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Abstract: Immune checkpoint blockade (ICB) with programmed cell death protein-1(PD-1)/
programmed death ligand -1(PD-L1) antibodies has revolutionized the management of several
cancers, especially non-small cell lung cancer, melanoma, urothelial, and renal cancer. Pancreatic
ductal adenocarcinoma (PDAC) is one of the most aggressive cancers associated with high morbidity
and mortality. Based on available data, it’s obvious that ICB has limited success in PDACs, which
can be explained by the low immunogenicity and immunosuppressive tumor microenvironment of
these tumors. In this review article, we focus on PD-L1 expression and microsatellite instability (MSI)
in PDAC, and their roles as prognostic and predictive markers. We also discuss data supporting
combination therapies to augment cancer immunity cycle. Combining anti-PD-1/PD-L1 agents with
other modalities such as vaccines, chemotherapy, and radiation could potentially overcome resistance
patterns and increase immune responsiveness in PDAC.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a dismal five year
overall survival(OS) rate of 8.5%, making it the third leading cause of cancer-related death, with an
estimated 55,400 new cases and 44,330 deaths in the United States in 2018 [1]. Even loco-regional
PDAC has a poor prognosis, with a 5-year OS of 10–35% while metastatic disease, which accounts for
more than 50%, has a grim 3% 5-year OS rate [2]. PDAC poses several treatment challenges, including
late presentation and a unique tumor microenvironment characterized by dense desmoplasia and
intense infiltrations of immunosuppressive cells [3,4] contributing to chemotherapy resistance. Surgery
is the only curative option, but only 10–15% of patients have resectable disease at the time of diagnosis.
For most patients with advanced PDAC, systemic chemotherapy has been the mainstay of treatment
for disease control. Over last several decades, various chemotherapy regimens have shown minimal
incremental benefit.

Despite the modest improvements with combination chemotherapy regimens, prognosis for
pancreatic cancer remains very poor, and there is an unmet need to identify new targeted therapies [5–8].
So far, studies exploring therapies targeting KRAS, BRAF, BRCA 1 and 2, ATM, CDKN2A mutations
have not shown any meaningful survival benefit in PDAC. Conversely, PD-1/PD-L1 inhibitors have
shown promising results in various solid malignancies including other gastrointestinal malignancies,
making their incorporation into the treatment paradigm of an aggressive malignancy like PDAC very
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appealing. In this review article, we will discuss the available evidence of programmed cell death
protein-1(PD-1)/programmed death ligand-1(PD-L1) blockade in pancreatic cancer and the potential
roles of PD-L1 expression and microsatellite instability (MSI) as prognostic/predictive biomarkers.

2. The PD-1/PD-L1 Pathway

The immune system has three primary roles in the prevention of tumors, of which perhaps the
most important may be immune surveillance. In this function, the immune system can specifically
identify and eliminate tumor cells by their expression of tumor-specific antigens or molecules [9].
Currently, the updated concept of tumor immunoediting is more relevant, as it explains tumor
development that occurs despite a functioning immune system. This concept is further divided
into 3 phases: elimination, equilibrium, and escape [10]. By interaction with a host immune system,
the malignant cells may determine its fitness for survival and growth, thereby aiding the malignant
cell to evade the tumor suppressor function of the immune system, that is, if the immune response
fails to eliminate the tumor.

Immune checkpoint regulators, such as programmed cell death-1 and cytotoxic T lymphocyte
antigen-4 (CTLA-4), belong to a class of co-inhibitory receptors present mainly on T cells. Under
physiological homeostasis, binding of these checkpoints to their cognate ligands regulates the balance
between self-tolerance and immunopathology [11]. Direct and indirect utilization of these co-inhibitory
pathways by tumors results in their ability to evade an immune attack. This mechanism, termed
adaptive immune resistance, facilitates tumor growth and propagation. The PD-1 pathway is an
essential inhibitory mechanism regulating T cell exhaustion. PD-1 and one of its ligands, PD-L1 (also
known as B7-H1), constitute a major tolerance mechanism in tumors. Immune-checkpoint antibodies
directed against PD-1 and PD-L1 restore antitumoral immunity by augmentation of an endogenous
immune response [12].

3. PD-L1 Expression and Prognostic Significance in Pancreatic Cancer

PD-L1 expression and its clinical significance have been studied extensively in solid tumors. PD-L1
is expressed on the surface of tumor cells in various malignancies, including carcinoma of head and
neck, melanoma, lung, esophagus, thyroid, thymus, breast, gastrointestinal, colorectal, liver, pancreas,
kidney, bladder, ovary, and skin [13–19]. PD-L1 is rarely expressed on normal tissue but exclusively
expressed in tumor cells, indicating that this selective expression of PD-L1 may have some association
with outcomes in various cancers [20]. Some cancers, including hepatocellular carcinoma, pancreatic
cancer, gastric cancer, renal cell carcinoma, and esophageal cancer, have an immunosuppressive
tumor microenvironment with a high PD-L1 expression, which in turn inhibits cytotoxic effects of
activated T-cells [21]. This may explain why overexpression of PD-L1 in these tumors is generally
associated with poorer prognosis. Interestingly, in lung cancer, melanoma, and colorectal carcinoma,
PD-L1 expression has both positive and negative predictive values [22]. Considering that PD-L1
overexpression is associated with variable prognosis, this raises the speculation of other mechanisms,
in addition to variations in PD-L1 expression within the tumor microenvironment, as some of the
critical determinants of outcomes in certain tumors.

Several studies have evaluated the expression of PD-L1 in PDAC. In a meta-analysis by
Gao et al. [23], which analyzed nine studies, the PD-L1 positive rate in PDAC ranged from 19% to 62.5%.
The PD-L1 positive rate measured by immunohistochemistry (IHC) was higher than by PCR. As shown
by some, IHC-based detection of PD-L1 has limitations [24]. First, IHC-based detection has technical
challenges and may not yield accurate results for PD-L1 expression. Secondly, detection of PD-L1
expression is affected by temporal and spatial factors [25]. Hence, single point evaluation may not
reflect the actual condition and may require multiple site sampling to determine true PD-L1 expression.

Six studies (Table 1) focusing on PD-L1 expression and prognosis in PDAC demonstrated that
PD-L1 expression is associated with poor prognosis. Nomi et al. [15] examined 51 patients with PDAC,
using IHC with a 10% cut-off value of immunoreactivity per high power field to define the PD-L1
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expression. PD-L1 positive patients (n = 20) had a significantly poorer prognosis than PD-L1 negative
patients (p = 0.016). One-year post-operative survival rate was 33.5% and 60.3% in PD-L1 positive and
PD-L1 negative patients, respectively. Wang et al. [26] examined 81 patients with PDAC using IHC,
with a 5% cut-off value to define the PD-L1 expression. They observed that PD-L1 inhibits activation
of T lymphocytes, which promotes tumor evasion and T cell exhaustion. This study concluded that
PD-L1 expression could act as an independent prognostic factor after adjusting for pathological and
TNM stages. Chen et al. [27] examined 63 cases of pancreatic cancer tissue for PD-L1 (>50% of patients
expressed PD-L1) and other inhibitory costimulatory molecules using IHC asdefined by >10% clear
staining among 1000 tumor cells/section. The expression of PD-L1 and other B7 family molecules
resulted in tumor growth and decreased survival. Loos et al. [28] investigated the expression pattern
using reverse transcription PCR (RT-PCR) in 40 human pancreatic cancer tissue samples, and the clinical
significance of B7 family molecules including PD-L1 in PDAC. Among the investigated molecules,
only PD-L1 showed prognostic relevance. Postoperatively, the median survival in patients with low
PD-L1 expression was 24 months, in comparison to 10 months for high PD-L1 expression (p < 0.0001).
Geng et al. [29] examined 40 pancreatic cancer specimens for PD-L1 and IL-10 expression using RT-PCR.
Analysis of the relationship between PD-L1 and tumor clinicopathological characteristics showed that
positive PD-L1 expression was associated with reduced tumor differentiation and advanced tumor
stage. Birnbaum et al. [30] conducted a retrospective study, wherein they analyzed PD-L1 mRNA
expression in 453 pancreatic cancer samples. Nineteen percent of the cancer samples had upregulation
of PD-L1 expression. PD-L1 positive pancreatic cancer samples displayed evidence of lymphocyte
exhaustion and was associated with shorter disease-free survival and overall survival in multivariate
analysis. Hence, PD-L1 overexpression can serve as a novel biomarker for prognostication and a
potential target for the treatment of PDAC with PD-1/PD-L1 inhibitors.

Table 1. Studies reporting programmed cell death protein-1 (PD-L1) expression rates and outcomes in
patients with pancreatic ductal adenocarcinoma (PDAC).

Study Number of Patients
with PDAC

PD-L1 Detection
Method

PD-L1 Positive
Rate

OS/DSS HR
(95% CI)

Nomi et al. [15] 51 Protein (IHC) 39.2% 2.66 (1.21–5.85)
Wang et al. [26] 81 Protein (IHC) 49.4% 2.08 (1.17–3.72)
Chen et al. [27] 63 Protein (IHC) 57.1% 1.60 (0.65–3.93)
Loos et al. [28] 40 mRNA 50% 4.67 (1.97–11.06)
Geng et al. [29] 40 Protein and mRNA 55% Not Reported

Birnbaum et al. [30] 453 mRNA 19% 2.22 (1.48–3.33)

4. Mismatch Repair (MMR) Deficiency and Hypermutation in Pancreatic Cancer

The mismatch repair (MMR) system plays a pivotal role in the repair of DNA sequence mismatches
during replication. Defects in the MMR system (dMMR) or loss of function of one of the MMR proteins
(MLH1, MSH2, MSH6 and PMS2) causes errors in DNA replication, leading to the high burden of
mutations that accumulate in microsatellites (short tandem repeats that are prone to DNA replication
errors), resulting in MSI [31]. A defective MMR system leads to an accumulation of somatic mutations,
resulting in a higher neoantigen load, which promotes proinflammatory cytokines and activation of
T cells. Increased neoantigens and cytotoxic T cell recruitment contributes to the immunogenicity of
dMMR tumors and hence, sensitivity to immunotherapy [32].

Tumors with dMMR/MSI can develop either as a result of a germline mutation in the MMR gene,
i.e., Lynch syndrome, or more commonly, as epigenetic inactivation of the MLH1 gene [33]. Tumors
are classified as MSI-high (MSI-H) if they have two or more of the five microsatellites markers to show
instability, MSI-low (MSI-L) if only one of the markers shows instability, and MSIstable (MSS) if none
of the markers show instability [34]. The clinical implications of MSI-L are unclear. Tumor mutational
load (TML) is defined as the total number of mutations per coding area of a tumor gene, and tumors
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that are MSI-high (MSI-H) typically have high TML [35]. Evidence suggests that tumors with high
TML status have increased sensitivity to immunotherapy [36].

Due to the recently approved site agnostic indication for pembrolizumab, a recent update in the
National Comprehensive Cancer Network guidelines encourage MSI testing for locally advanced and
metastatic PDAC [37]. The DNA mismatch repair or microsatellite instability in PDAC can be assessed
by IHC and PCR, respectively. MSI testing can be performed on fresh or frozen samples using PCR
techniques which primarily detect instability [33]. Depending on the PCR test results, tumors are
classified as MSI-H, MSI-L, or MSS as described above. MMR protein expression can also be detected
by IHC, as a loss of expression in ≥1 mismatch repair proteins this is labelled dMMR. The advantages
include wide availability, cost effectiveness, and rapid detection of loss of specific mismatch gene
product, and thereby can direct germline testing to that gene. In most instances, MMR testing by
IHC and MSI testing by PCR are concordant [38]. Another test that is clinically available and has
therapeutic relevance is next generation sequencing (NGS), which can help measure tumor mutational
burden, MSI status, specific actionable mutations, and germline mutations within the tumor.

The prevalence of dMMR/MSI in PDAC is likely very low, but literature in this regard is
inconsistent. Hu et al. evaluated MMR status on 833 PDAC cases using NGS assays targeted to
perform deep sequencing of all exons and selected introns. They found dMMR in PDAC is a rare
event occurring at a frequency of 0.8% (7/833) and all 7 patients with dMMR PDAC were found to
have Lynch syndrome [39]. Kim and colleagues conducted a prospective analysis of PD-L1 and MMR
IHC on 430 patients (6/430 with PDAC) with advanced gastrointestinal and genitourinary cancers.
Among the 394 evaluable for MMR/MSI status, 18 patients had dMMR tumors. The dMMR was
most common in gastric cancer and colorectal (11.1%), and nearly 0% in PDAC [40]. However, some
others have reported MSI/dMMR in PDAC to be as high as 22% [41]. The discordance with regard to
its prevalence in pancreatic cancers could be confounded by variabilities in histology, sample sizes,
and more so due to non-standardized testing and evolving detection methods.

5. MSI as a Prognostic Marker and Correlation of MSI, PD-L1 and Tumor Mutational Load (TML)
in Pancreatic Cancer

The favorable prognosis of MSI positive tumors compared to MSI negative tumors such as
colorectal cancer [42], gastric cancer [43], and cancer of papilla of Vater [44] is well established.
Interestingly, smaller studies suggest that the prognosis of MSI positive breast cancer [45] and non-small
cell lung cancer [46] is worse than MSI negative tumors. Though limited literature exists, PDAC
patients with dMMR have been reported to have prolonged survival rates. Nataka et al. [47] examined
the prognostic impact of microsatellite instability in 46 subjects that underwent resection of pancreatic
cancer. DNA was analyzed using PCR techniques and revealed eight patients (17.4%) with MSI
positivity. Univariate analysis showed MSI positives patients had significantly longer survival time
compared to MSI negative patients (median survival term, 62 months versus 10 months, respectively;
p = 0.011). Yamamoto et al. [48] analyzed 100 sporadic and 3 hereditary PDACs for MSI. Of the 100
sporadic cases, 13 were MSI-H (13%), 13 were MSI-L (13%), and 74% were MSS. All the three hereditary
tumors (Lynch syndrome) were MSI-H. Patients with MSI-H tumors had significantly prolonged
survival times compared to patients with MSI-L and MSS tumors (p value of 0.0057). The etiology for
improved survival in MSI-H resected PDAC tumors is unclear, but thought to be due to enhanced
immunogenicity in these tumors that are deficient in DNA replication error repair.

Increased expression of PD-L1 and dMMR/MSI status on tumors may be useful predictive
response biomarkers for immunotherapy. The overlap of PD-L1 and dMMR has not been extensively
studied. Kim and colleagues [40] further analyzed 365 patients for both PD-L1 and MLH1/MSH2
expression. PD-L1 expression was seen in 38.9% (7/18) of dMMR tumors and 15.2% (15/376) of
MMR proficient tumors, hence implying a significant association between PD L1 expression and
MLH1/MSH2 loss (p = 0.01). Theoretically, dMMR tumors tend to have a high mutational burden with
increased neoantigen expression and tumor infiltrating lymphocytes (TILS), all of which are expected
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to increase PD-L1 expression [49]. The correlation between TML, dMMR, and PD-L1 was studied by
Salem et al. [35], who analyzed 4125 tumors from 14 different gastrointestinal cancers, including 870
patients with PDAC. They found a lower prevalence (1.4%) of TML-high (defined as greater than or
equal to 17 mutations/MB) in PDAC. PD-L1 expression was positive in 11.1% (1/9) of MSI-H PDACs
and 8.6% (69/806) of MSS PDACs. In the pancreatic adenocarcinoma subgroup, among patients who
had either MSI-H or MSI-L, the majority had TML-low, except for a very small percentage that had
both MSI-H and TML-high. In MSS PDACs, only 1.4% were TML-high. Future clinical trials would be
required to study whether the integration of PD-L1, MSI, and TML could serve as a better predictive
marker of response to immunotherapy in PDAC.

6. PD-1/PD-L1 Inhibitors in the Treatment of Pancreatic Cancer

Currently, the US Food and Drug Administration (FDA) has approved PD-1 inhibitor
pembrolizumab for the treatment of unresectable or metastatic solid tumors characterized by MSI-H
status or dMMR that has progressed following prior treatment. The pivotal data that drove the FDA
approval for the site agnostic indication of Pembrolizumab in treatment of MSI-H tumors [50] is
based on the results from five single-arm clinical trials that enrolled a total of 149 patients, including
Keynote (KN)-016 (n = 58), KN-164 (n = 61), KN-012 (n = 6), KN-028 (n = 5) and KN-158 (n = 19).
Patients with colorectal cancers constituted a significant proportion in the combined cohort of these
five studies. Only a total of six patients had pancreatic carcinoma, with a significant majority having a
response to ICB with anti-PD-1 therapy. The pivotal phase 2 study conducted by Le et al., [32] that
evaluated 86 patients with 12 different dMMR cancers, including pancreatic cancer, demonstrated
the efficacy of PD-1 inhibition with objective radiographic responses and complete responses in 53%
and 21% of patients, respectively. Keynote (KN)-164 [51] and KN-158 (NCT02628067) assessed the
efficacy of pembrolizumab in patients with MSI-H tumors who had progressed on ≥2 prior lines of
therapy and showed robust activity against MSI-H tumors in heavily pretreated individuals. KN-164
enrolled 61 patients with MSI-H colorectal cancer (CRC). KN-158 enrolled 19 patients and included 2
patients with pancreatic cancer. Median follow up was 4.5 months for MSI-H non-CRC, and overall
response rate for MSI-H non-CRC was 42.9%, with 8 confirmed responses (per RECIST criteria) and 1
unconfirmed response.

Interestingly, both studies showed the positive benefit of ICB in patients with MSI-H tumors
irrespective of PD-L1 status. Another PD-1 inhibitor, nivolumab, has been approved for MSI-H/dMMR
metastatic colorectal cancer that has progressed following first-line treatment. It was also approved for
treatment of hepatocellular carcinoma in patients who have been previously treated with sorafenib [52].
These data strongly suggest that compared to PD-L1, dMMR is as a robust determinant of response to
ICB, with no significant discrepancies seen among studies.

With the advent of ICB, there has been a paradigm shift in the treatment of various other
malignancies, particularly non-small cell lung cancer and melanoma. Unfortunately, the success of
immunotherapy seen in certain tumor subtypes hasn’t been replicated in the treatment of PDAC, except
in patients with dMMR/MSI-H tumors (Table 2). In early clinical trials, single-agent anti-PD-1/PD-L1
or anti-CTLA-4(Cytotoxic T lymphocyte antigen-4) agents have been ineffective in the treatment
of PDAC.

Some of the plausible reasons contributing to resistance to immunotherapy can be explained by
the low immunogenicity of PDACs, attributed to low mutational burden [53] and fewer neoantigens,
therefore, creating an environment which is less easily recognized by the immune system. In the
study from Alexandrov et al. [54], the mutational burden of 7042 cancers were analyzed. It was found
through genomic analysis that melanomas had an average of 511 coding mutations, but PDACs only
had an average of 61 coding mutations. The other feature of PDACs that makes them less responsive to
immune therapy is the hypothesis of an immunosuppressive tumor microenvironment characterized
by dense desmoplasia, infiltration by immune suppressive myeloid cells and very few T cells [55].
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Furthermore, PDAC cells can evade immune attack by downregulating the Fas receptor and induce
apoptosis of cytotoxic T cells by intensifying the Fas ligand expression [56].

7. Future Directions

Pancreatic cancer continues to be one of the most aggressive cancers and is traditionally considered
to be a nonimmunogenic cancer. A possible explanation is a limited effector T cell in the tumor, along
with increased regulatory T cells, in a very immunosuppressive microenvironment. The promise of
potentiating the immunogenicity of pancreatic cancer is based on initial results from combination
therapies i.e., conventional cytotoxic agents, radiation therapy, and therapeutic vaccine with immune
checkpoint inhibitors, with the premise that the addition of these novel combinations to ICB can
potentially augment the anti-tumor immunity in an immunologically inert tumor microenvironment
that is characteristic of PDACs. This concept revolves around the fact that the addition of these agents
to ICB likely facilitates the conversion of an immune desert to an immune-active microenvironment.
Therapies to augment the activity of immunotherapy and that overcome the immunosuppressive
environment of PDACs can be broadly classified into three categories.

Firstly, agents that enhance naïve T cell activation include chemotherapy (gemcitabine), radiation,
vaccination (GVAX, CRS-207), and agonist CD-40 agents. Animal models have provided evidence that
gemcitabine can potentially augment antitumor immunity [57]. Plate and colleagues evaluated the
effects of gemcitabine on T cell subsets, B cells, myeloid dendritic precursor cells, and memory and
naïve T cells in 10 patients with PDAC [58]. Their study confirmed that gemcitabine might suppress
memory T cells, but augments naïve T cell function, hence they concluded that gemcitabine was not
immunosuppressive, and it may enhance responses to immunotherapy and certain vaccines. Early
preclinical studies have shown antibodies against PD-1 and PD-L1 induced a significant antitumor
effect in a mouse pancreatic tumor model, which was further enhanced when administered in
combination with gemcitabine [15]. Currently, studies to evaluate the potential value of combining
anti-PD-L1 antibody and gemcitabine are ongoing. The other option is combining PD-1/PD-L1
inhibitors with a pancreatic cancer vaccine (GVAX). The vaccine is composed of irradiated, allogenic
pancreatic tumor cells that express granulocyte-macrophage colony stimulating factor (GM-CSF).
Also, when GVAX was used with low dose cyclophosphamide in 39 patients with PDAC, it resulted
in the formation of intratumoral lymphoid aggregates and T cell infiltration in 33 of 39 patients,
thus providing an example of a vaccine based immune therapy converting a non-immunogenic
tumor into an immunogenic tumor [59]. But a phase 2b, randomized, multicenter study (ECLIPSE)
comparing GVAX pancreas and CRS-207 to chemotherapy did not show any survival benefit in the
combination arm (cyclophosphamide plus GVAX plus CRS-207) when compared to chemotherapy
(physician’s choice of single-agent chemotherapy) [60]. These results are in contrast to the earlier
phase 2a study and ongoing studies are combining CRS-207 with immunotherapy to enhance the
immune responsiveness of PDAC. A similar proof of concept, albeit having much better success
of converting an immune evasive microenvironment to an immune permissive one, has been used
in metastatic melanoma where combinations of talimogene laherparepvec (T-VEC), an oncolytic
virus derived from an attenuated recombinant type-1 herpes virus with pembrolizumab [61] and
ipilimumab [62], has shown promising outcomes in early phase clinical trials. This seems to suggest
that unlike melanoma, certain intrinsic properties of the PDAC tumor cells that create a significant
degree of immune inertness [63] may prevent generation of a robust anti-tumor response. Currently,
numerous randomized clinical studies are evaluating the combinations of anti-PD-1 therapy and GVAX
vaccine in PDAC. Radiotherapy and CD40 agonists have also demonstrated the ability to augment
various aspects of T cell immunity and are currently being studied in combination with PD-1/PD-L1
inhibitors. (Table 3) Secondly, agents targeting the immunosuppressive microenvironment including
radiotherapy, Janus kinase (JAK) inhibitors and phosphoinositide-3-kinase (PI3K) inhibitors [64]
that have shown promise in preclinical studies are being further evaluated. Lastly, agents to break
down the desmoplastic stroma, such as PEGPH20, were assessed in a phase 2 study (HALO 202)
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comparing PEHPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients
with untreated, metastatic PDAC. Results from this study showed improvement in progression free
survival PFS (p = 0.049) in the PEGPH20 plus chemotherapy arm, especially in those with high
hyaluronan accumulation [65]. Ongoing studies are combining anti-PD-1/PD-L1 agent with vaccines,
radiation, and chemotherapy in the treatment of PDAC, some of which are listed below (Table 3).
The ongoing trials are focusing on augmenting various steps of the cancer immunity cycle by the
combination therapies.

Table 2. Completed Clinical trials of the PD-1/PD-L1 blockade in PDAC.

Study Number of
Patients Phase Study Medication Cancer Type Results

Brahmer et
al. [66]

207 (14 patients
with PDAC) 1 Anti PD-L1

Non-small cell lung cancer, melanoma,
renal cell cancer, ovarian cancer, colorectal
cancer, pancreatic cancer, gastric cancer and
breast cancer

No objective
response

Patnaik et
al. [67]

30 (one patient
with PDAC) 1 Pembrolizumab

Colorectal, melanoma, merkel cell
carcinoma, non-small cell lung cancer,
prostate cancer, Kaposi sarcoma, soft tissue
sarcoma, pancreatic adenocarcinoma

No objective
response

Nesselhut
et al. [68] 7 (all PDAC) 1 Nivolumab plus

dendritic cells Metastatic pancreatic cancer
2 patients with

partial
response (PR)

Weiss et al.
[69]

17 (11 evaluable
chemo naïve

patients)
1b/II

Gemcitabine,
Nab-Paclitaxel and

Pembrolizumab
Metastatic pancreatic cancer

PR for 3
patients and

Stable disease
for 8 patients

Table 3. Selected ongoing trials evaluating anti-PD-1/PD-L1 agents in advanced pancreatic cancer.

Clinical Trials
Identifier

Study
Phase

Stage of
Disease Study Arm(s) Endpoint

NCT02648282 2 Locally
advanced

Cyclophosphamide (CY) + GVAX + Pembrolizumab +
Stereotactic body radiation therapy (SBRT)

Distant metastasis
free Survival

NCT03336216 2 Advanced

Investigator choice chemotherapy (Arm A)
Nivolumab and CSF1R antibody Cabiralizumab (Arm B)
Nivolumab, cabiralizumab plus
Gemcitabine/nab-paclitaxel (Arm C)
Nivolumab, cabiralizumab plus FOLFOX

mPFS

NCT03190265 2 Advanced
CY+Nivolumab+Ipilumumab + GVAX vaccine +
CRS-207 (Arm A)
Nivolumab + Ipilumumab + CRS-207 (Arm B)

ORR

NCT02451982 1/2 Resectable
PDAC

CY/GVAX (Arm A)
CY/GVAX with Nivolumab (Arm B)

Median IL17A
expression in
vaccine-induced
lymphoid
aggregates. SE: OS
and DFS

NCT02558894 2 Advanced Anti PD-L1 agent Durvalumab (Arm A)
Durvalumab plus anti CTLA-4 Tremelimumab (Arm B)

ORR
SE: PFS, OS, best
objective response,
disease control rate

NCT02309177 1 Advanced Nab-Paclitaxel and Nivolumab (Arm A)
Nab-Paclitaxel, Gemcitabine, and Nivolumab (Arm B)

Safety and
dose-limiting
toxicity

NCT02303990 1
Advanced

(other cancers
included)

Pembrolizumab plus hypofractionated radiation therapy Number of adverse
events

NCT02546531 1
Advanced

(other cancers
included)

Pembrolizumab + Gemcitabine and Defactinib (FAK
inhibitor)

Safety and toxicity,
ORR, PFS
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Table 3. Cont.

Clinical Trials
Identifier

Study
Phase

Stage of
Disease Study Arm(s) Endpoint

NCT01714739 1/2 Advanced
Solid Tumors

A Study of an Anti-KIR Antibody Lirilumab in
Combination with an Anti-PD1 Antibody Nivolumab
and Nivolumab Plus an Anti-CTLA-4 Ipilimumab
Antibody in Patients with Advanced Solid Tumors

Safety and
tolerability and
ORR

NCT02311361 1/2
Unresectable

Pancreatic
Cancer

Immune Checkpoint Inhibition (Tremelimumab and/or
MEDI4736) in Combination with Radiation Therapy in
Patients with Unresectable Pancreatic Cancer

Safety and ORR

NCT03404960 1/2
Advanced
Pancreatic

Cancer

Niraparib + Ipilimumab or Nivolumab in Progression
Free Pancreatic Adenocarcinoma After Platinum-Based
Chemotherapy (Parpvax)

PFS

NCT03006302 2
Metastatic
pancreatic

Cancer

Epacadostat, Pembrolizumab, and CRS-207, With or
Without CY/GVAX Pancreas in Patients with Metastatic
Pancreas Cancer

Dose, survival

mPFS: median progression-free survival; ORR: objective response rate; OS: overall survival; DFS: disease free
survival; SE: secondary endpoints.

8. Conclusions

Despite recent advances in combination chemotherapy regimens, PDAC remains a deadly
malignancy with dismal outcomes. ICB with PD-1 and PD-L1 antibodies have demonstrated durable
response rates, predominantly in immunogenic tumors, and unfortunately, pancreatic cancer does
not belong to that category. PD-L1 expression and MSI status is prognostic and predictive of
immune responsiveness in many malignancies. Single agent immunotherapies are ineffective in
pancreatic cancer. Preliminary results are more promising for a combined integrated approach utilizing,
chemotherapy, radiation therapy, immunotherapy, and other targeted agents to augment the immune
response in PDAC. This strategy may provide some hope, which has been elusive in pancreatic cancer.
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