−1 and that of a transformation Vn−1 of its interior. This
transformation is the natural parameter space associated with the family of multinomial
distributions. The space Vn−1 is partitioned into cones that are used to find one dimensional
families with desirable properties for modeling and inference. These properties include the
availability of uniformly most powerful tests and estimators that exhibit optimal properties
in terms of variability and unbiasedness.
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1. Introduction

The motivation for the constructions in this paper begins with a sample from a one dimensional
space that is discrete. We allow for a continuous sample space but assume that this has been suitably
discretized into n bins. The simplest underlying structure for the probability assigned to these bins is
given by the multinomial distribution. The collection of all multinomial distributions can be identified
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with the n − 1 simplex ∆n−1. We use the geometry of the simplex along with a transformation of its
interior ∆◦n−1 to search for one dimensional subspaces that have good properties for modeling and for
inference. In particular, we want families that can be parameterized by the mean, have only unimodal
distributions, have desirable test characteristics (such as providing uniformly most powerful unbiased
tests) and estimation properties (such as unbiasedness and small variability).

The boundary of the (n − 1) dimensional simplex ∆n−1 can be written as the union of simplexes of
dimension (n−2). This process can be repeated on the simplexes of lower dimension until the boundary
consists of the vertices of the original simplex. This construction has statistical relevance to the possible
supports for the probability distributions considered on the n bins. We obtain a dual decomposition for
a transformation Vn−1 (defined in Equation (5) in Section 5) of ∆◦n−1; it is dual in that the result can
be obtained by replacing simplexes with cones. The statistical relevance of the conical decomposition
is to the possible modes for all the distributions on the n bins. Since Vn−1 is the natural parameter
space for the distributions in ∆◦n−1, one dimensional exponential families are lines in Vn−1 and these
can be related to the cones that partition Vn−1. One result is that the limiting distribution for any one
dimensional exponential family in ∆◦n−1 is the uniform distribution whose support is determined by the
cone that contains the limiting values of the line corresponding to the exponential family.

While one parameter exponential families can be defined quite generally by choosing a sufficient
statistic, it can be useful to start with the sufficient statistics from well-known families such as the
binomial, Poisson, negative binomial, normal, inverse Gaussian, and Gamma distribution. These
exponential families have good modeling and inferential properties that we try to maintain by limiting
the extent to which the sufficient statistic is modified. These restrictions lead to considering vectors in
Vn−1 that lie in a cone. Examples of how to construct these cones are given.

2. Motivating Examples

One dimensional exponential families such as the binomial or Poisson are the workhorse of parametric
inference because of their excellent statistical properties. However, being one dimensional means they
do not always fit data very well so an extension to a two (or higher) dimensional exponential family
can be pursued in order to preserve the nice inferential structure. An issue with such extension is that,
for each extra natural parameter added, we need to choose a new sufficient statistic and this choice
can substantially change the shape of the corresponding density functions. For example densities can
pass from being unimodal to have multiple modes for some parameter values. To see this, consider the
following examples.

Example 1. Altham [1] considered the so-called multiplicative generalization of the binomial
distribution with corresponding density

f(x; p, φ) =

(
n

x

)
px(1− p)n−xφx(x−n)/C(p, φ) (1)

where C is the normalizing constant and where clearly the binomial is recovered when φ = 1.
By reparametrizing using θ1 = log(p/(1 − p)) and θ2 = log(φ) this density can be expressed in

exponential form as
f(x; θ1, θ2) = h(x) exp(θ1 x+ θ2 T (x)−K(θ1, θ2)) (2)
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where T (x) = x(x − n) is the added sufficient statistic and h(x) =
(
n
x

)
where dependence on n has

been ignored. Note that the same family is obtained if T (x) = x2 is added as a sufficient statistic instead
of x(x− n).

If n = 127 and (θ1, θ2) = (−0.0122, 0.018) then density (2) is bimodal as shown in the left panel of
Figure 1. The mean µ of this distribution is 50. Also plotted is the corresponding binomial density with
the same mean or equivalently with θ1 = log(50/(127− 50)) = −0.4318 and θ2 = 0.

Figure 1. Binomial density (thick in both panels). Multiplicative binomial density (left panel
and thin) and double binomial density (right panel and thin). All densities have the same
mean µ = 50 and n = 127. Variance of the multiplicative and double binomial densities
is equal.
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As explained by Lovison [2], this distribution has the feature of being under- or over-dispersed with
respect to the binomial depending on θ2 being negative or positive, respectively. Furthermore, using
the mixed parametrization (µ, θ2) (see [3] for details) it is easy to see that this distribution can be
parametrized so that one parameter controls dispersion independently of the mean. In fact, for a fixed
mean µ, as θ2 → −∞ f(x; θ1, θ2) tends to a two point distribution (with support points at the extremes
x = 0 and x = n) or to a degenerate distribution on x = µ when θ2 →∞.

Example 2. Double exponential families [4] are two parameter exponential families that extend
standard unidimensional exponential families such as the binomial and the Poisson. Similar to the
multiplicative binomial in Example 1, the extra parameter involved in double exponential families
controls the variance independently of the mean. The density for the so-called double binomial family
can be written in the form (2) with

T (x) = x log
(x
n

)
+ (n− x) log

(
1− x

n

)
h(x) =

(
n
x

)
and with the particular restriction that θ2 < 1 (see [4] for details). The range θ2 < 0

generates underdispersion and θ2 ∈ [0, 1) generates overdispersion with respect to the binomial. As
shown on the right panel of Figure 1, the double binomial density can also be multimodal where the
double binomial density shown has the same mean and variance as the multiplicative binomial shown in
the left panel.
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These examples show that while extending exponential families can lead to useful modeling properties
such as overdispersion, the extension can also result in distributions that are not suitable for modeling.
We are interested in the relationship between geometric properties of one dimensional families and the
modeling properties of their distributions.

3. Sample Space and Distribution-valued Random Variables

We consider first the general case where the sample space for a single observation X1 consists of
n bins

Sn = {B1, B2, . . . , Bn−1, Bn} .

We consider the space of all probability distributions P on this sample space Sn. Each probability
distribution in P is defined by the n-tuple p whose ith component is

pi = Pr(Bi)

so that P can be identified with the n− 1 simplex

∆n−1 = {p ∈ Rn : pi ≥ 0 ∀i, 1′p = 1}

where 1 in 1′p is the vector 1 ∈ Rn each of whose components is 1. We will slightly abuse the notation
by using p to name a point in ∆n−1, and hence in Rn, as well as the corresponding distribution in P .

The sample space for a random sample of size N from a distribution p0 ∈ ∆n−1 is

XN
n = {x : x is an n vector of nonnegative integers that sum to N} .

There is simple relationship between XN
n and the simplex that we obtain by dividing each component

of x by N . Although the sample space XN
n can be viewed as formed by compositional data, we will

follow a different approach to handle this kind of data compared with the classical approach described
by Aitchison [5] because the data we consider have additional structure.

In Figure 2 the sample space for the sample of size N = 10 is displayed using open circles. The
vertices correspond to the case where all 10 values fall in a single bin. The other points correspond to the
less extreme cases. Let p0 be any point in ∆n−1. By mapping the multinomial random variable of counts
X to ∆n−1, we obtain the random distribution P̂ = X/N whose values are multinomial distributions
each having number of cases N and probability vector X/N . Identifying XN

n -valued random variables
with distribution-valued random variables provides a natural means for comparing data with probability
models using the Kullback–Leibler (KL) divergence.

We can compare distributions in ∆n−1 using the KL divergence D : P × P 7→ R

D(p1, p2) =
∑

p1 log (p1/p2) = H(p1, p2)−H(p1)

where H(p1, p2) = −
∑
p1 log(p2) and H(p1) = H(p1, p1) is the entropy of p1. Note that the arguments

to D and H are distributions while the logarithm and ratios are defined on points in Rn. Following Wu
and Vos [6], the variance of the random distribution P̂ is defined to be

Varp0(P̂ ) = min
p∈∆n−1

Ep0D(P̂ , p)
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and its mean is defined to be
Ep0(P̂ ) = arg min

p∈∆n−1

Ep0D(P̂ , p).

Note that the expectation on the right hand side of the equations above are for real-valued random
variables while the expectation on the left hand side of the second equation is for a distribution-valued
random variable.

Figure 2. Simplex for n = 3 bins and sample space for N = 10 observations.
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It is not difficult to show that Ep0P̂ = p0 so that P̂ can be considered an unbiased estimator for
p0. Details are in [6], which also shows that the KL risk can be decomposed into bias-squared and
variance terms:

Ep0D(P̂ , q) = D(p0, q) + Varp0(P̂ ).

The distributional variance is related to the entropy

Varp0(P̂ ) = Ep0D(P̂ , p0) = H(p0)− Ep0H(P̂ ).

Note that for N = 1, H(P̂ ) = 0 so that for a single observation the random distribution P̂ taking values
on the vertices of ∆n−1 has variance equal to the entropy of p0.

For inference, p0 is unknown but we specify a subspace M ⊂ ∆n−1 that contains p0, or at least has
distributions that are not too different from p0. Estimates can be obtained by choosing a parameterization
for M , say θ, and then considering real-valued functions θ̂ and evaluating these in terms of bias and
variance. Bias and variance are useful descriptions when θ describes a feature of the distribution that is
of inherent interest. However, if θ is simply a parameterization, or if there are other features that are also
of interest, then these quantities are less useful. For inference regarding the distribution p0 we can use
a distribution-valued estimator P̂M where the subscript indicates that the estimator is defined to account
for the fact that p0 ∈M .

We will not pursue the details of distribution-valued estimators here; we mention these only because
all the subspaces we consider will be exponential families and in this case the maximum likelihood
estimator has important properties in terms of distribution variance and distribution bias: when M
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is an exponential family, the maximum likelihood estimator is distribution unbiased, and it uniquely
minimizes the distribution variance among the class of all distribution unbiased estimators. Furthermore,
when p0 6∈ M then the maximum likelihood estimator is the unique unbiased minimum distribution
variance estimator of the distribution in M that is closest (in terms of KL) to p0. Extensions of one
dimensional exponential families that do not result in exponential families will not enjoy these properties
of maximum likelihood estimation. Details of these results that hold for sample spaces more general than
Sn are in [7].

4. Simplices ∆s

One dimensional exponential families on Sn are curves in ∆n−1 whose properties will depend on their
location within various subspaces of ∆n−1. An important collection of subspaces will be indexed by the
subsets of Sn. For notational convenience we take Bi to the integer i. Using integers is suggestive of an
ordering and a scale structure but at this point these are only being used to indicate distinct bins.

For each s ⊂ Sn,

∆s =
{
p ∈ Rn : pi ≥ 0 ∀i ∈ s, pi = 0 ∀i ∈ sc, 1′p = 1

}
where sc = {i ∈ Sn : i 6∈ s}. Note that ∆Sn = ∆n−1. The interior of ∆s is

∆◦s =
{
p ∈ ∆s : pi > 0 ∀i ∈ s

}
.

As probability distributions in P , ∆◦s corresponds to the set of all distributions having support s. There is
a simple and obvious relationship between the dimension of ∆s, |∆s|, and the cardinality of s, |s|, which
holds for all nonempty s ⊂ Sn

|∆s|+ 1 = |s|.

The boundary of ∆s is defined as

∂∆s = {p ∈ ∆s : p 6∈ ∆◦s}

so that
∆s = ∆◦s ] ∂∆s

where ] indicates the sets in the union are disjoint. The boundary ∂∆s can be written as the union of all
simplices of dimension one less than that ∆s

∂∆s =
⋃

s′:s′⊂s, |s′|=|s|−1

∆s′ (3)

This boundary property for ∆s holds because the simplex Sn consists of all possible subsets. Each
nonempty s ∈ Sn specifies one of the possible supports for distribution P ∈ Pn

∆s =
⊎

s′:s′⊂s

∆◦s′ (4)

where we set ∆∅ = ∅.
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5. Cones Λs

The set of all nonempty subsets of the sample space provides a partition of ∆n−1 based on the support
of the distributions in P . The elements in the partition are simplices whose dimension is one less than
the cardinality of the indexing set. In most cases we will consider models having support Sn, that is,
models corresponding to ∆◦n−1. If we use subsets s to define the mode rather than support, we obtain a
partition of P◦, the distributions in P having support Sn. This partition can be expressed using convex
cones in an n − 1 dimensional plane Vn−1. The dimension of the cones are n minus the cardinality of
the indexing set and the relationship between interiors of cones and their boundaries is analogous to that
for simplices expressed in Equations (3) and (4).

Let
Vn−1 = {v ∈ Rn : 1′v = 0} (5)

be the subspace of Rn of dimension n−1 of all vectors that sum to zero. For each nonempty s ∈ Sn define

Λs =
{
v ∈ Vn−1 : vi ≥ vj ∀i ∈ s, ∀j ∈ Sn

}
.

It is easily checked that Λs is a convex cone

v1, v2 ∈ Λs =⇒ a1v1 + a2v2 ∈ Λs ∀a1, a2 ∈ [0,∞) .

The dimension of Λs is |Λs| = n − |s| since each point in j ∈ sc provides a basis vector bj whose ith

component is 1 if i ∈ s or i = j and is zero otherwise and |sc| = n− |s|. The interior of Λs is

Λ◦s =
{
v ∈ Λs : vi > vj ∀i ∈ s, ∀j ∈ sc

}
,

the boundary is
∂Λs = {v ∈ Λs : v 6∈ Λ◦s} ,

so that
Λs = Λ◦s ] ∂Λs

by definition. Note ΛSn = Λ◦Sn
= 0 ∈ Vn−1 ⊂ Rn where the first equality holds because the conditions

in the definition of Λ◦s hold vacuously since i ∈ Scn = ∅ adds no restriction. Likewise, we can extend the
definition of Λs to include s = ∅ and since i ∈ ∅ adds no restriction

Λ∅ = Λ◦∅ = Vn−1.

Note that Λ∅ depends on the cardinality of the set Sn. Since we are considering n fixed, we will not show
this dependence in the notation.

Corresponding to Equation (3) we have for all nonempty s that the boundary of the cone Λs is the
union of all cones having dimension one less than the dimension of Λs

∂Λs =
⋃

s′:s⊂s′, |s′|=|s|+1

Λs′ . (6)

Corresponding to Equation (4) we have

Λs =
⊎

s′:s⊂s′
Λ◦s′ (7)
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The relationship between the simplices ∆ and cones Λ is more easily seen if we suppress the sets that
index these objects. Let ∆ and ∆∗ be any two simplices and let Λ and Λ∗ be any two convex cones. We
only consider cones and simplices that correspond to a nonempty subset of Sn. Then the Equations (6)
and (7) for the convex cones are obtained by simply replacing ∆ in Equations (3) and (4) with Λ:

∂∆ =
⋃

∆∗:|∆∗|=|∆|−1

∆∗, ∂Λ =
⋃

Λ∗:|Λ∗|=|Λ|−1

Λ∗ (8)

∆ =
⊎

∆∗⊂∆

∆◦∗, Λ =
⊎

Λ∗⊂Λ

Λ◦∗ (9)

Equation (9) also holds for the empty set since ∆∅ = ∅ and Λ∅ = Vn−1.

6. Vn−1 and P◦

There is a natural bijection φ between Vn−1 and ∆◦n−1 defined by

φ(p) = log(p)−m(p)1

where log(p) is the vector with ith component log(pi) and m(p) is defined so that 1′φ(p) = 0. The
inverse is

ϕ(v) = k−1(v) exp(v)

where exp(v) is the vector with ith component exp(vi) and k(v) is defined so that 1′ exp(v) = 1.
Each cone Λ◦s in the partition

Vn−1 =
⊎

Λ◦s

corresponds to one of the 2n − 1 possible modes for any distribution having support Sn since vi > vj if
and only if ϕi(v) > ϕj(v).

7. Vn−1 and Exponential Families in P◦

We define a line by a pair of vectors v0, v1 ∈ Vn−1 with v1 6= 0

` = `(t) = {v ∈ Vn−1 : v = v0 + tv1, t ∈ R}

Note that v0 and v1 are not unique. Applying the inverse transformation ϕ to points in ` gives
probability densities

ϕ(v0 + tv1) =
exp(v0 + tv1)

1′ exp(v0 + tv1)
(10)

which have the exponential family form with t playing the role of the natural parameter. Therefore, the
space Vn−1 is easily recognized as the natural parameter space for the distributions ∆◦n−1 so that each
line ` in Vn−1 corresponds to a one dimensional exponential family.

For each line `(t) there is a value tmax such that {`(t) : t ≥ tmax} is contained in one of the cones Λ◦s
where s is the subset of Sn with the property that vi1 ≥ vj1 for all i ∈ s for vectors v1 ∈ Λ◦x. For each
line `(t) there is a value tmin such that {`(t) : t ≤ tmin} is contained in one of the cones Λ◦s′ where s′ is
the subset of Sn with the property that vi1 ≤ vj1 for all i ∈ s′ for vectors v1 ∈ Λ◦x. The cones Λ◦s and Λ◦s′
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are disjoint and will be called the extremal cones for `. There is at least one other cone Λ◦s′′ such that
` ∩ Λ◦s′′ 6= ∅.

Any one dimensional exponential family `(t) can be described by an ordered sequence of
disjoint cones (

Λ◦s1 ,Λ
◦
s2
, . . . ,Λ◦sk

)
where k = k(`) will depend on the family. These are simply the cones that are traversed by `(t) between
its extremal cones. We take Λ◦sk to be the cone that contains `(t) for all sufficiently large t. Equation (6)
for cones means that

∂Λsi ⊂ Λsj for j = i+ 1 or j = i− 1

The ordered sequence of cones provides an ordered sequence of unique subsets of Sn

(s1, s2, . . . , sk)

that we call the modal profile for ` as these are the modes realized by the exponential family `(t) between
its extremal cones that have modes s1 and sk.

Each point on a line `(t) in Vn−1 corresponds to a distribution having support Sn. As t goes to −∞
(+∞) ϕ(`(t)) goes to a distribution having support s1 (sk). In fact, these are the uniform distribution
on these supports. For every s ⊂ Sn other than ∅ and Sn, the uniform distribution on s is a limiting
distribution for some one dimensional exponential family in P◦.

Figure 3 shows Vn−1 for the two dimensional simplex shown in Figure 2. The three rays are the one
dimensional cones and the spaces between these cones are the two dimensional cones. The origin is
the zero dimensional cone. The sample values on the boundary of ∆2 are not in V2. Note that the one
dimensional cones are line segments in ∆2.

Figure 3. V2 for n = 3 bins and sample space forN = 10 observations that are in the interior
of ∆2.
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8. Ordered Bins and the Monotone Likelihood Ratio Property

Let the bins be ordered and assign the first n integers to the bins to reflect this ordering. We seek to
define exponential families that have a modal profile of the form

({1} , {1, 2} , {2} , {2, 3} , . . . , {n− 1, n} , {n}) (11)

or a contiguous sub-collection of this profile. Extensions to three or more contiguous modes are clearly
possible but not discussed here.

From the definition of modal profile, it follows that a family with modal profile (11) will have the
property that the mode is a non-decreasing function of t. In addition to this property for the mode,
we want the likelihood ratio for any two members of the family to provide the same ordering structure
as that of the bins. A family that satisfies this condition is said to have the monotone likelihood ratio
property with respect to x where x takes the values of the bin labels: 1, 2, . . . , n. Let pθ1 and pθ2 be
two distributions in a one dimensional family parameterized by θ and let pθ2/pθ1 be the n-vector with
components pjθ2/p

j
θ1

for 1 ≤ j ≤ n. This family has monotone likelihood ratio if for all θ1 < θ2 and
j < j′

pjθ2
pjθ1

<
pj
′

θ2

pj
′

θ1

.

A family with this property avoids the problem situation where in general the data in the higher numbered
bins are evidence for pθ2 but in going from a particular bin, say j0 to j0 + 1, the likelihood ratio
actually decreases. Exponential families such as the binomial and Poisson have this monotone likelihood
ratio property for the bin labels. The monotone likelihood ratio property can be extended to allow for
likelihood ratios that are monotone in some function of x. An important advantage of families with the
monotone likelihood ratio property is the existence of uniformly most powerful tests.

To ensure that our exponential families have the monotone likelihood ratio property we consider
vectors in the cone Λ↑ ⊂ Λn

Λ↑ =
{
v : vi < vj, i < j

}
.

From Equation (10), the exponential family indexed by θ is k(θ) exp(v0 + θv1)

pjθ2
pjθ1

=
k(θ2)

k(θ1)
exp

{
(θ2 − θ1) vj1

}
so that the likelihood ratio is monotone in j if v1 ∈ Λ↑.

9. Selecting Vectors in Λ↑

In order to choose n-dimensional vectors v ∈ Λ↑ we will consider a set of infinite dimensional vectors
f . Let f̄ : R 7→ R and consider f = f̄ |Z where Z is the set of integers. The function f is represented by
a doubly infinite sequence

f = . . . , f j−1, f j, f j+1, . . .

and we denote the set of all such functions as

F =
{
f : f j ∈ R ∀ j ∈ Z

}
.
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While it is not necessary to consider functions f̄ to define f , these functions are useful to describe
properties of f , which can be thought of as a discretized version of f̄ .

Define the gradient of f as the function∇ whose jth component is

(∇f)j = f j − f j−1

The simplest functions in F are the constant functions

F0 =
{
f ∈ F : f j = f j

′ ∀j, j′ ∈ Z
}
.

The next simplest functions are those whose gradient is constant. We call these first order functions and
denote the set of these as

F1 = {f ∈ F : ∇f ∈ F0} .

Functions in F1 are such that changes from one bin to the next bin is the same for all bins. That is, these
functions describe constant change. We can write the functions in F1 explicitly as

F1 =
{
f ∈ F : f j = aj + b, a, b ∈ R

}
which shows that each f ∈ F1 is the discretized version of a function f̄ whose graph is a line in R× R.
We obtain a vector v from f by defining the jth component of v as

vj = f j −
n∑
1

f i

. From this definition we see that the intercept b of f does not affect v and that the slope is a scaling
factor so that the restriction to first order functions results in a single direction in Λ↑. This direction
defines the one dimensional cone defined by the vector with vj = j − (n+ 1)/2.

Additional directions can be obtained from the second order functions

F2 = {f ∈ F : ∇f ∈ F1} .

If f ∈ F2 then (∇2f)j = a for some a ∈ R and for all j ∈ Z. Using the fact that

(∇2f)j = (∇(∇f))j = (f j − f j−1)− (f j−1 − f j−2)

= f j + f j−2 − 2f j−1

the second order functions can be written explicitly as

F2 =
{
f ∈ F : f j =

a

2
j(j + 1) + bj + c, a, b, c ∈ R

}
.

In order for the vector v obtained from f ∈ F2 to be in Λ↑ we need (∇f)j ≥ 0 for j = 1, 2, . . . , n.
With f j = (a/2)j(j + 1) + bj + c we have (∇f)j = aj + b so that for a > 0 we require b ≥ −a and for
a < 0 we require b ≥ −an. Since we are concerned with the direction rather than the magnitude we can
take a = ±1 and the value of c is chosen so the sum of the components is zero.
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The second order vectors in Λ↑ consists of the cone defined by the vectors v20 and v21 having
components defined by

(n− 1)(v20)j =
1

2
j(j + 1)− j − c20

(n− 1)(v21)j = −1

2
j(j + 1) + nj − c21

Notice that this cone contains v1 since v1 is proportional to v20 + v21. Many discrete one dimensional
exponential families (e.g., binomial, negative binomial, and Poisson) use the vector v1. Furthermore,
many continuous one dimensional exponential families use the continuous function f used to define v1:
normal with σ known, and the gamma and inverse Gaussian distributions with known shape parameter
(the shape parameter is the non-scale parameter). The cone defined by v20 and v21 allows us to perturb
the v1 direction to obtain related exponential families that we would expect to have similar properties.
Figure 4 shows v20 and v21 as well as v1 = 0.5v20 + 0.5v21.

Other vectors can be used to define cones around v1. Looking at common exponential families we see
that log(x) and x−1 are sufficient statistics so that these suggest taking f̄(x) = log(x) or f̄(x) = 1/x.
These can be further generalized to f̄(x;λ), which can be the power family or some other family of
transformations. The vectors vf0 and vf1 are defined using the discretized f with the constraints that
vf0, vf1 ∈ Λ↑ and 0.5vf0 + 0.5vf1 = v1.

An exponential family with sufficient statistic x can be modified by choosing a function f̄(x) and
0 ≤ α ≤ 1 where α = 0.5 corresponds to the original exponential family and other values perturb this
direction. We denote this vector as vfα so that v0 + tvfα is the natural parameter of the modified family.

Figure 4 shows the components of the vectors v20 and v21.

Figure 4. Components of the vectors v20 and v21 for n = 128 bins.
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Since v0 is common to each exponential family with natural parameter `(t) = v0 +tvfα, the monotone
likelihood ratio property will hold even if v0 6∈ Λ↑. Initial choices for v0 are suggested by the Poisson,
binomial, and negative binomial distributions:
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(vPoisson)j = − log Γ(j) + c /∈ Λ↑

(vbinomial)
j = log Γ(n)− log Γ(j)− log Γ(n− j) + c /∈ Λ↑

(vneg.bin.)
j = log Γ(j + r)− log Γ(j) + c ∈ Λ↑

where c is a constant chosen so that the components sum to 1, n is the number of bins, and r is a positive
real constant.
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