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Abstract: The shoulder is one of the most mobile and unstable joints in the body. When the 

function of the shoulder muscles is altered, and it is without the appropriate neuromotor control, 

the shoulder can become dysfunctional. It is unknown how previously injured individuals vary in 

movement patterns or whether their brains change compared to their healthy counterparts. The 

purpose of this study was to compare neuromotor control of the shoulder between individuals 

with and without a previous shoulder injury. To achieve this, we used an upper extremity task 

with motion capture to analyze kinematic performance of the shoulder complex and 

electroencephalography (EEG) to evaluate neural connectivity of the brain. We hypothesized 

that individuals with previous injury to the shoulder would have different kinematic patterns as 

well as a less direct or evasive way of achieving their goal-oriented trajectory. We also 

hypothesized that participants with previous shoulder injury to have more diffuse patterns of 

brain connectivity during performance of the task, as compared to healthy participants. Our 

kinematic results made it evident that healthy and post-injured individuals have different 

anterior/posterior trunk displacement and hand pathways toward their targets. Our neurological 

results showed significant changes in brain connectivity in post-injured individuals across 

conditions. RPE scoring increased and decreased in response to an increase and decrease in 



 

weight resistance, but scores were higher in post-injured individuals. Further research is needed 

to understand how individuals modify movement kinematics in different joints and determine 

how consistent these changes are across tasks and patterns of brain activation.  
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Chapter I: Introduction  

The shoulder is one of the most mobile and unstable joints in the body. The superficial 

muscles and especially the rotator cuff play an important role in stabilization and control of 

complex courses of motion(1). When the function of the shoulder muscles is altered, and it is 

without the appropriate neuromotor control, the shoulder can become dysfunctional. This could 

result in poor performance of athletes during competition and individuals performing daily 

activities. The functionality of the muscles around the shoulder after injury, and how chronic 

injury affects neuromotor control strategies, have not been well documented. This study sought 

to identify the relationship of compensation due to shoulder injury on brain activation (using 

electroencephalography; EEG), and differences in movement kinematics among healthy and 

post-injured participants (using 3D motion capture).   

Injury to a major joint of the body like the shoulder complex can often result in various 

alterations in an individual’s activities of daily living. Many individuals strive to regain their 

normal routines as quickly as they can. Active individuals among this population strive 

especially hard to reclaim their fast-paced lives, yet this quick recovery can cause more harm 

than good(2). Interest in how the brain and neuromotor system adjust following injury, as well as 

the deficits in range of motion, has grown over the years. The ability of an injured shoulder to 

complete the same movements as before the injury becomes of question(3). It is known that the 

efficacy of muscle activity is dependent upon the optimal alignment of the scapula on the chest 

wall and the length-tension relationship of the scapular stabilizers and rotator cuff. Therefore, for 

optimal dynamic control during activity, the scapula stabilizers must activate in a consistent and 

coordinated fashion(1). This ability to call on and activate various muscles to perform a multitude 

of tasks involves a deeper look into the neural networks related to brain connectivity. 
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Brain activity is dependent on the task (i.e., cognitive or physical) in which an individual 

is engaged. Connections between different areas of the brain can vary in relation to the task an 

individual is completing as well as the individual’s overall health. Not only might individual 

brain regions respond differently in the case of a chronically injured shoulder, but the patterns of 

communication between brain regions might also be altered to accommodate compensatory 

upper extremity behavior(5). However, these patterns of communication have not been explicitly 

evaluated in the context of chronic shoulder injury or dysfunction.  

It is unknown how previously injured individuals vary in movement patterns in relation to 

their healthy counterparts. It is also of question of how the connectivity of the brain changes 

between the two groups. Very few studies have been found to relate the intertwining dynamics of 

neuromotor control and brain connectivity.  

Purpose:  

The purpose of this study was to compare neuromotor control of the shoulder between 

individuals with and without a previous shoulder injury. To achieve this, we used an upper 

extremity task to analyze kinematic performance of the shoulder complex and 

electroencephalography (EEG) to evaluate neural connectivity of the brain.  

Hypothesis:  

H1: We hypothesized that individuals with previous injury to the shoulder would have different 

kinematic patterns than individuals who had never experienced a shoulder injury. We expected 

participants with previously injured shoulders to have a less direct or evasive way of achieving 

their goal-oriented trajectory as compared to healthy participants.   

H2: We hypothesized that participants with previous injury to the shoulder would have more 

diffuse patterns of brain connectivity during performance of the task, as compared to healthy 

participants.   
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Significance:  

Previous studies have identified the effects of an upper extremity injury on either the 

nervous, neuromotor or behavioral system, but very few studies have addressed the effects with a 

combination of all three systems. Therefore, we plan to collect electroencephalogram data and 

motion capture data on both healthy and post injured individuals to identify the differences 

among populations.   

Delimitations:  

The following delimitations were identified for this study:  

1. All participants had either healthy with no known injuries to the shoulder or with a 

known self-reported rotator cuff injury.   

2. This study was limited to shoulder injuries that occurred on the right shoulder. Left 

shoulder injuries were excluded from the study.  

3. All participants had to complete an injury questionnaire before the completion of the 

study.  
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 Limitations:  

The following limitations were identified for this study:  

1. The analysis was limited by the accuracy of the motion capture, and 

electroencephalogram, as well as by the existing error associated with data collections 

using a combination of these systems.  

2. The synchronization of movement with motion capture system and electroencephalogram 

may be limited using electromyographic system.  

3. The analysis of the upper extremity movement was captured in a three-dimensional space 

which required a simplification of the human body into four segments.   

4. The trial sequences among the three phases remained in the same for each participant.   

5. Concussions or any other brain injury were not specified on the self-reported injury 

questionnaire.   

6. The sample size was limited due to the Covid 19 pandemic.   
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Operational Definitions:  

Central Nervous System (CNS): Controls most functions of the body and mind. It consists of 

two parts: the brain and the spinal cord.  

Compensation: The counterbalancing of any defect of structure or function. A mental process 

that may be either conscious, or more frequently, an unconscious mechanism by which a person 

attempts to make up for real or imagined physical or psychological deficiencies.   

Electroencephalography (EEG): An instrument that measures electrical potentials on the scalp 

and generates a record of the electrical activity of the brain.  

Internal Model: A process that simulates the response of the neuromotor system in order to 

estimate the outcome of system disturbance.    

Mechanoreceptors: A specialized sensory receptive structure found in the skin and articular, 

ligamentous, muscular, and tendinous tissue about a joint.  

Neuromotor Control: coordination of muscular action with the nervous system. Requires 

precise proprioceptive input from the periphery, along with processing and input from the central 

nervous system  

Proprioception: A sense gained primarily from input of sensory nerve terminals in muscles and 

tendons (muscle spindles) and the fibrous capsule of joints combined with input from the 

vestibular apparatus.  



    

  

6 

Chapter II: Review of Literature  
Introduction  

It is known that the human body is susceptible to injury as well as adaptable after an 

injury has occurred. Changes in motor performance along with adaptations post-injury have been 

well documented in the literature(4). These changes experienced during the execution of a task 

can be observed on the muscular, nervous and behavioral levels. Alterations of the shoulder 

complex and movement patterns could be a result of fatigue experienced in the shoulder caused 

by either a single event (acute) or the accumulation of repetitive stress (chronic)(6). Other deficits 

that range from atraumatic to traumatic injury also play a critical role in altering shoulder 

kinematics pathways. The question that then arises is how does injury affect the neuromotor 

system, nervous system, as well as lead to behavioral adaptations as a whole?  

 Alterations in Normal Shoulder Function  

The rotator cuff is one of the most critical components of shoulder function. It is also 

important for the successful completion of tasks requiring the ability to position the arm and hand 

precisely in a space(7). The shoulder is dependent on coordinated, synchronous motion in all 

joints of the complex to be able to perform with its full mobility(8).  The joint complex consists of 

three degrees of freedom (DOF) that directly correlate with the stability of the shoulder. Injury to 

this shoulder complex reduces the controlled manifold of the shoulder, reducing stability of the 

joint(9). Among reduction of stability, injury could be due to various types of tendonitis, 

impingement syndromes, recurrent subluxations and dislocations, as well as degenerative joint 

disease(10). As damage occurs to the shoulder, there is an alteration in the normal kinematic and 

neurological patterns that are typically carried out during movement. These changes in 

kinematics can affect the distribution of forces on the body, leading to worsening or reoccurring  

injuries(6).   
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The function of the shoulder complex relies on many intrinsic and extrinsic factors. 

Distractive forces seen on the glenohumeral joint during athletic events play a role in increasing 

tensile forces and static restraints in the shoulder. This distraction of the glenohumeral joint leads 

to instability as well as to mechanoreceptor damage. After damage occurs in the 

mechanoreceptors, kinesthetic awareness of the shoulder is inhibited, and the shoulder becomes 

dysfunctional(4).  However, deficits and modifications experienced in upper-limb movements 

may occur in a variety of ways. One way could consist of alterations in kinematic patterns that 

may result in injury. A common injury that results in a modification of patterns would be where 

pain is present, and the body uses compensation to work around that pain. However, another way 

would be when alterations in the kinematic pattern is what causes the injury and injury due to 

muscle fatigue is an example of this. Smidt and Mcquade(10) reported that on a gross scale, the 

synchronicity of motion between the scapula and the Humerus is altered by fatigue of the 

muscles.   

The shoulder complex is the most mobile region in the body and is dependent on the 

synchronous movement of all of its components to be fully mobile(8). Alterations in movement 

and behavior patterns, as well as the neural control of the shoulder that results in a shift in muscle 

activations, play a crucial role in the changing of normal shoulder function. These separate 

variables intertwine to alter and adapt movements performed by the shoulder. After normal 

shoulder function is compromised, these variables provide the shoulder with the capacity to 

complete the fullest extent of mobility as possible, even with limitations present.   

Muscular System: A Role in Stability and Proprioceptive Feedback  

The overall musculature of the shoulder complex is made up of more than 25 muscles(10). 

Though the amount of muscle support that the shoulder has surrounding it is great, the shoulder 

is still intrinsically very unstable. It relies on the integrity of noncontractile structures to provide 
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static stability. Though, not all are included, these structures consist of the glenoid labrum, 

capsule, capsular ligaments and bony articulation(4). Dynamically, the shoulder is mainly 

constructed of the rotator cuff, deltoid, biceps brachii, teres major, latissimus dorsi, and 

pectoralis major muscles. These muscles provide important stabilizing support for the shoulder 

during movement(11). The dynamic contributions emerge from feedforward and feedback 

neuromotor control of the muscles crossing the joint. Behind the effectiveness of the dynamic 

restraints are the biomechanical and physical components of the joint, which contribute to range 

of motion, muscle strength and endurance(12).  

 The muscles of the rotator cuff demonstrate very strong direction-specific activity during 

task-oriented movement pertaining to isometric rotation in the unsupported mid-range abduction 

of the arm(13). This example of movement leaves the shoulder and arm vulnerable to various 

loads. The human body must be able to call on various groups of muscles to perform movements 

during a variety of loads and actions. Multiple command options are offered because of the range 

of muscle groups present and acting about the joints, and because of the many motor units 

comprising each muscle(14). However, it is not easy to separate the neuromotor control over 

motor activities and the neural commands that control the overall motor program. Lephart(12) 

gives an example of this by describing the execution of throwing a ball. While performing a 

throw, particular muscle activation sequences occur in the rotator cuff muscles to ensure optimal 

glenohumeral alignment and compression required for joint stability are provided. The individual 

throwing the ball is consciously and voluntarily deciding to perform this particular task. 

However, the involuntary muscles activating during this task are doing so unconsciously and 

synonymously with the voluntary muscle activations directly related to the characteristics of the 

task (e.g., speed, direction)(12). Therefore, it is evident that the conscious decision to perform an 
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action and the voluntary and involuntary patterns of neuromotor activation are linked and driven 

by the central controller.   

In relation to the status of the joint and its muscles, proprioceptive information of the 

shoulder comes into consideration, where there is a specialized form of somatosensation that 

focuses on the joint movement (e.g., kinesthesia) and joint position(15). Afferent proprioceptive 

feedback develops from information transmitted by mechanoreceptors to the central nervous 

system, relaying information about joint position and joint movement (16). Mechanoreceptors are 

responsible for this proprioceptive feedback causing neuromotor responses which are present in 

the musculature surrounding and controlling the joint(12,16,17) . Therefore, it is logical to assume 

that when muscles are injured, they begin to shift in their normal functioning roles, and that 

proprioceptive feedback is also affected. The function of the muscular system directly affects the 

feedback to the nervous system and vice versa.   

Nervous System: Central Nervous System’s Role in Task-Oriented Movement  

  The direct interaction between the static and dynamic components of functional stability 

is mediated by the sensorimotor system. According to Riemann and Lephart(12) the sensorimotor 

system encompasses all of the sensory, motor and cognitive integration and processing 

components of the CNS involved in maintaining functional joint stability. There have been 

significant advances in literature in understanding how the CNS adapts arm movements to 

changes in arm and environment dynamics. The nervous system has multiple ways of assessing 

its own motor performance. The CNS may adopt a variety of motor command sequences to 

perform the same task within a given environment(14). Integration of sensory input received from 

all parts of the body is largely considered to begin at the level of the spinal cord(15).  

Proprioceptive information from the shoulder and the overall upper limb are conveyed via the 

spinothalamic tracts and relayed to the somatosensory cortex where it is referred to a central 
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body map allowing the conscious awareness of arm position and movement in space(18). The 

CNS can control the limbs by commanding an array of stable equilibrium positions aligned along 

the desired movement trajectory(19).   

It is known in the literature that planning, initiation and control of upper extremity 

movement is a distributed process in the brain(20,21). It is also known that specific locations of 

activation are especially seen in the sensorimotor cortices of the brain(21–23). The results of a 

study performed by Nathan et. al(21) suggested that functional, goal-oriented movements like 

reaching and grasping elicit higher activation states when compared to nonfunctional 

reachingonly or grasping-only movements. It is stated that the amount of cognitive effort needed 

to perform the specific movement changes. The higher activation intensities and increased area 

of activation for goal-oriented reaching and grasping task could reflect the increased effort 

needed to perform the task as compared to the simple reaching-only or grasping-only task.   

As previously shown, the brain varies in its activation levels depending on what 

movement is occurring as well as the location of the activation in the brain. The parietal lobe, 

located between the central sulcus and the Calcarine sulcus is highly involved with the 

processing of  proprioceptive and visual information to provide the individual with spatial 

information of that particular environment or workspace (24). The cerebellum contains a 

functional organization that suggests that lateral portions of the cerebellum correspond to activity 

in the more distal parts of the body (e.g., hand, foot)(25). Accordingly, the cerebellum’s ability to 

function in its role of coordinating specifically timed movements, continuous comparisons 

between movements of different joints in the upper extremity would be needed to assure 

continued accuracy(26).   
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According to Hork and Rymer(27) kinematic errors are transduced by both vision of the 

moving limb and by muscle spindle afferents which appear to signal a combination of both 

muscle fiber length and velocity. These errors can be a product of a simple error performed by an 

individual or from an injury resulting in an error. Proprioceptive deficiencies, which exist in 

individuals with functional deafferentation, create major deficits in movement control(28,29), can 

result in increased movement variability, the inability to maintain stable hand postures without 

visual guidance, and a reduced capacity to detect and correct motion errors based on limb 

movement information after completing a task(30). However, performance of that task requires 

more than just the central nervous system to initiate and successfully execute the motor 

command, it is dependent on a compilation of systems working as one.   

Neuromotor Control  

The nervous system in combination with the muscular system provides the human body 

with its ability of motor control. The coordination of muscular action with the nervous system is 

known as neuromotor control. It requires precise proprioceptive input from the periphery, 

processing and input from the central nervous system (including learned or trained movements). 

The intertwining of systems involves timing of muscle recruitment as well as muscle contraction 

states(31). Neuromotor control makes reference to the nervous system’s control over muscle 

activation and its capacity for task performance(12). The role that neuromotor control plays is a 

critical component in the stability of the shoulder joint. In the perspective of joint stability, 

neuromotor control can be explained as the unconscious activation of dynamic constraints 

occurring in preparation for and in response to joint motion. It also has the ability to handle 

loading for the purpose of maintaining and restoring functional joint stability(12).  
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The architecture and the high mobility of the shoulder complex predispose nerves to 

various dynamic or static compressive and/or traction injuries(32). Deficits like fatigue and injury 

can affect the function of the entire shoulder including both the nervous and muscular systems.  

This loss in function can stem all the way down from the shoulder’s proprioceptive feedback to 

the CNS. In a healthy normal shoulder, afferent proprioceptive feedback that is integrated in the 

CNS evokes efferent neuromotor responses as both spinal reflexes and preprogrammed responses 

significant to functional stability of the should joint complex(11). However, because fatigue 

inhibits proprioceptive feedback from the shoulder to the CNS, the neuromotor responses may be 

hindered, leading to instability of the joint and eventually joint injury. If an individual’s ability to 

recognize joint position, especially in positions of susceptibility, is obstructed, they may be prone 

to injury due to increased mechanical stress placed on both static and dynamic structures 

responsible for joint stability(11).  

Researchers have found that, with training, activation of the appropriate musculature 

gradually shifted from a delayed error feedback response to a predictive feedforward response(33). 

This is important in the formation of internal models that help to better predict and control 

outcome of movements. Restoration of functional stability in the shoulder requires attention from 

both stabilizing structures that are compromised and the neuromotor responses that are vital to 

joint stability through a functional rehabilitation program(11). Thus, it is important to note that 

stabilization of the shoulder is widely dependent on both the muscular and nervous systems to be 

able to function to its full capacity.  

Neural Differences to Changes in Kinematic Patterns  

A basic understanding of motor control implies an understanding of what is being 

controlled and how the control process is being organized in the central nervous system.  Normal 

motor control suggests the ability of the central nervous system to use current and previous 
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information to coordinate effective and efficient movements by transforming neural energy into 

kinetic energy(34). The cerebellum is an essential part of the neural network involved in adapting 

goal-directed arm movements (38). When a sensory error is made due to varying problems (i.e., 

fatigue, habit or injury) an increase in brain activity can be observed(35). A critical feature of 

adaptation is that it allows individuals to alter their motor commands based on errors from prior 

movements. Differences in brain activity levels can be observed in many regions of the brain 

ranging from the parietal lobe to premotor areas, depending on what task or error that may have 

been performed.   

Connectivity between different brain regions is inferred from temporal associations 

between spatially remote neurophysiological events. One measure of connectivity is a correlation 

between two simultaneously recorded signals in the frequency domain, called coherence, which 

can be assessed in humans using EEG(36). Connections between different areas of the brain 

regions can vary depending on the task an individual may be completing and the healthiness of 

the individual. Not only might individual brain regions respond differentially in the case of a 

chronic shoulder injury, but the patterns of communication between brain regions might also be 

altered to accommodate compensatory upper extremity behavior. It is well known that the 

parietal and premotor areas share dense connections that facilitate computations related to upper 

extremity motor function(5) and that these connections are predominantly in the hemisphere 

contralateral to the moving limb. However, these patterns of communication have not been 

explicitly evaluated in the context of chronic shoulder injury or dysfunction.  

Behavioral Adaptations  

  Humans learn and adapt from the time they are born well into their adulthood.  

Throughout a lifetime there are many stages of learning, and each stage happens at different rates 

and in some cases overlap one another. In the Gentile model(37), the initial stages of learning are 
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defined as the basic movement pattern needed to achieve a goal, as well as being able to identify 

components of the environment that are important to that task. During this stage, the individuals 

are encouraged to go through trial and error while actively testing their abilities. The human 

mind learns and corrects itself through this trial and error process.   

The overall behavioral learning system shapes an individual’s movement and brain 

patterns with this adapting process. Motor skill learning consists of two learning processes, 

explicit and implicit learning(37). When considering explicit learning, the individual concentrates 

on the attainment of a singular goal, just like in the initial stages of learning(38). The goal-oriented 

movement is attempted for early success, the performer then is able to develop a sense of a  

“map” between their body and the conditions of the environment(38). Whenever kinematic 

movement patterns can be consciously adapted by the performer it is known to be regulated by 

explicit processes(37). Implicit learning is a form of unconscious, incidental and procedural 

knowledge acquisition that occur over a gradual period of time(39). An individual will 

unconsciously merge successive movements, couple simultaneous components and regulate 

active forces inherent in a particular task(37).   

What a system can and cannot learn, the magnitude of generalization, and rate of learning 

gives researchers clues to the underlying performance architecture(40).  The perceptual framework 

interprets the performance of motor tasks. When initially presented with a request to perform an 

entirely new movement, individuals look for relationships between previously executed movements 

and interpolate a reasonable approximation. As individuals practice the movement, they are able to 

store newly tried motor programs using a new representation based on apparent outcome(41). This 

ability to store new motor programs when presented with a new or different movement is an example 

of adaptation.   
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The concept of adaptation allows not for cancellation of effects in a novel environment, 

but for maximization of performance in that environment while predicting a re-optimized 

trajectory(42). In other words, instead of cancelling out a kinematic pattern that may cause pain 

due to injury, the pattern of the movement is re-routed to cause less pain and/or reduce worsening 

of the injury. So instead of adaptation being a cancellation process, it may calibrate the brain’s 

prediction of how the body will move and consider the costs correlated with new and different 

task demands(43). After injury, adaptation is inherently important for rehabilitation by making 

movements flexible, but it can also be used to ascertain whether some individuals can generate a 

more normal motor pattern(43,44).   

The question that then arises is does adaptation recalibrate the depiction of movement 

patterns in the brain? According to Kluzik et. al(44), the results suggested that gradual changes 

during training conditions resulted in smaller trial-to-trial movement errors and are more likely to 

lead to changes in neural representations of the body’s dynamics, with a greater generalization of 

adaptation across varying conditions(43,44). As individuals practice a novel task, the errors will 

decrease over time. Repeated adaptation can lead to learning of a new, more permanent motor 

calibration. Though less understood, this type of learning is likely to be an important method for 

making long-term improvements in individuals’ movement patterns(43). Once a successful pattern 

is established, the individual is able to distinguish between regulatory (directly influences 

movement) and non-regulatory (does not directly influence features of the environment) 

movement properties, and the next stage of learning begins(38).  

Conclusion  

The human body is known to be an adaptable system, made up of a multitude of 

structures that work together to create a coordinated functional unit. This system relies on this 
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constant coordination of movements to function properly in its full range of mobility. However, 

the balance of the body can be easily interrupted by the presence of an injury or a deficit of any 

type.   

Adaptation plays a critical role in assisting the body with coping with changes due to 

injury. Changes in motor performance along with adaptations after injury have been documented 

in many ways throughout the literature. The nervous system along with the muscular system have 

been presented as being crucial components for both functional and mechanical stability. It has 

also been shown that behavioral adaptation after injury leads to neural adaptation. This 

phenomenon leads to the hypothesis that when individuals experience a shoulder injury, the way 

they go about reaching their goal trajectory varies from healthy individuals who have never 

experienced an injury. The first hypothesis leads to the second hypothesis, which represents the 

behavioral changes through neural changes in the brain. The individuals who have experienced 

an injury to the shoulder are hypothesized to have varied activation patterns in the brain during 

preprocessing of a movement and during the movement itself.    

Understanding the neural correlates in the brain that pertains to upper extremity 

neuromotor control and how they relate to the control of goal-oriented tasks would be beneficial 

in the development of therapeutic paradigms. This knowledge may also provide insight regarding 

the mechanisms that facilitate cortical plasticity(21). In conclusion, understanding the 

innerworkings of each individual system that plays a role in the shoulder’s ability to function 

correctly is critical in knowing how to best reoptimize an individual’s kinematics after injury 

occurs. Each system (nervous, neuromotor and behavioral) affects the shoulder in their own 

individual ways. However, knowing how they collectively affect the shoulder is important in 

understanding the overall ability of the shoulder to readapt after injury.  



    

  

17 

  

Chapter III: Materials and Methods  

Introduction of Study Design:   

The purpose of this study was to measure the effects of previous injury on the neuromotor 

control of the shoulder. Participants were categorized into healthy and injured shoulders groups 

for this experiment. Following the completion of a questionnaire describing injury or non-injury 

experienced by the individual, a maximal strength test of the shoulder was performed and used to 

adjust the load on the participant’s wrist during the weighted trial of the study. Full range of 

motion was observed during three separate trials, and differences between the groups were 

measured.    

Participants:  

Ten participants in total were recruited to participate in this study. The participants 

consisted of two individuals with a self-reported previous injury to the right shoulder experienced 

between 6 – 12 months prior to participation in the study, and eight individuals with no previous 

injury to the right shoulder. Participants were a mean age of 22 years old ± 3 years.  

Participants were right hand dominant; as determined using the Edinburgh Handedness Inventory 

(See Appendix A). Participants who had previous injuries to their nondominant left shoulder 

were excluded from the study. Participants were informed of potential risks associated with the 

EEG and motion capture, and an informed consent was obtained before any measurements were 

taken (See Appendix B). The protocol and consent form were approved by the East Carolina 

University and Medical Center Institutional Review Board (UMCIRB).  

  

 



    

  

18 

Equipment and Measurement Protocol:  

Maximal Strength Testing   

  For the maximal strength protocol, participants extended their arm forward as they 

grasped a handle that was connected to a force transducer (BioPac Systems Inc., Goleta, CA).  

The force transducer was attached to a platform on which the participant was standing. 

Participants performed an isometric maximal velocity contraction of shoulder flexion in the 

sagittal plane, pulling upwards on the handle with their elbow at 180 degrees. They were asked 

to pull up with maximal effort for three seconds and then rest and they performed this 

contraction three times. Their maximum strength was calculated from the peak force in which 

they produced from the three sets. The force measurements calculated through this maximal 

strength protocol were used to normalize the percentage (i.e., 10 and 15% of max weight) used 

across the participants.   

Electroencephalogram  

For EEG preparation, participants were seated in a chair and any hair care products were 

removed from the hair with an alcohol-saturated cotton pad. The forehead was prepared by 

wiping the area with a cotton pad and a solution of pumice and Vitamin E, thereby removing any 

residual oil and dirt from the skin. Then, participants were fitted with a 64-channel EEG cap 

(Compumedics Neuroscan, Charlotte, NC) to record neural activity using SynampsRT 

(Compumedics Neuroscan, Charlotte, NC). Once the cap was in place and properly aligned, the 

scalp under each electrode was prepared by first gently abrading the skin using the wooden end 

of a standard cotton swab with pumice and Vitamin E to reduce impedance to the electrode, and 

then inserting a conductive gel with a 16-gauge blunt needle.   
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Vicon Nexus   

For Motion capture preparation, participants were seated in a chair surrounded by a  

Vicon Nexus system (Vicon, Oxford, UK) including six Vicon Bonita cameras and one Vicon 

Vero camera collecting at 120 frames per camera per second. Participants were asked to remove 

any clothing garments that were located on the arms for a more accurate application and reading 

of the trackers. The Upper Limb Model(45) marker set by Nexus was used in the placement of 

infrared markers during static calibration. In addition to static calibration markers, rigid body 

tracking markers were placed on various sites of an individual’s upper extremity including hand, 

forearm, upper arm, and thorax (Figures 1 and 2). Elastic bandages along with Velcro on the 

marker’s skeleton were used to attach markers to the appropriate sites on the participant.   

  

Figure 1: Represents the posterior view of  

participant set-up and marker placement.  

 Figure 2: Represents the lateral view of 

participant set-up and marker placement.  

 

Trials: Sequence Set-up  

Each participant performed in conditions designed to test upper extremity motor function. 

During the first portion of the study, the participant performed a simple static calibration trial, 

where the individual was in a “motorcycle pose” and hold that position for 3 seconds. The second 

portion of the study consisted of four trials with each trial consisting of three sequences with a 

fifteen second rest in between each sequence. The sequences performed evaluated a range of 
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motion as the arm is in extension. A target symbol moved in eighteen different directions to nine 

boxes. The hand segment was recorded using the “Center of Mass Position” to track where the 

hand was in space. Brain activity, difficulty level measured by RPE scores between each trial, 

along with neural and neuromotor activations were recorded. There are four conditions that were 

presented to the participant (e.g., free of resistance, 10% of maximum resistance, 15% of 

maximum resistance, and then free of resistance). The first condition consisted of being free of 

resistance. No additional load was added to the participant’s upper extremity during this 

condition. The participant went through the simulation sequence one time before the second 

condition begins.  

The second condition that the participant underwent used resistance. The resistant 

condition consisted of cuff weights (AliMed Inc, Dedham, MA) attached to the participant’s 

wrist. The load of resistance ranged between 1.36kg-6.8kg. A maximum testing protocol 

performed before the beginning of the study to get a participant specific maximum weight 

measurement. A percentage (i.e., 10% and 15%) of the individual’s maximum weight resistance 

was used as the load for the resistance trials. As before, brain activity, difficulty level, and 

neuromotor activations were recorded during the trials. Each of participant performed each trial 

with a resistance as well as no resistance. The arrangement of all four trials remained the same; 

Trial one consisted of having no weight applied to the participant’s wrist, followed by trial two 

having 10% of the participant’s maximum weight being applied, then trial three with 15% of 

their maximum weight, lastly trial four with no weight.   

Hand pathway coordinates were taken from the center position of the hand and were 

recorded from each frame and followed throw space. Displacement of the trunk was calculated 

by the max distance in which the trunk moved forward/backward as well as laterally, both 

subtracted from the minimum distance moved in both directions. Elbow angular position was 
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also calculated by taking the max degree in which the elbow moved subtracted from the 

minimum degree.   

Rate of Perceived Exertion/Questionnaire  

The rate of perceived exertion (RPE) was used to evaluate the level of difficulty or 

easiness of the task between each trial. RPE assisted in understanding what the participants 

experienced during each trial (See Appendix C). The scale also provided information on if the 

task was too demanding for the participant to complete. Along with RPE, an individual’s 

personal history with sport or injury may have some impact on the effect of movement and 

neuromotor compensation. As such, prior to leaving the laboratory, participants completed a 

questionnaire related to their self-reported injury history. This questionnaire disclosed no 

sensitive information (See Appendix D).  

Data Analysis   

The trajectories of the arm in the horizontal plane were measured using motion capture. 

Targets were presented to individuals and the infrared markers located on the participants were 

measured in a three-dimensional space. In general, a measure was selected to quantify the 

performance of the movements executed by each participant, and to assess differences in 

kinematics between group and trials. These measures were taken over the set of fifty-four 

movements that comprised each trial. Motion capture data were analyzed using Visual 3D (V3D) 

software (C-Motion Inc., Germantown, MD). Displacement analysis was calculated for trunk 

displacement, Elbow Flexion and right-hand pathways using V3D and Excel (Microsoft Inc., 

Redmond, WA). The motion capture marker set was filtered through a 4th bidirectional order low 

pass Butterworth filter with a cutoff frequency of 6Hz. Specifically, for EEG, the cross spectrum 

was derived from the frequency domain and calculated for all channel pairs. The cross spectrum 
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was then used to calculate corrected imaginary coherence(46) between all channel pairs to estimate 

patterns of interregional neural communication. Nonparametric permutation statistics were used 

to determine statistical differences (p < 0.05, 1000 permutations). No assumption could have 

been made about the underlying distribution of the data, thus a nonparametric permutation 

statistical approach, based on the FieldTrip toolbox(47), was taken. At the individual participant 

level, corrected imaginary coherence data were used to create a null statistical distribution, or a 

distribution that would be true if there was no dependence on specific channel pairs in the actual 

distribution of connectivity estimates. This was accomplished by randomly permuting electrode 

labels through 1000 permutations. A Fisher’s Z-statistic map was then calculated as:  

            Zmap = (true connectivity – permuted connectivity mean) / std (permuted connectivity) 

and was used to threshold the true connectivity estimates.  
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Chapter IV: Results  

  During the extent of the data collection, 5 of the 10 participants successfully completed 

the motion capture as well as the EEG portions of the study. All participants successfully 

completed the study using EEG. There were significant differences observed in the EEG data 

(Alpha band, Low and High Beta bands, and Theta band) among participant groups. In the motor 

control literature, Alpha, Beta and Theta frequency bands are most commonly used in the study 

of neural activations(48,49). Kinematic data that was observed by analyzing differences among 

healthy and post-injured individuals: thorax displacement, elbow angular position and right-hand 

trajectory. The third sequence of each trial was used to analyze each kinematic component.   

EEG Data   

Alpha Band (8 to 12 Hz)  

  The results of the EEG data showed significant differences in alpha wave connectivity 

between participant groups (i.e., healthy and post-injured). An increase in the distribution of 

alpha band connectivity was observed from healthy participants (Figure 3) to post-injured 

participants (Figure 4). Trial 4 reveals an even greater difference in alpha band connectivity 

between healthy participants (Figure 5) and post-injured participants (Figure 4). It was observed 

that from Trial 1 to Trial 4 (Figures 4 and 5) post-injured participants’ alpha band connectivity 

deviated from dominating in the posterior portion of the left hemisphere to spreading across into 

other brain regions. The healthy participants’ alpha band connectivity remained remotely 

unchanged from trial 1 to trial 4, shifting marginally to other regions.  
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Beta Bands (12 to 38 Hz)  

  Significant differences were observed in the connectivity for both low (12-15Hz) and 

high (22-38Hz) beta bands between the participant groups. As seen in Figure 7, the low beta 

analysis revealed that post-injured participants demonstrated a dense connectivity centrally of the 

brain throughout the extent of the trials whereas the healthy participants after trial 1 began to 

transfer the area of the densest connectivity to the parietal region of the brain. The connectivity 

of the post-injured participants shifted from a proportionally balanced volume of horizontal, 

vertical and diagonal connections (Trials 1-3) to predominantly vertical connections between 

frontal and parietal lobes (Trial 4). Figure 6 demonstrates the significant differences observed 

among high beta band between participant groups. The high beta analysis revealed that post-

injured participants possessed a greater distribution of significant connectivity during the entirety 

of the four trials in comparison to the healthy participants. The results showed significant 

connectivity concentrating more in the left frontal hemisphere for healthy participants, whereas 

post-injured participants varied across the cerebral cortex.  
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Theta Band (3 to 8 Hz)  

   Significant differences in theta band connectivity between participant groups were 

observed during the length of all four trials (Figure 9). Considerable differences were shown in 

the central most area of the brain. Post-injured participants’ connectivity remained centrally 

located for all trials. The healthy participants’ connectivity throughout the trials was considerably 

scattered to multiple brain regions, with a shift to the left posterior area of the brain in Trial 3. 

The quantity of connections observed is greatly increased in the post-injured theta band analysis 

in comparison to the healthy participants.  
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Kinematic Data  

Right Hand Trajectory Pathways  

  The motion capture showed slight differences in the right-hand pathways between 

participant groups. Similar variations of pathways were executed by both participant groups. The 

average pathway that the right hand of the healthy participants remained closely to a straight line 

to the nine targets (Figures 10-13). A similar trend was observed with the post-injured 

participants. Each trial displayed a similar resemblance. Trial 3 (15% of max weight), showed 

the biggest difference among participant groups (Figure 12).   
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Trunk Displacement   

   Differences in trunk displacement were observed in both lateral and anterior/posterior 

movement during the course of the four trials. The results of the lateral displacement (Figure 14) 

followed a similar pattern between participant groups, with post-injured showing a slightly 

higher change in lateral displacement. Anterior/Posterior displacement provided a greater 

difference among participant groups (Figure 15). Healthy participants displayed a horizontal 

linear relationship between trials. Post-injured participants had a steep linear increase from Trial 

1 to Trial 3 (no resistance to 15% of max resistance), with a decrease in trunk anterior/posterior 

displacement during Trial 4 (no resistance).   
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Figure 1 4 .   Represents the lateral displacement ( c m) of the trunk  during the third  

sequence of each of the four trials.   
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Figure 1 5 .  Represents the anterior and posterior displacement (cm) of the trunk   during  

the third sequence of each of the four trials.    
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Elbow Flexion  

  Differences in elbow flexion were observed between participant groups as well as trials. 

Slight changes were seen in the degrees of the elbow between groups as seen in Figure 16. Both 

groups decreased in angular position from Trial 1 to Trial 2 (No resistance to 10% of max). This 

decrease was followed by post-injured group increasing in angular position during Trial 3 (15% 

of max), from approximately 10º to approximately 14º. While the healthy group remained 

remotely unchanged from Trial 2 to Trial 3. Trial 4 (no resistance), showed a mirror effect to  

Trial 1 with a slight decrease in degrees change of the elbow position.   

 
  

 

Figure 1 6 . Represents the  differences in  elbow  angle  ( with standard deviation)  observed  

during the  four  trials by healthy and post - injured participants    
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Borg CR-10 Rate of Perceived Exertion   

  Healthy participants verbally reported lower RPE rating averaging about 1.82 ( scoring: 

easy) across the four trials. Post-injured participants reported a higher RPE rating averaging 

approximately 4.38 (scoring: sort of hard-hard) . The biggest increase in scoring for both groups 

was seen during Trial 3, as observed in Figure 17.    

  
Figure 17. Represents the averaged perceived exertion scores of both 

participant groups.   
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Chapter V: Discussion  

  This study compared the differential effects of past shoulder injury on movement patterns 

and brainwave connectivity during a repetitive reaching target task. The relative mechanics of 

the right upper extremity limb of both groups did not differ, though variation in trunk 

displacement was evident. The higher ratings of perceived exertion as the number of trials 

increased, demonstrated the task getting harder as weight was added to the individuals’ arms. It 

was observed that with a higher force demanding task, cross-spectral connectivity in the brain 

significantly increased for individuals with a pervious injury.  

Changes in Kinematics   

The hypothesis that individuals with previous injury to the shoulder would have different 

kinematic patterns than individuals who had never experienced a shoulder injury was supported 

by this study. The second part of the hypothesis which stated that participants with previously 

injured shoulders would have a less direct or evasive way of achieving their goal-oriented 

trajectory was partially supported. Anterior and posterior trunk displacement was greater for 

previously injured individuals, however lateral trunk displacement, elbow angular position and 

hand pathways were similar with healthy individuals.   

Trunk displacement, both anterior/posterior and lateral, and elbow angular position were 

analyzed due to their role in upper extremity mobility. It was observed that both groups 

demonstrated an increase in trunk lean in relation to a slight decrease in change of elbow angular 

position. This observation is consistent with previous studies which found an increase in elbow 

angle, and trunk lean as fatigue set in as a compensatory factor(6). Though fatigue was not 

necessarily a measured component in this study, perceived exertion and difficulty level was. It 

may be said that as an individual completed the trials, there was an increase in difficulty for both 
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participant groups. Therefore, changes in mechanics may have been used for compensation in 

increasing weight and difficulty. One noticeable relationship among both kinematic components 

mentioned (specifically during 15% of max resistance) was that during the trials with a heavier 

weight, an individual may increase greatly in trunk movement, with also a slight increase in 

elbow angular position as well. Though the elbow angular position fluctuated among all trials 

without an obvious trend between participant groups.  

Hand trajectory pathways remained relatively the same among participant groups, though 

it can be observed that as load was added pathways shortened for the post-injured individuals. 

Throughout the trials, trunk displacement was evident as well as change in elbow angular 

position. Overall, all participants had the same nine targets in which the right hand was intended 

to follow. Compensation was not seen as much in the pathways executed, but more in the varying 

mechanics more proximal to the shoulder (i.e., trunk displacement and elbow angular position).   

Changes in Brain Connectivity  

The hypothesis that participants with previous injury to the shoulder would have more 

diffuse patterns of brain connectivity during performance of the task, as compared to healthy 

participants was supported. Each frequency band (Alpha, Beta, and Theta bands) analyzed 

provided significant differences between the participant groups. The most significant evidence 

being observed in Alpha band and Theta band activity.  

As stated in previous studies, the alpha band is observed primarily in posterior regions of 

the brain, as well as laterally. Alpha activity is also higher in amplitude on an individual’s 

dominant side(50). It is known that the alpha band takes an important role of motor activity and 

motor imagery as well as visual tasks(51). It was observed that from the first trial of no resistance 
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to the fourth trial of no resistance, post-injured participants’ demonstrated an alpha band 

connectivity that deviated from dominating in the posterior portion of the left hemisphere to 

spreading across into other brain regions. This may suggest that as an individual’s effort begins 

to heighten, the brain must call on more areas in order to complete the same task at the same 

level of difficulty. This observation is consistent with previous studies(52, 53).  The healthy 

participants’ alpha band connectivity remained relatively unchanged from trial 1 to trial 4, 

shifting slightly to other regions. It can be implied that unlike post-injured individuals, the 

healthy group did not need to rely on a greater distribution of brain areas in order to perform the 

same task.  

High Beta activity was evaluated for its role in distal limb control, especially over the 

sensorimotor strip, and the low beta representation has been shown in previous studies to 

demonstrate the clearest distinctions between the limbs over widespread brain areas, particularly 

the lateral premotor cortex (54). Beta bands are typically seen during active thinking, focus as well 

as while being highly alert, and, like alpha band activity, beta bands play an important role of 

motor activity and motor imagery(50, 51). The high beta analysis revealed that post-injured 

participants possessed a greater distribution of significant connectivity during the entirety of the 

four trials in comparison to the healthy participants. The results of high beta activity suggest that 

despite the difficulty level of the task, the task itself required greater high beta activity for post-

injured individuals. Healthy participants had greater connectivity that concentrated more in the 

left frontal hemisphere, which is related to planning and concentration. Whereas, post-injured 

participants varied in increased connectivity across the cerebral cortex relying on several regions 

of the brain. The greater high beta activity may be associated with higher complexed thoughts, 

integration of new experiences and higher anxiety(50). The low beta analysis revealed that post-

injured participants demonstrated a dense connectivity centrally throughout the extent of the 
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trials, which may be associated with the motor cortex region. According to previous literature, 

low beta activity is associated mostly with quiet, focused, introverted concentration(55). It can be 

assumed that post-injured individuals required higher concentration across trials to complete the 

same tasks as their healthy counterparts. Overall, higher levels of both high and low beta activity 

were evident in the execution of the goal oriented task for the post-injured individuals.  

Theta band activity was observed for its role in carrying substantial information about 

movement initiation and execution(56). Theta band also is responsible for spatial recognition and 

cognitive as well as visual tasks. Theta bands activations is thought to originate from the anterior 

cingulate and mainly appears when one is performing a task requiring focused concentration, and 

its amplitude increases with the task load(57). Considerable differences in theta band connectivity 

between participant groups were shown in the central regions of the brain. Post-injured 

participants’ connectivity remained centrally located and dense for all trials, especially the third 

trial. These results are consistent with previous literature, where increased difficulty in a task 

resulted in increase in theta band activity(58). Unlike the post-injured individuals, the healthy 

participants’ connectivity throughout the trials was considerably distributed across multiple brain 

regions.   

Changes in Borg C-10 Rate of Perceived Exertion   

  Higher perceived exertion was observed with an increase in weight throughout the trials.  

An increase in anterior/posterior trunk displacement was seen with an increase in exertion.  

Moreover, increased changes in brain connectivity were seen with higher perceived task 

difficulty. Also, individuals were more likely to adjust their mechanics with increased perceived 

exertion.   
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Kinematic Data, EEG Data and RPE Scores  

Overall, mechanically speaking, healthy and post-injured individuals showed moderate 

differences in kinematic patterns. Exception being the anterior/posterior trunk displacement 

being greater as well as differences in hand pathways for the previously injured shoulders. 

However, the central nervous system has shown to take on significant changes in patterns after 

an individual has experienced a shoulder injury. Previous research has provided evidence to 

support both of these observations(6,52,53). RPE scores also increased and decreased with task 

demands.   
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Chapter VI: Conclusion  
  

In conclusion, this study identified significant differences in alpha, low/high beta, and 

theta band connectivity in individuals with previous shoulder injury, as well as differences in 

anterior/posterior trunk displacement and hand pathways while performing a repetitive, 

goaloriented upper extremity task. In contrast, after compensatory factors were observed in the 

lateral trunk displacement, hand pathways remained relatively unchanged among participants 

throughout the course of the trials. Kinematic variability increased at proximal joints (i.e. trunk, 

elbow angular position), but not as extreme distally (hand pathway) after changes in resistance 

was applied. Functional connectivity increased in post-injured individuals, relying on greater 

areas of the brain unlike their healthy counterpart. These findings agree with previous research 

during repetitive reaching tasks, and provide some validity to the idea that injury/fatigue 

adaptations are governed by not just kinematic principles, but by a higher level hierarchical 

organization of the central nervous system. Furthermore, these results underscore the importance 

of considering how neurologically different an individual who has experienced a shoulder injury 

may be, rather than an exclusive focus on just kinematics. If the neurological aspect is 

considered, maybe rehabilitation processes can be better understood and executed to better treat 

the individual in the future. Further research is needed to understand how individuals modify 

movement kinematics across different joints and determine how consistent these changes are 

across tasks and brain connectivity.  
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Appendix B 

Edinburgh Handedness Inventory  

The Edinburgh Handedness Inventory was used as a measurement scale to assess the 

dominance of the participants right or left handedness in everyday activities. For an individual to 

qualify for this study, the participant could not be ambidextrous or left-handed.   
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Appendix C  

Informed Consent Form to Participate in Research  

Participants were informed of potential risks associated with the EEG and motion capture, 

and an informed consent was obtained before any measurements were taken. The protocol and 

consent form were approved by the East Carolina University Institutional Review Board.  
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Appendix D 

Rate of Perceived Exertion  

The rate of perceived exertion (RPE) was used to evaluate the level of difficulty or 

easiness of the task between each trial. The Borg C-10 RPE scale assisted in understanding what 

the participants experienced during each trial. The scale also provided information on if the task 

was too demanding for the participant to complete.   
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Appendix E  

Neuromotor Control of the Shoulder Questionnaire  

Each participant was required to complete a questionnaire before the completion of the 

study. The questionnaire was used to get background information on each participant. This 

information was used to understand pain level, post-injury, and length of time in which the 

individual may have been injured.   
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