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Abstract. Microbiomes can aid in the protection of hosts from infection and disease, but the mechanisms
underpinning these functions in complex environmental systems remain unresolved. Soils contain micro-
biomes that influence plant performance, including their susceptibility to disease. For example, some soil
microorganisms produce antimicrobial compounds that suppress the growth of plant pathogens, which can
provide benefits for sustainable agricultural management. Evidence shows that crop rotations increase soil
fertility and tend to promote microbial diversity, and it has been hypothesized that crop rotations can
enhance disease suppressive capacity, either through the influence of plant diversity impacting soil bacterial
composition or through the increased abundance of disease suppressive microorganisms. In this study, we
used a long-term field experiment to test the effects of crop diversity through time (i.e., rotations) on soil
microbial diversity and disease suppressive capacity. We sampled soil from seven treatments along a crop
diversity gradient (from monoculture to five crop species rotation) and a spring fallow (non-crop) treatment
to examine crop diversity influence on soil microbiomes including bacteria that are capable of producing
antifungal compounds. Crop diversity significantly influenced bacterial community composition, where the
most diverse cropping systems with cover crops and fallow differed from bacterial communities in the 1–3
crop species diversity treatments. While soil bacterial diversity was about 4% lower in the most diverse crop
rotation (corn–soybean–wheat + 2 cover crops) compared to monoculture corn, crop diversity increased dis-
ease suppressive functional group prnD gene abundance in the more diverse rotation by about 9% compared
to monocultures. In addition, disease suppressive potential was significantly diminished in the (non-crop)
fallow treatment compared to the most diverse crop rotation treatments. The composition of the microbial
community could be more important than diversity to disease suppressive function in our study. Identifying
patterns in microbial diversity and ecosystem function relationships can provide insight into microbiome
management, which will require manipulating soil nutrients and resources mediated through plant diversity.
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INTRODUCTION

Microbiomes are collections of microorganisms
that live in close association with plants and

animals. Certain microorganisms can confer ben-
efits because they contain genes that aid in nutri-
ent acquisition (Berendsen et al. 2012, Chaparro
et al. 2012), while other microorganisms can
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protect hosts by preventing colonization by
pathogens (Latz et al. 2012, Schlatter et al. 2017).
For example, soils harbor a diverse collection of
microorganisms that affect the evolution and
ecology of plant populations (Lau and Lennon
2012, van der Putten et al. 2013, 2016). Many soil
microorganisms establish intimate associations
with plant roots, which can result in enhanced
plant growth through many mechanisms (Men-
des et al. 2013, 2015). One important mechanism
through which soil microorganisms increase
plant performance and fitness is via disease sup-
pression. In this case, a healthy and robust soil
microbiome can serve as a first line of defense for
plants against soil-borne pathogens within the
resident soil microbial community either directly
through antibiosis or parasitism (Mendes et al.
2013, van der Putten et al. 2016), or indirectly
through enhancing plant immune responses
(Mendes et al. 2013).

Plant–soil feedback theory provides a frame-
work for assessing the mechanisms and out-
comes of microbiome dynamics. More
specifically, there are many ways soil micro-
biomes can be managed to influence soil patho-
gens. One way is through crop selection.
Specifically, individual crops can affect pathogen
populations by altering chemical, physical, or
biological properties in their rhizosphere (Raaij-
makers et al. 2009, Berendsen et al. 2012). Fur-
ther, recent attention is being paid to ecological
intensification of farms (Tilman et al. 2011, Bom-
marco et al. 2013, Tittonell 2014, Garratt et al.
2018), and one of the promising specific manage-
ment practices under this strategy is to diversify
farms by rotating crops (Smukler et al. 2010, Lin
2011).

The colloquial use of the term “rotation effect”
has a long history of agronomic research (Karlen
et al. 1994), and its origins are from the over-
whelming evidence that rotating crops increases
crop yield (Liebman and Dyck 1993, Karlen et al.
1994). At any given time, the species richness on
a farm using crop rotations is often one (i.e.,
monoculture), but there is a diverse suite of bio-
chemical inputs from crops planted at different
times. There is mounting evidence that this form
of temporal biodiversity may provide some of
the same beneficial ecosystem functions as tradi-
tional spatial biodiversity (Zak et al. 2003), such
as carbon sequestration, pest control, and

nutrient cycling (Ball et al. 2005, McDaniel et al.
2014b, Tiemann et al. 2015, Venter et al. 2016).
Despite being frequently observed, the underly-
ing mechanism(s) driving the increased yield in
more diverse crop rotations (i.e., rotation effect)
are largely unknown. One possible mechanism is
that increased crop diversity decreases soil
pathogens—however, the evidence is mixed.
While declines in pathogen abundances occur
when non-host crops are in rotation (Bennett
et al. 2012), alternative hypotheses associated
with increased abundance of biocontrol produc-
ing Pseudomonas spp. conferring disease suppres-
sion of soil-borne pathogens of wheat (i.e.,
take-all disease) are also observed in monocul-
ture wheat fields (Kwak and Weller 2013). Thus,
the benefits of crop rotation are, therefore, mixed;
and the variation may be related to crop
diversity promoting plant-pathogen-suppressing
microorganisms.
Often, plant pathogen suppression (PPS) is

associated with soil microbial communities that
have the capacity to produce antimicrobial com-
pounds. Specifically, antibiosis has been linked to
disease suppressive capacity, whereby the abun-
dance of antagonistic bacteria was associated
with reductions in fungal pathogens through
competitive inhibition (Weller et al. 2002, Haas
and D�efago 2005). For example, bacterial produc-
tion of secondary metabolites 2,4-diacetylphloro-
glucinol (DAPG) and pyrrolnitrin (PRN) are two
potent toxins known to suppress fungal patho-
gens in soils (Garbeva et al. 2004a, b, Haas and
D�efago 2005). However, the extent to which abi-
otic and biotic factors influence the abundance of
such microbes remains unclear. Abiotic factors
(e.g., salt, moisture, nutrients) can limit the
strength and alter the direction of plant–soil feed-
backs (Bever et al. 1997, Mills and Bever 1998,
Packer and Clay 2000, Kulmatiski et al. 2008,
Mavrodi et al. 2012). It has been argued that
changes in soil physicochemical properties may
be important or even required for PPS and might
influence species interactions. In addition, above-
ground features such as plant diversity could
influence PPS. Specifically, plant diversity could
increase the total soil bacterial diversity giving
way to the sampling effect where species-rich
ecosystems contain species that function at high
levels (Tilman et al. 2002, Naeem and Wright
2003). Plant diversity could increase the
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probability of harboring PPS in the soil microbial
community. Alternatively, plant diversity could
modify soil microbial communities without
influencing total diversity but rather through
selecting for microorganisms that perform cer-
tain functions such as disease suppression. Some
evidence suggests that PPS microorganisms are
influenced by competition for iron, antibiosis,
lytic enzymes, and induction of systemic resis-
tance in the host plant (Doornbos et al. 2012).
Therefore, the abundance of PPS microorganisms
could be a reflection of the total diversity of the
soil microbial community, but this hypothesis
has not been rigorously evaluated.

Given the unknown effect of crop diversity on
PPS, we used a long-term (12 yr) crop rotational
diversity study at the W.K. Kellogg Biological
Station Long-Term Ecological Research (KBS
LTER) site to examine the effect of crop diversity
on soil bacterial biodiversity and PPS potential.
Specifically, our study addresses the following
questions: (1) What is the relationship between
crop diversity and soil microbial community
composition and PPS potential? (2) What is the
role of changes in soil physicochemical proper-
ties on the crop diversity effect on soil microbial
community composition and PPS popula-
tions? We hypothesized that increased crop
diversity would increase the diversity of the soil
microbial community, and also increase the
PPS potential in the soil through supporting a
higher proportion of disease suppressive micro-
bial taxa.

METHODS

Site description and experimental design
We collected soils from the Biodiversity Gradi-

ent Experiment (http://lter.kbs.msu.edu/researc
h/long-term-experiments/biodiversity-gradient/)
at the KBS LTER site in southwest, Michigan,
USA. Mean annual temperature is about 10°C,
and mean annual precipitation is about
1000 mm/yr (Robertson and Hamilton 2015). The
soils are Kalamazoo (fine-loamy) and Oshtemo
(coarse-loamy) mixed, mesic, Typic Hapludalfs
formed under glacial outwash (Crum and Collins
1995). The crop rotation treatments at the Bio-
diversity Gradient Experiment included the fol-
lowing: monoculture corn (Zea mays, mC), corn
with red clover (Trifolium pretense L.), cover crop

(C1cov), corn–soybean (Glycine max, CS), corn–
soybean–wheat (Triticum aestivum, CSW), CSW
with red clover (CSW1cov), CSW with red clover
and cereal rye (Secale cereal L., CSW2cov), and a
spring fallow treatment that was just plowed
every spring but contains 7–10 naturally occur-
ring plant species in the region (Table 1). This
spring fallow treatment is considered the bench-
mark for plant diversity in the region, and under
same tillage. Plantings of cover crop were depen-
dent on the main crop in rotation (Smith and
Gross 2006, 2007). The experiment was con-
ducted in a randomized complete block design,
which included four blocks or replicates of each
treatment. All plots received the same tillage at
15 cm depth, and no fertilizer or pesticides (i.e.,
herbicides, insecticides) were applied to these
plots. Because of the lack of nutrient or weed
management, there was no significant bare
ground during crop growth; and the presence of
weeds was highest in the monoculture (mC)
compared to the other crop rotation treatments.

Soil sampling
We sampled soil from six crop diversity treat-

ments, but to eliminate any immediate crop
effect, all the treatments were sampled in the

Table 1. Crop rotation treatments at the Kellogg Bio-
logical Station Long-term Ecological Research
Biodiversity Gradient Experiment.

Crop rotation treatment description
Number of crop
(or plant) species

(1) Continuous monoculture corn (mC) 1
(2) Continuous monoculture

corn + one cover crop (C1cov)
2

(3) Two-crop rotation, corn–soybean (CS) 2
(4) Three-crop rotation, corn–

soybean–wheat (CSW)
3

(5) Three-crop rotation + one cover
crop, corn–soybean–wheat
+ red clover cover crop (CSW1cov)

4

(6) Three-crop rotation + two
cover crops, corn–soybean–
wheat + red clover and cereal rye
cover crops (CSW2cov)

5

(7) Spring Fallow/early successional
field (fallow, no cash crops)

7–10

Notes: Plant treatments were established in 2000. Treat-
ments were composed of monoculture, two-crop rotation,
three-crop rotation � cover crops, and fallow plots (early suc-
cessional), and soil was collected during the corn phase of the
rotation. Treatment abbreviations are in parentheses.
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corn phase and a spring fallow treatment
(Table 1) on 1 November 2012. During the time
of sampling, cover crops had been planted but
showed no growth yet. By sampling after the
crop harvest, we were able to get the integrated
representation of the soil bacterial community
rather than plant-specific influences during the
growing season. In each plot, we collected five
soil cores (5 cm diameter, 10 cm depth) and then
homogenized the cores in the field. A subsample
from each composite sample was sieved through
4 mm in the field, flash frozen in the field in
liquid nitrogen, and stored at �80°C prior to
molecular-based microbial analyses.

Soil physicochemical analyses
From the same soil samples that were flash fro-

zen for DNA extraction, soil chemical properties
(total carbon, total nitrogen, ammonium, nitrate,
pH, texture) were previously analyzed and
reported (McDaniel et al. 2014a, McDaniel and
Grandy 2016). Labile C was measured as per-
manganate oxidizable C according to (Culman
et al. 2012), and overall biological activity and
amount of potentially mineralizable carbon
(PMC) and nitrogen (PMN) were analyzed using
a 120-d aerobic incubation (McDaniel and
Grandy 2016).

Bacterial community sequencing
To examine the relationship between crop

diversity and soil microbial diversity, we used
16S rRNA targeted amplicon sequencing of the
soil bacterial community. We extracted DNA
using the MoBio Power Soil DNA Isolation Kit
(MO BIO Laboratories, Carlsbad, California,
USA). DNA concentration was adjusted to a
standard concentration of 20 ng/lL and used as
template. To characterize bacterial taxonomic
diversity, we used barcoded primers (515f/806r
primer set) developed by the Earth Microbiome
Project to target the V4–V5 region of the bacterial
16S subunit of the ribosomal RNA gene (16S
rRNA; Caporaso et al. 2012). For each sample,
PCR product combined from three 50-lL reac-
tions, concentration quantified, and PCR product
from each soil sample was combined in equimo-
lar concentrations for paired-end 250 9 250
sequencing using the Illumina MiSeq platform
according to details in Muscarella et al. (2014).
Briefly, we assembled the paired-end 16S rRNA

sequence reads using the Needleman algorithm
(Needleman and Wunsch 1970). All sequences
were subjected to systematic checks to reduce
sequencing and PCR errors. High-quality
sequences (i.e., >200 bp in length, quality score
of >25, exact match to barcode and primer, and
contained no ambiguous characters) were
retained. In addition, we identified and removed
chimeric sequences using the UCHIME algo-
rithm (Edgar et al. 2011). We aligned our
sequence data set with the bacterial SILVA-based
bacterial reference database (Yilmaz et al. 2014).
During data analysis, operational taxonomic
units (OTUs) were binned at 97% sequence iden-
tity and phylogenetic classifications of bacterial
sequences performed. Sequences were processed
using the software package mothur v.1.35.1
(Schloss et al. 2009, Kozich et al. 2013). We rar-
efied to 200,000 sequences prior to calculating
bacterial richness, evenness, and diversity met-
rics. To normalize sample-to-sample variation in
sequence depth, we took the relative abundance
of each OTU and divided by the total number of
OTUs for each soil bacterial community prior to
statistical analyses.

Composition and abundance of disease
suppression genes
To characterize the subset of the microbiome

associated with disease suppressive potential, we
targeted disease suppressive taxa as the subset of
soil microorganisms possessing genes that are
required for the production of antifungal com-
pounds DAPG (von Felten et al. 2011; see
Appendix S1: Fig. S1) and PRN (Garbeva et al.
2004b, Haas and D�efago 2005). Microbial defense
against fungal pathogens is known to affect both
corn and wheat. For example, Fusarium spp. pro-
duce mycotoxins and can cause yield losses in
wheat and maize (Luongo et al. 2005). Therefore,
we assessed the relative abundance of disease
suppressive functional genes by targeting the
prnD gene using quantitative PCR (qPCR; Gar-
beva et al. 2004b). The partial prnD gene abun-
dance was quantified using a SYBR green assay
with primers prnD-F (50-TGCACTTCGCGTTC
GAGAC-30) and prnD-R (50-GTTGCGCGTCGT
AGAAGTTCT-30; Garbeva et al. 2004b). For the
qPCR standard curve, the prnD gene was ampli-
fied from soil genomic DNA. The 25-lL PCR
reaction contained 19 GoTaq Colorless Master
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Mix (Promega, Madison, Wisconsin, USA),
0.4 lmol/L of each primer, and 5 lL of template
DNA. Cycling conditions included an initial
cycle 95°C for 10 min, and 30 cycles of 95°C for
15 s and 60°C for 1 min. PCR fragments were
cloned using the pGEM-T Easy Vector System
according to the manufacturer’s protocol (Pro-
mega). Plasmids were extracted using the QIA-
prep Spin Miniprep kit (Qiagen, Valencia,
California, USA), and cloned fragments were
verified by PCR and agarose gel electrophoresis.
Dilutions of plasmid DNA containing prnD gene
were used to generate standard curves in quanti-
ties ranging from 5.0 9 102 to 5.0 9 107 copies.
We quantified the prnD gene in 25 lL reaction
volumes containing about 20 ng DNA template,
19 TaqMan Environmental Master Mix 2.0
(Applied Biosystems, Valencia, California, USA),
19 SYBR green I, and 0.4 lmol/L of each primer.
Fragments were amplified with an initial denatu-
ration step at 95°C for 10 min, followed by 40
cycles of 95°C for 15 s, 60°C for 1 min. For each
sample, PCR products were run in triplicate. We
obtained standard curves based on serial dilu-
tions of mixed PCR product amplified from soil
samples. Reactions were analyzed on a BIO-RAD
CFX-96 Real-Time System (Bio-Rad, Hercules,
California, USA).

Statistical analyses
We examined microbiome differences among

crop rotation treatments by comparing total
bacterial community diversity and composition
as well as disease suppression markers. We
tested for differences in total bacterial diversity
(based on Shannon Diversity Index H0, bacterial
species richness, and Pielou’s Evenness Index
J0) and prnD gene abundance in response to
crop diversity treatment using ANOVA. We
checked that data met assumptions of analyses,
and we treated crop rotation treatment as a
fixed factor and block as a random effect. We
used Tukey’s honestly significant difference
(HSD) tests to identify between-group differ-
ences in bacterial diversity and prnD gene
abundance.

We ran all statistical analyses in the R environ-
ment (R v.3.4.3, R Core Development Team
2017). To visualize patterns of microbial commu-
nity composition, we used principal coordinates
analysis of the bacterial community composition

based on the Bray–Curtis dissimilarity coefficient
for each possible pair of samples. To test for dif-
ferences in total bacterial communities and a sub-
set of previously identified biocontrol bacterial
taxa (i.e., Pseudomonas spp. and Streptomyces
spp.) among crop rotation treatments, we used
non-parametric permutational multivariate anal-
ysis of variance (PERMANOVA) implemented
with the adonis function in the vegan package
(Oksanen et al. 2018). Permutational multivariate
analysis of variance was also used to assess the
contribution of soil factors to the variation in bac-
terial community composition. The R2 value
reported refers to the treatment sums of squares
divided by the total sums of squares for each soil
factor in the model. Because the adonis function
carries out sequential tests (similar to Type I
sums of squares; Oksanen et al. 2018), the effect
of the last soil factor or soil biological activity fac-
tor of the model was included in the final PER-
MANOVA model summary (Peralta et al. 2012).
We related bacterial community dissimilarity
(based on Bray–Curtis dissimilarity) to disease
suppression gene abundance using a distance-
based redundancy analysis (dbrda function in
the vegan package; Oksanen et al. 2018). We
used indicator species analysis to identify bacte-
rial taxa that were most representative of each
crop rotation treatment. We included bacterial
taxa with a relative abundance >0.05 when
summed across all plots. We performed the indi-
cator species analysis (Dufrêne and Legendre
1997) using the indval function in the labdsv
package (Roberts 2016). We also performed mul-
tiple linear regression (gene abundance ~ crop
number + total soil carbon + soil moisture + soil
ammonium + soil nitrate) to test the influence of
soil factors and crop diversity number on abun-
dance of disease suppression/biocontrol gene
prnD using the lm function.

RESULTS

Bacterial community composition and soil
function relationships
The crop diversity treatment significantly

influenced soil microbiomes represented by the
soil bacterial community composition (R2 = 0.37,
P < 0.001; Fig. 1; Appendix S1: Table S2). Bacte-
rial communities from the fallow plots and the
most diverse crop rotations (CSW, CSW1cov,
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CSW2cov) were more similar to each other than
the lower crop diversity treatments (mC, C1cov,
CS; Fig. 1).

Bacterial diversity, as measured using Shannon
Diversity Index (H0), was surprisingly greater
under lower crop diversity systems than higher
crop diversity systems, but highest in fallow
treatments the most diverse non-cropping sys-
tem (crop rotation: F6,20 = 10.16, P < 0.0001;
block: F1,20 = 0.20, P = 0.660; Fig. 2). Among, the
corn cropping systems, the shorter crop rotations
(mC, C1cov, CS, CSW) had the highest Shannon
Diversity Index compared to the most diverse
rotation of corn–soybean–wheat with two cover
crops (CSW2cov). In addition, bacterial species
richness and Pielou’s Evenness Index (J0) revealed
similar patterns across crop diversity treatments
(evenness: F6,18 = 2.36, P = 0.073; richness:
F6,18 = 2.61, P = 0.053; Fig. 2). Across all diver-
sity metrics, the longest crop rotation (CSW2cov)
showed the lowest richness and evenness values,
and fallow soils generally had the highest values
(Fig. 2).

Soil physicochemical properties and soil func-
tion were related to bacterial community compo-
sition to varying degrees. A summary of soil
attributes is presented in Appendix S1: Table S1
and elsewhere (McDaniel and Grandy 2016).
Bacterial community composition was best

Fig. 1. Ordination from principal coordinates analy-
sis depicting soil bacterial communities along a crop
diversity gradient. Symbols are colored according to
crop diversity treatment (mC, monoculture corn; C1cov,
corn/1 cover crop; CS, corn/soybean; CSW, corn/soy-
bean/wheat; CSW1cov, corn/soybean/wheat/1 cover
crop; CSW2cov, corn/soybean/wheat/2 cover crops;
fallow, spring fallow, tilled annually).
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Fig. 2. Boxplots representing total bacterial diversity
(Shannon Diversity Index Hʹ), richness, and evenness
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cant differences between crop diversity treatments at
P < 0.05 (Tukey’s honestly significant difference post-
hoc analysis).
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explained by soil texture, which varied across the
experiment site from 9% to 38% clay (R2 = 0.071,
P < 0.05; Table 2a). However, bacterial commu-
nity composition was also marginally affected by
soil moisture (R2 = 0.052, P < 0.10; Table 2a).
Labile C as measured with permanganate oxi-
dization was related to bacterial community
composition (R2 = 0.074, P < 0.05), but poten-
tially mineralizable C did not. However, PMN,
which is produced in the same aerobic incuba-
tion as PMC and an indicator of nutrient-supply-
ing power of a soil (i.e., a biologically available N
pool), was significantly correlated with bacterial
community composition (R2 = 0.063, P = 0.055;
Table 2b).

Disease suppression functional potential
Crop rotation affected PPS potential in soils. The

prnD gene abundances in cropping systems were
higher than under fallow conditions (crop rotation:
F6,20 = 7.51, P = 0.0003; Fig. 3). In cropping sys-
tems, the prnD gene in CSW2cov treatment was the
most abundant, and the gene abundance was sig-
nificantly higher than in CSW and fallow treat-
ments (Fig. 3). Our diversity benchmark, the

Table 2. Summary of the contribution of (a) soil factors (original data from McDaniel et al. 2014a) and (b) soil
biological activity (original data from McDaniel and Grandy 2016) on bacterial community variation at the
Kellogg Biological Station Biodiversity Gradient Experimental Plots based on permutational multivariate
analysis of variance.

Effect df SS MS F R2 P-value

(a) Soil factors
Sand 1 0.089 0.089 2.381 0.073 0.014
Silt 1 0.089 0.089 2.363 0.073 0.008
Clay 1 0.086 0.086 2.301 0.071 0.016
pH 1 0.059 0.059 1.568 0.048 0.091
Nitrate 1 0.023 0.023 0.620 0.019 0.884
Ammonium 1 0.019 0.019 0.505 0.016 0.968
Nitrogen 1 0.042 0.042 1.128 0.035 0.281
Carbon 1 0.037 0.037 0.975 0.030 0.438
Moisture 1 0.063 0.063 1.686 0.052 0.072
Residuals 17 0.636 0.037 0.524
Total 26 1.215 1

(b) Soil biological activity
PMN 1 0.083 0.083 1.821 0.063 0.055
PMC 1 0.062 0.062 1.359 0.047 0.153
POXC 1 0.097 0.097 2.129 0.074 0.039
Residuals 24 1.094 0.046 0.830
Total 27 1.318 1

Notes: PMC, potentially mineralizable carbon; PMN, potentially mineralizable nitrogen; POXC, permanganate oxidizable
C. Soil factor effects were considered to significantly contribute to community variation at P < 0.05.

Fig. 3. Abundance of prnD gene (pyrrolnitrin pro-
ducers) along a crop diversity gradient analyzed using
quantitative PCR of the prnD gene. Different letters
above boxplots reflect significant differences between
crop diversity treatments at P < 0.05 (Tukey’s honestly
significant difference post-hoc analysis).
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fallow treatment (i.e., lowest crop diversity),
showed the lowest prnD gene abundances (Fig. 3).
Based on multiple linear regression analysis, plant
and soil factors significantly related to prnD abun-
dance (Adjusted R2 = 0.40, F = 4.571, P = 0.005).
Crop species number (P = 0.003), soil carbon
(P = 0.002), and soil moisture (P = 0.0005) ap-
peared to be significant predictors of prnD gene
abundance (Table 3). We also observed a shift in
the composition of disease suppression microor-
ganisms (represented by phlD gene fingerprint
analysis using terminal restriction length polymor-
phism, T-RFLP) along the crop diversity gradient.

The phlD community composition in the fallow
treatment was different from other cropping
systems (R2 = 0.519, P = 0.062; Appendix S1:
Fig. S1).

Soil bacterial disease suppressive function
relationship
There was no relationship between bacterial

community composition and prnD gene abun-
dance (dbRDA: R2 = 0.003, F1,26 = 1.08, P =
0.329). When we compared a subset of taxa repre-
senting broad biocontrol bacterial community
(composed of Streptomyces spp. and Pseudomonas
spp.), there was no significant pattern in commu-
nity composition across the crop diversity treat-
ments (PERMANOVA; crop rotation: R2 = 0.321,
P = 0.132; Appendix S1: Table S3). Indicator spe-
cies analysis suggested that there were bacterial
taxa (OTUs) unique to C1cov, CS, CSW1cov, and
CSW2cov treatments and a total of 15 indicator
taxa were identified (Table 4). Most indicator taxa
were associated with the most diverse cropping
treatment (CSW2cov). The indicators are taxonomi-
cally diverse and represented by Proteobacteria
phyla (including orders Burkholderiales and
Myxococcales for C1cov; Acidobacteria (Gp 4,6) for
CS; Acidobacteria (Gp 4) for CSW1cov; and

Table 3. Summary of multiple linear regression to test
the influence of soil factors and crop rotation treat-
ment on disease suppressive functional potential
(prnD gene abundance).

Factor Estimate Std error t-value P-value

Intercept 7.444 0.420 17.728 <0.001
Crop_number �0.085 0.025 �3.355 0.003
Carbon 0.180 0.050 3.618 0.002
Moisture �11.564 2.817 �4.105 <0.001
Ammonium �0.701 0.948 �0.739 0.468
Nitrate 0.093 0.136 0.684 0.501

Table 4. Bacterial taxa (OTUs) unique to crop rotation treatment according to indicator species analysis.

OTU Cluster IndVal Prob Phylum/Class/Order/Family/Genus

Otu000013 C1cov 0.179 0.015 Proteobacteria/Betaproteobacteria/Burkholderiales/unclassified/unclassified
Otu000015 C1cov 0.204 0.003 Proteobacteria/Betaproteobacteria/unclassified/unclassified/unclassified
Otu000022 C1cov 0.186 0.018 Proteobacteria/unclassified/unclassified/unclassified/unclassified
Otu000076 C1cov 0.203 0.009 Proteobacteria/Deltaproteobacteria/Myxococcales/unclassified/unclassified
Otu000002 CS 0.189 0.016 Acidobacteria/Acidobacteria_Gp6/Acidobacteria_Gp6_order_incertae_sedis/

Acidobacteria_Gp6_family_incertae_sedis/Gp6
Otu000060 CS 0.235 0.044 Acidobacteria/Acidobacteria_Gp4/Acidobacteria_Gp4_order_incertae_sedis/

Acidobacteria_Gp4_family_incertae_sedis/Gp4
Otu000046 CSW1cov 0.240 0.007 Acidobacteria/Acidobacteria_Gp4/Acidobacteria_Gp4_order_incertae_sedis/

Acidobacteria_Gp4_family_incertae_sedis/Gp4
Otu000001 CSW2cov 0.227 0.001 Proteobacteria/Alphaproteobacteria/Sphingomonadales/Sphingomonadaceae/

unclassified
Otu000021 CSW2cov 0.245 0.026 Proteobacteria/Alphaproteobacteria/Rhizobiales/unclassified/unclassified
Otu000027 CSW2cov 0.234 0.041 Proteobacteria/Alphaproteobacteria/unclassified/unclassified/unclassified
Otu000034 CSW2cov 0.219 0.008 Proteobacteria/Betaproteobacteria/unclassified/unclassified/unclassified
Otu000038 CSW2cov 0.197 0.047 Proteobacteria/Betaproteobacteria/Burkholderiales/Oxalobacteraceae/

unclassified
Otu000051 CSW2cov 0.194 0.041 Proteobacteria/Betaproteobacteria/unclassified/unclassified/unclassified
Otu000061 CSW2cov 0.265 0.023 Proteobacteria/Alphaproteobacteria/Sphingomonadales/Sphingomonadaceae/

unclassified
Otu000072 CSW2cov 0.248 0.009 Proteobacteria/Alphaproteobacteria/unclassified/unclassified/unclassified

Note: C1cov, corn/1 cover crop; CS, corn/soybean; CSW1cov, corn/soybean/wheat/1 cover crop; CSW2cov, corn/soybean/
wheat/2 cover crops; OTU, operational taxonomic unit.
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Proteobacteria phyla which included groups of
unclassified Alpha- and Betaproteobacteria, Sph-
ingomonadales, Rhizobiales, and Burkholderiales
for CSW2cov (Table 4).

DISCUSSION

Soil microbiomes represent microbial commu-
nities living in close association with host plants
and can protect host organisms from infection
and disease. Crop rotations can contribute to dis-
ease suppression function by reducing pathogen
abundances when non-host crops are in rotation
(Bennett et al. 2012); however, disease suppres-
sion can also arise in continuous wheat fields
due to increased abundance of DAPG producing
Pseudomonas spp. which is particularly antago-
nistic on the take-all fungal wheat pathogen
(Kwak and Weller 2013). In this study, we found
that crop rotation history impacted soil micro-
biomes and altered disease suppression potential
in agricultural soils. However, we found some
unexpected results that contrasted with our
hypothesis. Contrary to our hypothesis, bacterial
diversity decreased with increasing crop diver-
sity (Fig. 2). However, the PPS capability of the
soil microbial community increased with crop
diversity, but surprisingly the lowest PPS was in
the diverse fallow treatments (Fig. 3). We
observed that without crop plants (as reflected in
the no crop fallow treatment), disease suppres-
sive potential was significantly diminished com-
pared to the most diverse crop rotation
treatments, possibly due to reduced selection for
soil microorganisms with disease suppression
traits. The composition of the soil microbial com-
munity may be more important than diversity to
soil suppressive function. Thus, crop rotation has
the potential to impact diseases suppressive
function, providing evidence for facilitation of
fungal pathogen protection of plants in diverse
crop rotation systems as supported in past stud-
ies (Reynolds et al. 2003, Raaijmakers et al. 2009,
van der Putten et al. 2013).

Crop diversity effects on soil bacterial diversity
Crop rotation history decreased soil bacterial

diversity over this 12-yr crop diversity study. The
pattern of reduced bacterial diversity (based on
16S rRNA gene sequencing) was lower in soils
with higher crop diversity. There are two most

parsimonious explanations for this unexpected
finding. First, this pattern in belowground biodi-
versity might be due to increased abundance of
weedy plant species in low diversity treatments,
but especially the monoculture corn. In other
words, while we were considering the corn treat-
ment as a single species, there could ostensibly
have been up to 13 weed species per m2, as mea-
sured in an earlier study from this experiment
(Smith and Gross 2007). On the other hand, this
same study showed the most diverse cropping
systems (CSW2cov) had only 5–6 weeds per m2

(Smith and Gross 2007). These annual ruderal
weedy species are generally less invested in
defense traits, in contrast to current crop varieties
(Coley et al. 1985, Reynolds et al. 2003, Gaba
et al. 2017). Second, perhaps there was not an
artifact from the weeds and that soil bacterial
diversity does decrease with increasing crop
diversity, but other members of the soil microbial
community (e.g., fungi, archaea) may be increas-
ing in diversity with longer crop rotations.
Despite decreased bacterial taxonomic diversity,
a previous study based on the same soils that we
used in this study found that catabolic evenness
(a measure of the diversity of catabolic function)
also decreased with increasing crop diversity
(McDaniel and Grandy 2016). This indicates that
the trend in lower bacterial diversity with
increasing crop diversity is not just structural,
but also function. This may indicate carbon
resource specialization among bacteria since they
are probably the major contributor to C catabo-
lism in these substrate-induced respiration meth-
ods (Goldfarb et al. 2011, Allison et al. 2014).
Variation in production of biocontrol compounds
between Streptomyces isolates against fungal
pathogen (Fusarium spp.) may depend on com-
petition for carbon (Bressan and Figueiredo
2008). Based on phospholipid fatty acid analysis,
a previous study showed that bacterial biomass
in the micro-aggregate soil organic matter frac-
tion was greatest in high compared low crop
diversity treatments at this long-term experiment
during a different sampling date (Tiemann et al.
2015). In addition, a previous meta-analysis
revealed that the crop rotation effect increased
soil bacterial diversity (i.e., Shannon Diversity
Index Hʹ) most notably in the first five years of
treatment, but crop rotations longer than five
years were more variable in diversity and not
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significantly different (Venter et al. 2016). This
study is unique due to the long-term examina-
tion of the crop rotation treatment on the soil
bacterial community. Other studies do find sig-
nificant negative effects of crop rotations on soil
microbial diversity (Berg and Smalla 2009, Yin
et al. 2010, Kulmatiski and Beard 2011, Reardon
et al. 2014). The reason for these findings
remains unknown but may be a combination of
diversity impacts on other soil organisms not
evaluated in this study or due to length of time
associated with crop diversity treatment.

Crop diversity and PPS relationship
We found that the increased crop diversity, via

rotation, increased the abundance and altered
the composition of a specific PPS gene (Figs. 3;
Appendix S1: Fig. S1). Our results suggested that
crop diversity may increase the disease suppres-
sion of agricultural soils, and are consistent with
previous studies suggesting that plant diversity
can enhance protection against soil-borne patho-
gens by fostering antagonistic soil bacterial com-
munities (Latz et al. 2012, van der Putten et al.
2016). One potential explanation for the negative
plant diversity and disease suppressive function
relationship is due to facilitation, where changes
in plant root exudation may lead to enrichment
of plant growth promoting rhizobacteria
(Lugtenberg and Kamilova 2009, Badri et al.
2009, Chaparro et al. 2012). In previous studies,
microbial interactions among the total microbial
community and soil-borne pathogens in the
plant rhizosphere have influenced both plant
growth and productivity (Bakker et al. 2010,
Penton et al. 2014).

The addition of cover crops to rotations
strongly increased disease suppressive potential.
This along with evidence from previous studies
shows that crop rotations may prevent many
forms of crop disease caused by Fusarium spp.,
Phytophthora, and Rhizoctonia spp. (Raaijmakers
et al. 2009, van der Putten et al. 2016). Soil micro-
bial diversity has been implicated as important
for soil disease suppression; sterilized soils lose
suppressive capacity, and adding soil microorgan-
isms to sterilized soil facilitates disease suppres-
sion functional capacity (Garbeva et al. 2006,
Brussaard et al. 2007, Postma et al. 2008). Biocon-
trol bacteria can also provide disease suppression
against plant pathogens by way of the following

mechanisms: competition for iron, antibiosis, lytic
enzymes, and induction of system resistance of
host plants (Doornbos et al. 2012, Schlatter et al.
2017). Plants can also facilitate recruitment of
specific biocontrol microorganisms in some cases.
A previous study suggested that beneficial pseu-
domonads are recruited depending on the most
dominant soil-borne pathogen infecting crop spe-
cies (Berendsen et al. 2012, Mavrodi et al. 2012).
In the present study, we analyzed a subset of pre-
viously reported biocontrol bacterial taxa (e.g.,
Pseudomonas spp. and Streptomyces spp.) across
the crop diversity gradient; however, we did not
detect distinct changes in putative biocontrol com-
munity composition (Appendix S1: Table S3) nor
was there a correlation between bacterial compo-
sition and prnD gene abundance. While this was
observed, there is great diversity in biosynthetic
genes of these PPS bacterial groups which are
likely overlooked based on our amplicon sequenc-
ing analysis. Strain-specific antifungal metabolite
production depends on plant cultivar–bacterial
strain relationship (Okubara and Bonsall 2008).
We did identify a subset of taxa that were repre-
sentative of particular crop rotation treatments.
For example, Burkholderia spp. were relatively
abundant in crop rotation treatments planted with
cover crops (C1cov, CSW2cov; Table 4). These taxa
have been associated with antagonistic microbial
properties (Salles et al. 2004, Elliott et al. 2006,
Postma et al. 2008) and associated with maize
cropping systems (Salles et al. 2004, Li et al.
2014). In addition, the order Myxococcales repre-
sented the C1cov treatment. This group is known
to specialize in degradation of biomacromolecules
and can efficiently produce exoenzymes and sec-
ondary metabolites and provide these bacteria a
competitive advantage in nutrient limited envi-
ronments (Reichenbach 1999).
Our study revealed that cover crops in combi-

nation with corn–soybean–wheat rotations
increased abundance of the prnD gene, which is
responsible for producing antifungal compound
PRN (Garbeva et al. 2004b, Haas and D�efago
2005), by about 9% compared to the other crop-
ping systems. Cover crop species may have
important effects on the prnD gene abundance
and disease suppressive functional potential in
soils, but only in combination with corn–soy-
bean–wheat because the cover crop with corn
only did not show high prnD abundance (Fig. 3).
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In past studies, cover crops such as cereal rye
have been implicated at increasing corn patho-
gen densities leading to reduced disease suppres-
sive soil function (Acharya et al. 2016, Bakker
et al. 2016).

Without crops (as reflected in the fallow treat-
ment), we observed that disease suppressive
potential significantly declined. The prnD gene
abundance in all cropping systems was generally
higher than in fallow treatment. The abundance
of DAPG and PRN producers increasing with
plant diversity has been previously observed
(Latz et al. 2012), but with greater spatial diver-
sity in grassland species. Compared to agricul-
tural soils, the PRN producers were more
frequently detected in grassland or grassland-
derived plots (Garbeva et al. 2004a, b). In a previ-
ous study, the prnD gene abundance increased in
the presence of grasses, but the legume species
tended to decrease the DAPG and PRN producer
abundance (Latz et al. 2012). In our study, we
did not examine plant species community com-
position in the fallow treatment that year; how-
ever, previous research (Smith 2006) indicated
that fallow plots were dominated by later-emer-
ging forbs and C3 grasses (i.e., forbs Arabidopsis
thaliana (L.) Heynh, Ambrosia artemisiifolia L., and
grass Elytrigia repens (L.) Nevski). Also, a large
amount of biomass from perennial legumes like
Trifolium pratense L. was represented in fallow
plots. The abundance of perennial legumes could
also be contributing to declines in DAPG in our
study (Smith 2006) as observed in previous study
by Latz et al. 2012.

This observation of reduced disease suppres-
sive potential may be indicative of species-speci-
fic facilitation of PPS soil microorganisms. This
disease suppressive phenomenon is known to
have important implications for sustainable bio-
control of soil-borne pathogens. In addition, it is
possible that when plant diversity is high, there
is less soil-borne pathogen pressure on plant
hosts due to decreased competition for resources
among pathogenic and non-pathogenic soil
microorganisms (Reynolds et al. 2003, van der
Putten et al. 2013).

Proposed mechanisms for crop diversity effects on
soil bacterial diversity and PPS abundance

Disease suppression may have a major role in
what is colloquially referred to as “the rotation

effect.” Our study provided evidence that crop
diversity alters soil bacterial community compo-
sition and populations of putative PPS bacterial
taxa, but the mechanisms through which this
occurs can include physical, chemical, and bio-
logical changes to the soil environment. Crops
can influence soil properties and soil micro-
biomes in a variety of ways, including physi-
cally and chemically. Cover crops are the most
salient feature of these crop rotations affecting
the soil bacterial community in general. This is
not surprising since cover crops have been
shown to influence several soil properties, which
likely have indirect effects on the soil bacterial
community composition. In addition, previous
studies showed cover crops can have immediate
impacts on soil microbial communities (Wiggins
and Kinkel 2005, Finney et al. 2017). Soil proper-
ties like total C, total N, pH, bulk density, and
porosity have all been shown to increase with
cover crops (Bullock 1992, Liebman and Dyck
1993, Tilman et al. 2002, McDaniel et al. 2014b,
Tiemann et al. 2015). Physically, crop diversity
(especially rotations) can enhance soil properties
like improving plant water availability by lower-
ing bulk density, increasing soil pore space, and
increasing soil aggregate formation (Tilman
et al. 2002, McDaniel et al. 2014b, Tiemann et al.
2015), which could have indirect influence over
the soil bacterial community as well. A correla-
tion between soil factors (silt, clay and soil nutri-
ents) and expression of the antimicrobial genes
has been observed in past studies (Postma et al.
2008, Raaijmakers et al. 2009, Imperiali et al.
2017). Chemically, cover crops are providing
more carbon to the soil through residues, but
also root exudation of recently assimilated pho-
tosynthate, composed of soluble, low molecular
weight organic compounds (Neumann and
Romheld 2007). As a consequence, the increased
C flow from cover crop root exudates can stimu-
late soil microbial activity. Changes in root exu-
dates have been observed to shift microbial
community composition and stimulate a diverse
microbial community (Hooper et al. 2000, Ste-
phan et al. 2000, Paterson et al. 2009, Dijkstra
et al. 2010). Biologically, some soil microorgan-
isms can provide PPS through competition for
nutrients, antibiosis, and induction of system
resistance of host plants (Doornbos et al. 2012).
Our study focused on soil bacterial community
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composition, but past studies have identified
that crop rotation also influences soil fungal and
faunal communities, which are also important
members of the soil food web (McLaughlin and
Mineau 1995). For example, increased protist
predation on soil bacteria has resulted in indi-
rect effect on disease suppression function (Jous-
set et al. 2008, 2010). These studies revealed that
increased predator pressure by soil protists has
been linked to increased biocontrol function
through enhanced bacterial DAPG production
(Jousset et al. 2008, 2010).

However, disease suppression traits such as
antifungal production may not be needed and
are not maintained in the community when crops
are no longer planted. Several explanations could
underpin our observations. When agricultural
management is absent, there is reduced selection
for soil microorganisms with disease suppression
traits. Higher plant diversity reflected in longer
crop rotations was expected to support overall
diversity, resulting in an increased probability of
getting more disease suppressive microorgan-
isms. However, we observed that overall taxo-
nomic diversity decreased with increasing crop
diversity, indicating alternative mechanisms may
be involved in this diversity–function relation-
ship. One argument is that in monocultures, the
selection for fungal pathogen defense is weak-
ened and microorganisms that are (constitutively
or facultatively) making defense compounds are
paying a cost and are replaced by microorgan-
isms that do not invest in the defense strategy. In
addition, fluctuating environments can influence
selection of traits (Heath et al. 2010, Akc�ay and
Simms 2011). For example, high variation in
carbon compounds such as under diverse crop
rotations could alter selection of defense traits,
whereby crop plants facilitate PPS or other
defense traits that are adaptive only when crop
plants are present. Increasing plant diversity
such as in fallow, non-cropping systems, pro-
vides opportunity for microbial community
members to partition according to diverse (and
more even) carbon resources rather than crop
inputs driving selection of microbial communi-
ties and defense traits (Reynolds et al. 2003,
Hartmann et al. 2009). In other words, when you
are in a resource-rich soil under fallow, there is
no need for PPS gene production and mainte-
nance. Our findings combined with previous

studies suggest that the land-use regime, plant
diversity, and plant species influence disease sup-
pressive microbial communities.

CONCLUSIONS

We and others demonstrate links between crop
diversity and soil ecosystem functions; however,
the mechanisms underpinning this relationship
require further study for more predictive soil
microbiome management (Jangid et al. 2008, Lau-
ber et al. 2008, McDaniel et al. 2014b, Orr et al.
2015, Tiemann et al. 2015, Venter et al. 2016). Crop
rotations may facilitate the abundance of PPS
organisms even though both our study and a pre-
vious study show decreases in structural diversity
and functional evenness (McDaniel and Grandy
2016). We observed that the soil microbial commu-
nity composition may be more important than soil
microbial diversity to soil disease suppression.
Crop rotations may also provide other important
benefits like enhanced nutrient provisioning to
plants, improvement of soil physical properties,
increases in soil C, and increases in soil microbial
and faunal activity that also could be responsible
for the increased yields responsible for the rotation
effect (Ball et al. 2005, van der Putten et al. 2016).
Additional research focused on identifying pat-
terns in soil microbial diversity and ecosystem
function relationships can inform microbiome
management, which will involve defined manage-
ment of soil nutrients and plant diversity.
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Dufrêne, M., and P. Legendre. 1997. Species assem-
blages and indicator species: the need for a flexible
asymmetrical approach. Ecological Monographs
67:345–366.

Edgar, R. C., B. J. Haas, J. C. Clemente, C. Quince, and
R. Knight. 2011. UCHIME improves sensitivity and
speed of chimera detection. Bioinformatics
27:2194–2200.

Elliott, G. N., et al. 2006. Burkholderia phymatum is a
highly effective nitrogen-fixing symbiont of
Mimosa spp. and fixes nitrogen ex planta. New
Phytologist 173:168–180.

Finney, D. M., J. S. Buyer, and J. P. Kaye. 2017. Living
cover crops have immediate impacts on soil micro-
bial community structure and function. Journal of
Soil and Water Conservation 72:361–373.

 ❖ www.esajournals.org 13 May 2018 ❖ Volume 9(5) ❖ Article e02235

AGROECOSYSTEMS PERALTA ET AL.

https://github.com/PeraltaLab/CropDiversity
https://github.com/PeraltaLab/CropDiversity
http://www.lter.kbs.msu.edu/soil/characterization


Gaba, S., et al. 2017. Response and effect traits of ara-
ble weeds in agro-ecosystems: a review of current
knowledge. Weed Research 57:123–147.

Garbeva, P., J. Postma, J. A. Van Veen, and J. D. Van
Elsas. 2006. Effect of above-ground plant species
on soil microbial community structure and its
impact on suppression of Rhizoctonia solani AG3.
Environmental Microbiology 8:233–246.

Garbeva, P., J. A. van Veen, and J. D. van Elsas. 2004a.
Microbial diversity in soil: selection of microbial
populations by plant and soil type and implica-
tions for disease suppressiveness. Annual Review
of Phytopathology 42:243–270.

Garbeva, P., K. Voesenek, and J. D. van Elsas. 2004b.
Quantitative detection and diversity of the pyrrolni-
trin biosynthetic locus in soil under different treat-
ments. Soil Biology and Biochemistry 36:1453–1463.

Garratt, M. P. D., et al. 2018. Enhancing soil organic
matter as a route to the ecological intensification of
European arable systems. http://doi.org/10.1007/
s10021-018-0228-2

Goldfarb, K. C., U. Karaoz, C. A. Hanson, C. A. Santee,
M. A. Bradford, K. K. Treseder, M. D. Wallenstein,
and E. L. Brodie. 2011. Differential growth
responses of soil bacterial taxa to carbon substrates
of varying chemical recalcitrance. Frontiers in
Microbiology 2:94.

Haas, D., and G. D�efago. 2005. Biological control of
soil-borne pathogens by fluorescent pseudomon-
ads. Nature Reviews Microbiology 3:307–319.

Hartmann, A., M. Schmid, D. van Tuinen, and G. Berg.
2009. Plant-driven selection of microbes. Plant and
Soil 321:235–257.

Heath, K. D., A. J. Stock, and J. R. Stinchcombe. 2010.
Mutualism variation in the nodulation response to
nitrate. Journal of Evolutionary Biology 23:2494–2500.

Hooper, D. U., et al. 2000. Interactions between above-
ground and belowground biodiversity in terrestrial
ecosystems: patterns, mechanisms, and feedbacks.
BioScience 50:1049–1061.

Imperiali, N., et al. 2017. Relationships between root
pathogen resistance, abundance and expression of
Pseudomonas antimicrobial genes, and soil proper-
ties in representative Swiss agricultural soils. Fron-
tiers in Plant Science 8:427.

Jangid, K., M. A. Williams, A. J. Franzluebbers, J. S.
Sanderlin, J. H. Reeves, M. B. Jenkins, D. M.
Endale, D. C. Coleman, and W. B. Whitman. 2008.
Relative impacts of land-use, management inten-
sity and fertilization upon soil microbial commu-
nity structure in agricultural systems. Soil Biology
and Biochemistry 40:2843–2853.

Jousset, A., L. Rochat, S. Scheu, M. Bonkowski, and
C. Keel. 2010. Predator-prey chemical warfare
determines the expression of biocontrol genes

by rhizosphere-associated Pseudomonas fluorescens.
Applied and Environmental Microbiology 76:
5263–5268.

Jousset, A., S. Scheu, and M. Bonkowski. 2008. Second-
ary metabolite production facilitates establishment
of rhizobacteria by reducing both protozoan preda-
tion and the competitive effects of indigenous bac-
teria. Functional Ecology 22:714–719.

Karlen, D. L., G. E. Varvel, D. G. Bullock, and R. M.
Cruse. 1994. Crop rotations for the 21st century. Pages
1–45 in D. L. Sparks, editor. Advances in agronomy.
Academic Press, Cambridge, Massachusetts, USA.

Kozich, J. J., S. L. Westcott, N. T. Baxter, S. K. High-
lander, and P. D. Schloss. 2013. Development of a
dual-index sequencing strategy and curation pipe-
line for analyzing amplicon sequence data on the
MiSeq Illumina sequencing platform. Applied and
Environmental Microbiology 79:5112–5120.

Kulmatiski, A., and K. H. Beard. 2011. Long-term plant
growth legacies overwhelm short-term plant
growth effects on soil microbial community struc-
ture. Soil Biology and Biochemistry 43:823–830.

Kulmatiski, A., K. H. Beard, J. R. Stevens, and S. M.
Cobbold. 2008. Plant–soil feedbacks: a meta-analy-
tical review. Ecology Letters 11:980–992.

Kwak, Y.-S., and D. M. Weller. 2013. Take-all of wheat
and natural disease suppression: a review. Plant
Pathology Journal 29:125–135.

Latz, E., N. Eisenhauer, B. C. Rall, E. Allan, C. Roscher,
S. Scheu, and A. Jousset. 2012. Plant diversity
improves protection against soil-borne pathogens
by fostering antagonistic bacterial communities.
Journal of Ecology 100:597–604.

Lau, J. A., and J. T. Lennon. 2012. Rapid responses of
soil microorganisms improve plant fitness in novel
environments. Proceedings of the National Acad-
emy of Sciences USA 109:14058–14062.

Lauber, C. L., M. S. Strickland, M. A. Bradford, and N.
Fierer. 2008. The influence of soil properties on the
structure of bacterial and fungal communities
across land-use types. Soil Biology and Biochem-
istry 40:2407–2415.

Li, X., J. Rui, Y. Mao, A. Yannarell, and R. Mackie.
2014. Dynamics of the bacterial community struc-
ture in the rhizosphere of a maize cultivar. Soil
Biology and Biochemistry 68:392–401.

Liebman, M., and E. Dyck. 1993. Crop rotation and
intercropping strategies for weed management.
Ecological Applications 3:92–122.

Lin, B. B. 2011. Resilience in agriculture through crop
diversification: adaptive management for environ-
mental change. BioScience 61:183–193.

Lugtenberg, B., and F. Kamilova. 2009. Plant-growth-
promoting rhizobacteria. Annual Review of Micro-
biology 63:541–556.

 ❖ www.esajournals.org 14 May 2018 ❖ Volume 9(5) ❖ Article e02235

AGROECOSYSTEMS PERALTA ET AL.

http://doi.org/10.1007/s10021-018-0228-2
http://doi.org/10.1007/s10021-018-0228-2


Luongo, L., M. Galli, L. Corazza, E. Meekes, L. D. Haas,
C. L. V. D. Plas, and J. K€ohl. 2005. Potential of fun-
gal antagonists for biocontrol of Fusarium spp. in
wheat and maize through competition in crop deb-
ris. Biocontrol Science and Technology 15:229–242.

Mavrodi, O. V., D. V. Mavrodi, J. A. Parejko, L. S. Tho-
mashow, and D. M. Weller. 2012. Irrigation differ-
entially impacts populations of indigenous
antibiotic-producing Pseudomonas spp. in the rhizo-
sphere of wheat. Applied and Environmental
Microbiology 78:3214–3220.

McDaniel, M. D., and A. S. Grandy. 2016. Soil micro-
bial biomass and function are altered by 12 years
of crop rotation. Soil 2:583–599.

McDaniel, M. D., A. S. Grandy, L. K. Tiemann, and M.
N. Weintraub. 2014a. Crop rotation complexity reg-
ulates the decomposition of high and low quality
residues. Soil Biology and Biochemistry 78:243–254.

McDaniel, M. D., L. K. Tiemann, and A. S. Grandy.
2014b. Does agricultural crop diversity enhance soil
microbial biomass and organic matter dynamics? A
meta-analysis. Ecological Applications 24:560–570.

McLaughlin, A., and P. Mineau. 1995. The impact of
agricultural practices on biodiversity. Agriculture,
Ecosystems & Environment 55:201–212.

Mendes, R., P. Garbeva, and J. M. Raaijmakers. 2013. The
rhizosphere microbiome: significance of plant benefi-
cial, plant pathogenic, and human pathogenic micro-
organisms. FEMSMicrobiology Reviews 37:634–663.

Mendes, L. W., S. M. Tsai, A. A. Navarrete, M. de Hol-
lander, J. A. van Veen, and E. E. Kuramae. 2015.
Soil-borne microbiome: linking diversity to func-
tion. Microbial Ecology 70:255–265.

Mills, K. E., and J. D. Bever. 1998. Maintenance of diver-
sity within plant communities: soil pathogens as
agents of negative feedback. Ecology 79:1595–1601.

Muscarella, M., K. Bird, M. Larsen, S. Placella, and J.
Lennon. 2014. Phosphorus resource heterogeneity
in microbial food webs. Aquatic Microbial Ecology
73:259–272.

Naeem, S., and J. P. Wright. 2003. Disentangling biodi-
versity effects on ecosystem functioning: deriving
solutions to a seemingly insurmountable problem.
Ecology Letters 6:567–579.

Needleman, S. B., and C. D. Wunsch. 1970. A general
method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of
Molecular Biology 48:443–453.

Neumann, G., and V. Romheld. 2007. The release of
root exudates as affects by the plant physiological
status. Pages 23–72 in R. Pinton, Z. Varanini, and P.
Nannipieri, editors. The rhizosphere: biochemistry
and organic substances at the soil-plant interface.
Second edition. CRC Press, Boca Raton, Florida,
USA.

Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B.
O’Hara, G. L. Simpson, P. Solymos, M. H. H. Ste-
vens, and H. Wagner. 2018. Community ecology
package “vegan.” https://cran.r-project.org/web/
packages/vegan/vegan.pdf

Okubara, P. A., and R. F. Bonsall. 2008. Accumulation
of Pseudomonas-derived 2,4-diacetylphloroglucinol
on wheat seedling roots is influenced by host culti-
var. Biological Control 46:322–331.

Orr, C. H., C. J. Stewart, C. Leifert, J. M. Cooper, and S.
P. Cummings. 2015. Effect of crop management and
sample year on abundance of soil bacterial commu-
nities in organic and conventional cropping sys-
tems. Journal of Applied Microbiology 119:208–214.

Packer, A., and K. Clay. 2000. Soil pathogens and spa-
tial patterns of seedling mortality in a temperate
tree. Nature 404:278–281.

Paterson, E., A. J. Midwood, and P. Millard. 2009.
Through the eye of the needle: a review of isotope
approaches to quantify microbial processes mediat-
ing soil carbon balance. New Phytologist 184:19–33.

Penton, C. R., V. V. S. R. Gupta, J. M. Tiedje, S. M.
Neate, K. Ophel-Keller, M. Gillings, P. Harvey, A.
Pham, and D. K. Roget. 2014. Fungal community
structure in disease suppressive soils assessed by
28S lSU gene sequencing. PLoS ONE 9:e93893.

Peralta, A. L., J. W. Matthews, D. N. Flanagan, and
A. D. Kent. 2012. Environmental factors at dissimi-
lar spatial scales influence plant and microbial
communities in restored wetlands. Wetlands
32:1125–1134.

Postma, J., M. T. Schilder, J. Bloem, and W. K. van
Leeuwen-Haagsma. 2008. Soil suppressiveness and
functional diversity of the soil microflora in organic
farming systems. Soil Biology and Biochemistry
40:2394–2406.

R Core Team. 2017. R: a language and environment
for statistical computing. R Foundation for Statisti-
cal Computing, Vienna, Austria. http://www.
R-project.org/

Raaijmakers, J. M., T. C. Paulitz, C. Steinberg, C.
Alabouvette, and Y. Mo€enne-Loccoz. 2009. The rhi-
zosphere: a playground and battlefield for soil-
borne pathogens and beneficial microorganisms.
Plant and Soil 321:341–361.

Reardon, C. L., H. T. Gollany, and S. B. Wuest. 2014.
Diazotroph community structure and abundance
in wheat–fallow and wheat–pea crop rotations. Soil
Biology and Biochemistry 69:406–412.

Reichenbach, H. 1999. The ecology of the myxobacte-
ria. Environmental Microbiology 1:15–21.

Reynolds, H. L., A. Packer, J. D. Bever, and K. Clay.
2003. Grassroots ecology: plant–microbe–soil inter-
actions as drivers of plant community structure
and dynamics. Ecology 84:2281–2291.

 ❖ www.esajournals.org 15 May 2018 ❖ Volume 9(5) ❖ Article e02235

AGROECOSYSTEMS PERALTA ET AL.

https://cran.r-project.org/web/packages/vegan/vegan.pdf
https://cran.r-project.org/web/packages/vegan/vegan.pdf
http://www.R-project.org/
http://www.R-project.org/


Roberts, D. W. 2016. Ordination and multivariate
analysis for ecology package “labdsv”. https://cran.
r-project.org/web/packages/labdsv/labdsv.pdf

Robertson, G. P., and S. K. Hamilton. 2015. Long-term
ecological research in agricultural landscapes at the
Kellogg Biological Station LTER site: conceptual
and experimental framework. Pages 1–32 in S. K.
Hamilton, J. E. Doll, and G. P. Robertson, editors.
The ecology of agricultural landscapes: long-term
research on the path to sustainability. Oxford
University Press, New York, New York, USA.

Salles, J. F., J. A. van Veen, and J. D. van Elsas. 2004.
Multivariate analyses of Burkholderia species in soil:
effect of crop and land use history. Applied and
Environmental Microbiology 70:4012–4020.

Schlatter, D., L. Kinkel, L. Thomashow, D. Weller, and
T. Paulitz. 2017. Disease suppressive soils: new
insights from the soil microbiome. Phytopathology
107:1284–1297.

Schloss, P. D., et al. 2009. Introducing mothur: open-
source, platform-independent, community-sup-
ported software for describing and comparing
microbial communities. Applied and Environmen-
tal Microbiology 75:7537–7541.

Smith, R. G. 2006. Timing of tillage is an important fil-
ter on the assembly of weed communities. Weed
Science 54:705–712.

Smith, R. G., and K. L. Gross. 2006. Weed community
and corn yield variability in diverse management
systems. Weed Science 54:106–113.

Smith, R. G., and K. L. Gross. 2007. Assembly of weed
communities along a crop diversity gradient. Jour-
nal of Applied Ecology 44:1046–1056.

Smukler, S. M., S. S�anchez-Moreno, S. J. Fonte, H. Ferris,
K. Klonsky, A. T. O’Geen, K. M. Scow, K. L. Steen-
werth, and L. E. Jackson. 2010. Biodiversity and mul-
tiple ecosystem functions in an organic farmscape.
Agriculture, Ecosystems & Environment 139:80–97.

Stephan, A., A. H. Meyer, and B. Schmid. 2000. Plant
diversity affects culturable soil bacteria in experi-
mental grassland communities. Journal of Ecology
88:988–998.

Tiemann, L. K., A. S. Grandy, E. E. Atkinson, E. Marin-
Spiotta, and M. D. McDaniel. 2015. Crop rotational
diversity enhances belowground communities and
functions in an agroecosystem. Ecology Letters
18:761–771.

Tilman, D., C. Balzer, J. Hill, and B. L. Befort. 2011.
Global food demand and the sustainable

intensification of agriculture. Proceedings of the
National Academy of Sciences USA 108:20260–
20264.

Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor, and
S. Polasky. 2002. Agricultural sustainability and
intensive production practices. Nature 418:671–677.

Tittonell, P. 2014. Ecological intensification of agricul-
ture-sustainable by nature. Current Opinion in
Environmental Sustainability 8:53–61.

van der Putten, W. H., et al. 2013. Plant–soil feedbacks:
the past, the present and future challenges. Journal
of Ecology 101:265–276.

van der Putten, W. H., M. A. Bradford, E. Pernilla
Brinkman, T. F. J. van de Voorde, and G. F. Veen.
2016. Where, when and how plant–soil feedback
matters in a changing world. Functional Ecology
30:1109–1121.

Venter, Z. S., K. Jacobs, and H.-J. Hawkins. 2016. The
impact of crop rotation on soil microbial diversity:
a meta-analysis. Pedobiologia 59:215–223.

von Felten, A., J. B. Meyer, G. D�efago, and M. Mau-
rhofer. 2011. Novel T-RFLP method to investigate
six main groups of 2,4-diacetylphloroglucinol-
producing Pseudomonads in environmental
samples. Journal of Microbiological Methods 84:
379–387.

Weller, D. M., J. M. Raaijmakers, B. B. M. Gardener,
and L. S. Thomashow. 2002. Microbial populations
responsible for specific soil suppressiveness to
plant pathogens. Annual Review of Phytopathol-
ogy 40:309–348.

Wiggins, B. E., and L. L. Kinkel. 2005. Green manures
and crop sequences influence alfalfa root rot and
pathogen inhibitory activity among soil-borne
streptomycetes. Plant and Soil 268:271–283.

Yilmaz, P., L. W. Parfrey, P. Yarza, J. Gerken, E. Pruesse,
C. Quast, T. Schweer, J. Peplies, W. Ludwig, and F.
O. Gl€ockner. 2014. The SILVA and “All-species Liv-
ing Tree Project (LTP)” taxonomic frameworks.
Nucleic Acids Research 42:D643–D648.

Yin, C., K. L. Jones, D. E. Peterson, K. A. Garrett, S. H.
Hulbert, and T. C. Paulitz. 2010. Members of
soil bacterial communities sensitive to tillage and
crop rotation. Soil Biology and Biochemistry 42:
2111–2118.

Zak, D. R., W. E. Holmes, D. C. White, A. D. Peacock,
and D. Tilman. 2003. Plant diversity, soil microbial
communities, and ecosystem function: Are there
any links? Ecology 84:2042–2050.

SUPPORTING INFORMATION

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/ecs2.
2235/full

 ❖ www.esajournals.org 16 May 2018 ❖ Volume 9(5) ❖ Article e02235

AGROECOSYSTEMS PERALTA ET AL.

https://cran.r-project.org/web/packages/labdsv/labdsv.pdf
https://cran.r-project.org/web/packages/labdsv/labdsv.pdf
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.2235/full
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.2235/full

