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learning to the vast array of Internet of Things (IoT) data produced by Industrial Machines. One 

such topic is to Predictive Maintenance. Unlike some other machine learning domains such as 

NLP and computer vision, Predictive Maintenance is a relatively new area of focus. Most of the 

published work demonstrates the effectiveness of supervised classification for predictive 

maintenance. Some of the challenges highlighted in the literature are the cost and difficulty of 

obtaining labelled samples for training. Novelty detection is a branch of machine learning that 

after being trained on normal operations detects if new data comes from the same process or 

is different, eliminating the requirement to label data points. This thesis applies novelty 

detection to both a public data set and one that was specifically collected to demonstrate a its 

application to predictive maintenance.  The Local Optimization Factor showed better 

performance than a One-Class SVM on the public data.  It was then applied to data from a 3-D 

printer and was able to detect faults it had not been trained on showing a slight lift from a 

random classifier. 
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CHAPTER 1:  INTRODUCTION 

Since the concept of Industry 4.0 was first released at the Hanover Fair in 2011 [1] the potential 

of the Industrial Internet of Things (IIoT), Big Data, and Machine Learning (ML) to revolutionize 

manufacturing has been the subject of both the trade press [2] and research efforts. One of the 

fields IIoT was expected to impact was predictive maintenance (PredM) [3]. Maintenance itself 

is not a new idea, there is a whole field of reliability engineering focused on methods to 

optimize the life of machinery. Industrial equipment is designed to have a long lifetime and 

relies on extensive maintenance to keep it operational. The simplest maintenance scheme, Run 

to Failure (RTF), has been around for as long as there have been machines. This scheme is still 

used today in areas where the impact of failure is low. Preventative Maintenance (PrevM) was 

designed to reduce this cost. It uses a fixed cycle of maintenance based on time, operating 

hours, or cycles to do maintenance at a convenient time. This increases the cost of doing 

maintenance but improves the overall operational budget with fewer unplanned failures. 

Reliability Engineering has extensively studied and optimized PrevM, but unplanned failures still 

occur. This led to the development of PredM, sometimes referred to as Condition Based 

Maintenance[4]. Condition based maintenance started out as a simple visual inspection when 

doing other maintenance, replacing parts that have shown wear. The next step in PredM is 

using a periodic measurement, an automotive example of this is measuring the brake pads and 

replacing below a certain thickness. These two levels of PredM are firmly in the reliability 

engineering field. The third level is using sensors to provide continuous data and scheduling 

maintenance based on a sensor exceeding a rule. [5] Modern Industrial  Equipment like Wind 
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Turbines, Semi-conductor Manufacturing Equipment, and Aircraft Engines are full of sensors 

generating thousands of data points every few seconds. Modern Computer Science methods 

are required to gather and analyze this data, and to use it to predict that a failure will occur in 

the future. Using ML to find patterns in this data has the potential to not only reduce the 

number of unplanned failures, but also the cost of performing unneeded maintenance. 

However, a study by IIoT service provider PTC in 2017 showed that only 3% of IoT projects were 

for a PredM use case [6]. This thesis will review the current state of the art in applying ML to 

PredM and apply it to Additive Manufacturing. Additive Manufacturing, commonly known as 3D 

printing is a rapidly growing field in manufacturing. Parts are built up layer by layer in shapes 

that cannot be economically manufactured by other means [7]. The manufacturing process 

takes hours to make the part, and additional hours to allow it to cool and be removed. The 

resulting manufacturing cycle can be measured in hours, or days, and is typically unattended. 

This provides an additional value to PredM in additive manufacturing, to detect the failure as it 

occurs, preventing the waste of machine time and improving overall equipment effectiveness 

(OEE).  

As will be covered in more detail, typical machine learning implementations in PredM are 

classification problems, which require labelled data.  Labelled data can be hard and expensive 

to obtain.  This thesis addresses that problem by using novelty detection. Two novelty 

detection methods are applied to a public data set, and then one of those is applied to data 

collected from a 3D printer farm.  In both cases the novelty detection methods detect failures 

that were not available in the training set. 

The contributions of this thesis are: 
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1) The survey of machine learning in predictive maintenance, which will be submitted for 

publication [8]. 

2) An implementation of Novelty Detection Methods to find faults in data sets designed for 

testing and evaluating predictive maintenance models. 

3) A demonstration that Local Optimizer Factor was capable of detecting faults in a real-

world 3D printer data set.  

The thesis is structured as follows. Chapter 2 describes the current state of the art in using ML 

for PredM,  Chapter 3 covers the 3D printer data set, describing the exploratory analysis and 

data cleaning methods used in this work, Chapter 4 describes the modelling and results and 

Chapter 5 provides a summary of the results and recommendations for future work.  



 
 

CHAPTER 2:   RELATED WORKS 

 

The starting point for this research was to conduct a survey of existing research in this field. 

After summarizing the results of the survey, we will review the methods we used to develop 

and analyze the survey.  Many authors have demonstrated that ML methods can be used in the 

field of PredM. Research to date has focused on traditional ML classification methods. Many 

different industries are moving to take advantage of Industry 4.0, and a wide variety were 

represented in this survey. A theme that arose through this research is that more attention 

needs to be paid to evaluating a model in this field. One avenue for investigation includes using 

unsupervised or semi-supervised learning methods to avoid the need for large numbers of 

labelled examples. 

2.1  Survey Methodology 

 

The initial review of related works was a keyword search of Google Scholar for “machine-

learning” in PredM from 2008 to 2018. As shown in Figure 2.1, there was a major jump in 

interest in the topic starting in 2014.  
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Figure 2.1 Publications for Machine Learning Predictive Maintenance in Google Scholar 

 

Based on this initial screening, this research focused on the period from 2014 onward where 

there was significant activity in the field. IEEE, ACM, and DBLP were searched for additional 

papers, and the entire list was scrubbed to only include journal and conference papers. Each 

paper was read to confirm relevance to the topic, resulting in sixty-two papers over six years. 

While there is still an increase over time, it is not as sharp as the jump in 2014, see Figure 2.2   

The decrease in 2019 may be due in part to the collection being gathered in the fall of 2019 and 
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not representing a full year. 

 

Figure 2.2 Relevant Papers for Machine Learning Predictive Maintenance from 2014 to 2019.  

 

The first investigation was to look at where the papers were published and what the authors 

thought the contribution of the work was. There was no pattern of publication source with all 

sources that published multiple papers on this topic listed in Table 2.1, the remaining 51 papers 

came from 51 unique publications.  

Table 2.1 Publications with Multiple Papers 

PUBLICATION NUMBER OF 
PUBLICATIONS 

PUBLICATIONS 

IEEE Conference on Big Data (Big Data) 3 [9], [10], [11] 
IEEE Conference on Emerging Technologies and Factory 
Automation (ETFA) 

2 [12], [13] 

IEEE Transactions on Industrial Electronics 2 [14], [15] 
Procedia Computer Science 2 [16], [17] 
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These papers were then categorized by the methods, data set, and industry represented in the 

paper. These topics will be explored in more detail in the coming sections. The final area 

reviewed was the purpose of the paper. Most of the papers were demonstrations that ML could 

be applied to the problem of PredM, including a documentation of a live demonstration using a 

neural network to detect motor vibration[18]. The remaining categories of method, dataset and 

architecture are shown in Figure 2.3.  

 

Figure 2.3 Purpose of Publication 

 

2.2  Methods 

The first dimension to explore is the methods used for ML in the PredM field. A majority of the 

papers published during these six years used traditional ML methods (ML) over Deep Learning, 

see Figure 2.4. Deep Learning started to receive more attention recently as the number of deep 
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learning papers approached ML in 2017 and exceeded it 2019. The total exceeds the number of 

papers in some years, as some papers compared the effectiveness of multiple models.  

 

Figure 2.4 Machine Learning vs Deep Learning 

 

Traditional ML methods were used by most of the papers in this study. Some of these 

demonstrated the effectiveness of a single method, with 3 papers demonstrating the use of a 

random forest (RF) [19] [20] [21]. Other examples include using a Support Vector Machine 

(SVM) to do classification on rail cars [22]. There were also comparisons of multiple methods, 

showing that a Gradient Boosted Tree (GBT) and RF outperforming an SVM and Linear 

Regression (LR) [23] on a public hard drive failure data set [24], and similar results on vending 

machines [25]. Logistic Regression (LogR) and RF were found to perform similarly [26] on a 

public data set for heating ventilation and air-conditioning (HVAC) machines [27].  
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The reasons for the low penetration of deep learning in PredM has not been studied. 

Potentially it may be due to the audience,  the sponsors of commercially successful models in 

the NLP and video recognition models tend to be tech company executives, and the front-line 

operators are software engineers and Product Managers. The PredM sponsors tend to be 

Industrial Operations Executives, and the actual users are reliability engineers. Their acceptance 

of models might be higher if they  can interpret the model, and not required to treat it as a 

black box [28]. It may also be that traditional methods such as RF, kNN and SVM were able to 

achieve satisfactory results. As discussed later in this survey, the PredM function is driven by 

cost to a greater extent than some other domains, and the additional cost in gathering labeled 

data, training, and operating a deep learning model may not drive enough benefit.  

Figure 2.5 breaks down the deep learning models in more detail. Most of deep learning models 

were traditional artificial neural networks (ANN), which many papers referred to as a Multi-

layer Perceptron (MLP). Some examples include the use a Deep Belief Network to do 

classification on machining centers [14], and Extreme Learning Machines to conduct  regression  

on bearing data [29], and classification on Wind Turbines [30]. There was a new deep learning 

method, Anomaly Detection-based Power Saving (ADEPOS), tailored specifically for PredM. This 

method increased the complexity of the ANN as anomalies were detected to improve the 

accuracy of the prediction while consuming less power early in the life of the component to 

minimize the compute power required [31].  
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Figure 2.5 Deep Learning Methods 

There was also an example of a new method using Recurrent Neural Networks (RNN) for 

machine health monitoring. The method used a Long Short-Term Memory (LSTM) model for 

modeling the incoming time series data from the assets. It was then fed into an ANN for feature 

learning, and that output was sent to a survival model [32]. The model was tested both on field 

data from heavy trucks and an open source hard drive data set [24]. An additional exploration 

of RNNs was done on 3 data sets this time using a local feature-based gated recurrent unit 

network (LFGRU) [15]. Although Convolutional Neural Networks (CNN) are typically associated 

with the computer vision domain, there were examples of their utility in PredM, such as this 

demonstration of using a CNN to detect a fault in a PV panel [33].  

Multiple papers did not restrict themselves to just deep learning or just traditional ML. Several 

of them compared deep learning methods with traditional ML. A comparison of multiple 
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methods on a public data set of machining data determined that RF provided better regression 

results than an ANN [34]. While a separate study on industrial welding robots determined that 

a CNN outperformed Extremely Randomized Trees, kNN, and Survival Analysis. Of note is the 

conversion of sensor data to a grey-scale image prior to using the CNN [16]. Still another study 

showed an ANN outperforming several ML models on a classification task [35]. A study on 

heating ventilation and air-conditioning (HVAC) systems compared multiple ML and deep 

learning models on two different fault classes, again determining that a RF model had the best 

performance on both faults [36]. Finally, both Gradient Boosting (GB) and an ANN were 

demonstrated on motor encoder data [37].  

There were also several examples of combining traditional and deep learning. An ensemble 

model  of GB, RF and an ANN were used to classify faults in semiconductor manufacturing 

equipment [38]. Deep learning and ML methods were also used in series, connecting the output 

of a CNN to the input of an SVM [39].  

Since the data source is a collection of sensor data taken from machines over time, it stands to 

reason that time-series models also appear in the literature. Multiple ML models were used as 

an input to an Auto-regressive Moving Average (ARMA) model to predict the remaining useful 

life of aircraft bleed valves. Compared to a traditional reliability life usage model, the only 

model to underperform was an ANN, while four traditional ML models had better results, the 

best was an SVM [40]. An Auto-regressive Integrated Moving Average (ARIMA) method was 

used as a pre-processing step to train sensor data, and then feed it into a PCA for 

dimensionality reduction, that output was provided to an SVM to classify events [41].  
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More pronounced than the use of traditional models is the preference for supervised learning. 

As shown in Figure 2.6, 90% of paper used supervised learning, with only token examples of 

unsupervised and semi-supervised learning. The single semi-supervised paper compared the 

performance of  3 semi-supervised anomaly detection algorithms to 5 unsupervised clustering 

algorithms[9]. They used the F1-Score, the harmonic mean of Precision and Recall, to compare 

methods. They saw a better F1 score on the anomaly detection (0.78 - 0.89) vs the clustering ( < 

0.70).  However, the same paper also compared the unsupervised/semi-supervised models to 

supervised classifiers.  The supervised classifiers had a significantly higher F1 score (0.98 for 

Random Forest vs 0.89 for Isolation Forest). 

Strong arguments for the value of unsupervised learning is the difficulty in getting labelled data, 

and its ability to detect faults that are not present in the training set. This was the motivation 

for a comparison of multiple unsupervised models on vibration data from HVAC equipment 

[42]. Other examples showed use of a prefix tree [12], one class SVM [43] and AdaBoost [44]. 

There was also a single example of an unsupervised ANN [18].  
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Figure 2.6 Comparison of Machine Learning Styles 

As shown in Figure 2.7, there is also a slight preference for classification methods. Classification 

methods provide a signal for the maintenance personnel, with either a “repair now” or 

“normal” result. These results can be tied into an Enterprise Asset Management program to 

generate a work order, order a spare part, or even stop a process. A regression method can be 

used to provide more information to the maintenance engineer by reporting an estimated time 
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to failure or remaining useful life. This can be used to schedule maintenance at an appropriate 

time, which can be of significant value.  

 

Figure 2.7 Comparison of Classification vs Regression 

One cluster of regression methods was based on the Nasa Engine Set [45] which was intended 

for that purpose. Authors provided results using an Artificial Neural Network [46], a Recursive 

Neural Network [47], and a Support Vector Machine [48]. Some research involved both 

classification and regression, sometime for two separate problems [49], but one paper 

compared the two with classification achieved a better MSE than regression on the same data 

set [50].  

There were a relatively few papers that created new methods ML. One area where a cluster of 

papers addressed some non-standard techniques was in the evaluation of a model. Unlike some 

other fields where ML has made major inroads, the cost function for a PredM model can be 
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easily calculated in dollars. Failure to detect a needed maintenance will result in a production 

stoppage, which can result in huge costs, while replacing a part unnecessarily also has costs in 

maintenance effort, and the loss of useable functionality of the replaced part. One of the most 

detailed examples of showed that by assigning real costs to a PredM model the behavior of the 

decision tree was dramatically different than if the goal were to maximize the F1 score [51]. The 

optimal model using a traditional method of maximizing F1 score would result in a higher cost 

of maintenance than not doing any predictions at all. False positive reduction was a factor in 

evaluating the model for multiple papers. The cost of deploying a field service engineer to a 

machine on a customer’s premise was one reason [52]. Another reason provided was the 

limited maintenance budget. When tearing up streets to replace water pipes, there is a limit to 

the number of repairs that can be made in one season, only the highest confidence predictions 

were evaluated, since those were the only ones that could be acted on economically [53]. In 

addition to the economic cost, a high false positive rate could impact operator confidence in 

the algorithm [54]. While most papers focused on the cost of downtime and the waste of 

replacing parts with remaining useful life, two authors also looked at the computing cost and 

energy involved in training and operating the predictive models. [31] [17] 

2.3  Data Sets 

ML consists of two areas, an algorithm, and data, of which data may be more important [55]. As 

shown in Figure 2.8, most authors used proprietary datasets that they gathered from the field, 

these correlate with the leading purpose of the publications, to demonstrate that the ML 

methods developed primarily in other fields could be applied to PredM. Some of the data sets 

encompassing many samples over many years, like this example using an ANN to predict failure 
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within the next year based on oil piping inspections [56], while others implemented a SVM on a 

single heat exchanger [57]. Regardless of the number of machines, I classified a data set source 

as field data if the machines were being used in normal operating mode.  

 

Figure 2.8 Data Sources 

One of the issues with applying ML to PredM is the class imbalance, typically a manufacturing 

operation runs most of the time in a productive state with only a very few instances of a failure. 

This issue is not unique to PredM, it is also common to medicine and public health. One 

resolution in the PredM field where there are fewer ethical concerns was to run the machine 

under controlled conditions that were guaranteed to produce a failure. This advantage was 

exploited on a single gearbox to develop an SVM classifier [58] and on a set of over 600 

bearings to develop an ANN Classifier [59]. These data sets are classified as Experiments.  
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Public data sets are also used, but less commonly than in other domains. One paper did try to 

alleviate this by publishing a data set on marine engines that [60] that was subsequently cited 

by [61]. Some of the other frequently cited datasets were the NASA Bearing [62] and Engine 

datasets [45]. Table 2.2 shows the representation by industry, the component category includes 

items like motors and bearings which could be generalized to multiple industries.  

Table 2.2 Publications by Industry 

INDUSTRY NUMBER OF 

PUBLICATIONS 

REFERENCES 

Transportation 14 [17], [20], [21], [22], [32], [40], [41], [46], [47], 

[48], [50], [60], [61], [63] 

Discrete Manufacturing 10 [9], [11], [14], [16], [34], [64], [65], [66], [67], 

[68] 

Process Manufacturing 9 [12], [13], [35], [38], [51], [54], [69], [70], [71] 

Energy 9 [30], [33], [39], [49], [56], [57], [72], [73], [74]  

Infrastructure 8 [10], [27], [36], [42], [43], [44], [53], [75] 

Component 7 [15], [18], [29], [31], [37], [58], [59] 

Other 6 [19], [23], [25], [28], [52], [76] 

 

Within some of these broad categories there were clusters of papers. A significant cluster was 8 

of 10 Discrete Manufacturing papers being related to machining. Seven of them used vibration 

sensors to predict cutter life. The one exception used the existing process data from a 

machining center as the input to an ANN to generate a regression model [65]. Of the remainder 
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vibration sensors, one created a classification model using an ANN with just the vibration data 

[14]. The other six paired the vibration sensors with power consumption, temperature, acoustic 

and/or cutting force sensors. These six were evenly split between ML and deep learning 

methods, and between regression and classification [18][34][64][66][67][68].  

There was another cluster of six papers in Semiconductor manufacturing. These showed a 

similar mix between classification and regression, however they were predominantly ML. One 

deep learning model was used as part of an ensemble method [38], and one two were in papers 

that compared multiple methods. Both got best results from decision tree-based methods 

[69][70]. The remaining three papers in the semiconductor manufacturing domain were all 

conducted on field gathered data by the same author [51][71][13].  

The final large cluster of papers was in the wind energy sector, with an additional six papers. 

Unlike the other two clusters the wind turbines were all classification models. This category had 

the one paper that was primarily about the architecture [74]. It concentrated on how to collect 

and process the data to generate a real time prediction using RF. This category also had a 

comparison between a deep learning and an ML model, this time the ANN beat Naïve Bayes 

(NB) [73]. There was also another paper that used both a deep and ML in series with a CNN 

feeding into an SVM [39]. There were also two papers the just used a single model, an RF [72] 

and an ANN [30]. These  5 papers used the data provided by the normal turbine operation. 

There was also an ensemble model that used vibration data to detect faults in the turbine 

gearbox bearings. It was not clear if the vibration sensor was an addition to the turbine or part 

of the installed data collection [74]. 
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This illustrates two different options in the gathering of data to support the ML model. New 

machines provide an enormous volume of data during operation, and ML is needed to extract 

more value out of the data. This is typical of the semiconductor and wind turbine papers. In 

addition to the examples above, there was also two examples of generating a ML model for 

medical diagnostic imaging machines [28][52]. Older machines do not have either the sensors 

or connectivity suite that these newer machines have. A detailed study of the challenges of 

adding sensors and communication systems, gathering data, and analyzing it in a brown field 

manufacturing environment is provided by [9]. While a similar example for rolling stock and 

trackside components in a railway system is [63]. One of the most unusual data sets was a 

PredM model built of sentiment analysis from social media. [76] 

As we saw in the Figure 2.1, using Machine Learning for predicative maintenance is a very new 

field.  The research is recent, and only beginning to be implemented in the field.  This provides 

an advantage for early implementations, given the current state of the art in many industries is 

limited, the threshold for making a material improvement is lower. A comparison of Random 

Undersampling with AdaBoost to random forest in distribution transformers found the 

RUSBoost had better recall at 35% to 31%, however this far outperformed the state of the art at 

5% [75].  

 



 

CHAPTER 3:  DATA COLLECTION AND PRE-PROCESSING 

3.1  Problem Statement 

The term Additive Manufacturing was selected to represent multiple technologies including vat 

polymerization, powder bed fusion, material extrusion and binder jetting to differentiate them 

from the machining process above where material is subtracted from a blank to create a part. 

The literature shows some challenges in the additive manufacturing but is focused on higher 

level challenges like the availability of process simulation tools and the environmental impact 

where additive manufacturing is different from other industries [77]. We then discussed some 

of the challenges of the additive manufacturing process with  Subject Matter Experts in Jabil’s 

Manufacturing Engineering department working with print farms. They had similar concerns to 

manufacturing engineers everywhere: yield, OEE, maintenance expenses, etc. They provided 

examples of several commonly occurring issues in production farms that are hard to predict. 

These issues have costs in material and machine time and can often cascade to multiple parts 

causing a more expensive failure. They suggested two that could be easily and safely injected 

into the machines, a tangled filament, and a failed cooling fan. Our goal for this study was to 

develop a model that could detect these issues before they occurred allowing an operator to 

intervene, and either prevent the defective part, or at least be able to clean and restart the 

printer saving hours of machine time.  

This research was conducted using the data provided from a farm of 12 Ultimaker 3 printing 

machines [78]. Like the wind turbine and semi-conductor manufacturing examples provided 

above, the Ultimaker machines have embedded sensors to capture process variables. They also 
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have an API which allows you to poll for information from the machines, eliminating much of 

the barrier to initiating IIoT. A simple python script running on a Raspberry Pi was set up to poll 

these machines. The data was stored in PostgreSQL an open source relational database, which 

for ease of setup and maintenance is run as a managed service in Microsoft Azure. Numpy [79] 

and pandas[80] are the primary Python open source packages used to analyze the data in a 

Jupyter Notebook, also running in Microsoft Azure.  Additional packages cited in text where 

their use is discussed.  

3.2  3D Printer Data 

All told there were over one hundred data fields available from the machine. Not all of them 

were relevant to this task, and for some, although the field was defined, the data value never 

changed. After selecting values that might be relevant to the task, the data was stored in two 

tables. The first that stored the static information about the printing jobs: part being printed, 

material, printer identification, and software version, etc. The second captured data that varied 

as the part was printed. Because some of this data is proprietary, it has either been obfuscated 

or removed from this report. A list of the fields included in these two tables are shown in Table 

3.1 and Table 3.2. The notes column indicates if any obfuscation was done. All the 

temperatures were obfuscated by adjusting them by a constant. The same constant was used 

by all numerical columns, so that differences remained constant. Zero values were not modified 

to avoid making the constant easy to guess.  

Table 3.1 List of fields in the Prints Table 

FIELD NAME DESCRIPTION NOTES 

uuid unique identifier of each print job Primary Key for prints, foreign key for data 
part_id identifier of the part being built hashed to hide actual part name 
printer name of printer allows identifying differences between individual 

machines 
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datetime_started time when print started can be used with printer to put prints in order 
material1 material in hotend1 

 

hotend1 id of hotend1 
 

material2 material in hotend2 
 

hotend2 id of hotend2 
 

total_time time for print job expected 
result how job completed "Finished" – job ran to end 

”Failed” – machine fault that stopped job 
“Aborted” – machine stopped by operator 

datetime_finished time print ended in case time between prints is relevant 

 

Table 3.2 List of Fields in Data Table 

FIELD NAME DESCRIPTION NOTES 

timestamp UTC timestamp of data 
 

uuid id of print 
 

bed_preheating bed status boolean 
bed_temp temperature of bed anonymized by a constant shift applied to 

all temperatures. Missing values are 0 
bed_target target bed temp same anonymization 

hotend1_temp temperature of hotend1 same anonymization 
hotend1_target target temp of hotend1 same anonymization 

hotend1_max maximum temp of hotend1 same anonymization 
hotend1_material_extruded amount of material from hotend 1 

 

hotend1_hot_time hotend 1 time spent hot 
 

hotend2_temp temperature of hotend2 same anonymization 
hotend2_target target temp of hotend2 same anonymization 

hotend2_max maximum temp of hotend2 same anonymization 
hotend2_material_extruded amount of material from hotend 2 

 

hotend2_hot_time hotend 2 time spent hot 
 

state state of the print cycle 
 

progress fractional completion of print job 
 

time_remaining time left in the print job 
 

time_elapsed time elapsed in the print job 
 

 

The first step in looking at the data was to look for missing values. There were very few, just 

two rows in the prints table that were missing the material and hotend ID for both hotends one 

and two. The plan to deal with these missing values was to look for other prints of the same 

partid and populate with the most common data item for those prints, they should all be the 

same. If there were no other prints of that part, then those rows and the corresponding rows in 

the data table would need to be dropped.  
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Figure 3.1 Temperature plots of typical 3D Print runs 

The next step was to plot the target and actual temperatures from the three heaters as shown 

in Figure 3.1 using seaborn[81]. There are a couple of interesting artifacts in the plots. The 

diagonal line for the print with uuid “9fb…” is an artifact where data collection was stopped at 

9% complete and did not resume until after the printing had stopped, a delay of approximately 

13 hours. There are also some spikes of hotend1_temp and hotend2_temp, where they take a 

large jump for one reading. Two of them jump off scale in the top left chart, and there is one in 
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the second chart. These appear to be sensor anomalies. This chart and all others unless 

specifically noted was created with matplotlib [82]. 

 

Figure 3.2 Sensor Anomalies in Temperature Data 

The first attempt to filter them out looked for items that where the target temp was 

significantly different than the actual temp this selected the sensor anomalies in  

Figure 3.2, but it also selected several places where the target temperature changed more 

rapidly than the actual temperature could follow Figure 3.3. To eliminate the spikes, if a point’s 
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value was substantially higher than both the target and the proceeding point it was replaced 

with the value of the proceeding point.  

 

Figure 3.3 Example of large gap between temp and target caused by lag 

The bed temperature and bed target have very little variability and are hard to see on this scale, 

even exploded in Figure 3.4 they have very little variation compared to the head temperatures 

and appear to have a slight upward trend. This graph is also created using Seaborn[81]. 
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Figure 3.4 Bed temperature plot details 

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test is a statistical test  to determine if a series is 

stationary around a trend [83]. A stationary series among other properties has the same mean 

and variance regardless of when in time it was selected. The Statsmodels package in Python has 

an implementation that test both for stationary, and stationary around a deterministic trend 

[84]. Only the data from the time where the printer was printing are included to eliminate the 

nearly vertical lines at the beginning and end of the prints. This filtering was applied to the data 

for the analysis also. The KPSS test was conducted against the longest running test with the 

most data, with the results shown in  Table 2.1. The results show that the two hotend 

temperatures are stationary, while the bed temperature is trend stationary. Differentiating the 

bed temperature by taking the delta between it and the preceding point removed the trend 

and made it stationary.  

Table 3.3 P-Values of KPSS Test for three temperature variables 

VARIABLE P-VALUE (STATIONARY) P-VALUE(TREND) 

Hotend 1 Temperature 0. 1 0. 1 
Hotend 2 Temperature 0. 1 0. 1 
Bed Temperature 0. 01 0. 1 
Bed Temp (delta) 0. 1 0.1 
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3.3  Feature Engineering 

The next step in the process was feature engineering, selecting the data from the machines that 

could be relevant to detecting problems. The most obvious features were the temperatures 

from Figure 3.1. Each machine has two print heads, called hotends, and a print bed, each of 

which has a target and current temperature. In addition, we could create some additional 

features from these measurements. The difference between target and actual is one way to 

compare actual temperatures when the targets are different. Because of the lag in response 

that we saw in hotend  differences between  temperature as the target moved, the difference 

between the hotend and the previous target, and the one before that might also be useful. 

There were also a couple of numerical features that looked interesting but were discarded. 

There was a variable for fan power, but it never changed value, it was always 100%. There were  

also two statistical variables reported by the printer for each hotend, the maximum 

temperature exposed, and the material extruded. These variables behaved oddly, occasionally 

decreasing, the hotend max temperature exposed would even decrease when the hotend 

temperature increased. No explanation was found for these behaviors, so the variables were 

discarded. There was also one meaningful categorical variable, the material at each hotend.  



 

CHAPTER 4:  NOVELTY DETECTION MODELLING 

4.1  Local Optimization Factor Model 

In our survey there were no examples of using PredM in additive manufacturing, however it 

should be like medical device, semi-conductor manufacturing, and wind turbine industries that 

use modern equipment with embedded sensors and networking ability. These industries have 

successfully used supervised learning to develop models. One of the issues with supervised 

learning is the difficulty in getting labelled data, this was noted even in the aircraft industry [50] 

which is required to maintain records for safety purposes. The difficulty is compounded in a less 

regulated industry with lower margins. Other fields have addressed this challenge by using 3rd 

party services to crowd source the labelling of the data at a low cost[85]. Crowdsourced data 

has been found to be noisier that  traditional in-house labelling [86], and exposes proprietary 

information, making it unsuitable for this work.  

In addition to the cost of labelling with a process expert,  the difficulty in finding examples of 

faults led to the use of a one-class SVM in an HVAC system solution[43]. We tried to address 

both issues by intentionally creating failures. Because failures are hard to predict we would 

need to collect data for a long time to get representative failures. After consulting with the 

SMEs for the system we determined that there were two failures that are seen in production 

that are easy to create. The first is tangling or breakage of the filament, this results in a failed 

part because of material not getting to a print head. The second is more serious, failure of the 

cooling fan. In addition to ruining the part and wasting the printing time, it can cascade to a 

print head failure. By simulating these failures, we can get data to analyze much faster than by 
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waiting for one to occur. Additionally, because we caused the failure, labelling the initiation of 

failure becomes a trivial task.  

At this point, once we had a data collection system in place, the plans to conduct an experiment 

were interrupted by the novel coronavirus pandemic. First, the facility was closed due to local 

#SaferAtHome orders. Then it re-opened to produce face shields,  this urgent need eliminated 

the opportunity to conduct experiments, and required a change in direction. This led to a 

second look at an unsupervised approach. Several other examples of unsupervised learning for 

PredM are a comparison of multiple unsupervised models on vibration data from HVAC 

equipment [24], use of a prefix tree on simulated factories [25], and a cohort-based method 

AdaBoost [26].  

The expectation was that failures we could detect with the system would be rare. After 

reviewing the outlier and novelty detection methods of the Python Sci-kit Learn [87] we chose 

to use the Local Outlier Factor method [88]. The use of novelty vs outlier depends on the 

training and evaluation sets of the application. For novelty detection we assume that all the 

runs of the training set are not anomalous, while for outlier detection it assumes that there 

may be outliers in the training dataset also.  The LOF model is a density-based model. A point is 

part of a cluster if it is close to points like its neighbors are.  Close is determined dynamically, by 

the distance from its neighbors.  This allows a small dense cluster in one portion of the input 

space and a larger more diffuse cluster in another portion.    

To determine if this algorithm is capable of detecting outliers it was tested against the Nasa 

Turbofan Engine Degradation set used by many of related works [45]. This data set consists of 
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multiple settings and sensors for 100 aircraft engines from an unknown starting condition to 

failure. This results in 128 to 362 measurements for each engine. To match this data with the 

expected experimental data the cycles to failure data inherent in the dataset was not used. 

Instead the first 28 rows of the data set were selected as “normal” or “healthy” state. For 

ground truth we do not know when the first sign of degradation occurs, just that there is a 

failure on the last cycle. Because of the large number of anomalies, the data  was debounced 

the data to look for 3 successive anomalous data points. The results are shown in   

 Figure 4.1, all the engines flagged an anomaly before failure.  

 

 Figure 4.1 Cycles remining before failure detected on aircraft engine data with LOF 

Another algorithm commonly used for novelty detection is the One-Class SVM [89]. Where a 

traditional binary classifier SVM uses support vectors to create a decision boundary between 

two classes, a one-class SVM creates a boundary around the provided class and looks for new 
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data to be inside or outside of that boundary. It again was implemented on the same data using 

Sci-kit Learn. The SVM was more aggressive finding outliers and was debounced 5 times, even 

with that the results were still more aggressive than LOF, finding failures earlier as shown in 

Figure 4.2 

 

 

Figure 4.2 Aircraft Engine Anomoly Detection with a one-class SVM 

Based on the results on from the aircraft engines set an LOF was selected for the data set. In 

addition to changing to Novelty detection, there were additional challenges caused by the 

change in the operating environments of the printers. As part of the new mode of mass-

producing face shields the part had a simple geometry and only required a single material with 
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one print head. This eliminated multiple features as shown in Table 4.1, leaving only a handful 

of features.  

Table 4.1 Impact of Production Change on Features 

FEATURE DESCRIPTION IMPACT OF COVID19 

Hotend1_temp Actual temperature at 
Extruder 1 

 

HOTEND1_TARGET Desired Temperature at 
Extruder1 

 

HOTEND1_Err Delta between Temperature 
and Target 

 

HOTEND1_LAG1 Delta between Temperature 
and prior Target 

Redundant, the same as 
HOTEND1_ERR 

HOTEND1_LAG2 Delta between Temperature 
and Target from 
measurement before 
previous measurement 

Redundant, the same as 
HOTEND1_ERR 

Hotend2_temp Actual temperature at 
Extruder 2 

 

HOTEND2_TARGET Desired Temperature at 
Extruder2 

Eliminated, always 0 

HOTEND2_Err Delta between Temperature 
and Target 

Redundant, same as 
HOTEND2_TARGET 

HOTEND2_LAG1 Delta between Temperature 
and prior Target 

Redundant, the same as 
HOTEND2_ERR 

HOTEND2_LAG2 Delta between Temperature 
and prior Target 

Redundant, the same as 
HOTEND2_ERR 

Material1 Material being dispensed by 
Extruder1 

Unchanging 

MATERIAL2 Material being dispensed by 
Extruder1 

Not used, no material 
extruded 

  

With the system collecting data in place, and the printers making face shields data collection 

started in earnest. There was a limited categorization of data by the equipment itself, if the 

print run was completed it was classified as “Finished”, if the print run was interrupted by a 

machine fault it was classified as “Failed”, and if it was interrupted by the operator it was 
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classified as “Aborted”. After the first week of data collection we had approximately 80 

“Finished” runs , one “Aborted” run and no failures. The approximately 3000 rows of data 

associated with the “Finished” runs was extracted from the database and was used for training 

the model.  

The model was then evaluated against another batch of approximately 2400 rows from 120 

“Finished”, 3 “Failed”, and 2 “Aborted” runs, while the system continued to collect the test data 

set. The evaluation set was used for feature selection, as shown in Table 4.2 the model was able 

to distinguish the Failed runs from the Aborted and Finished runs. All the models that included 

‘hotend1_temp’ and ‘hotend2_temp’ had similar performance. Where on a linear model 

normally the excess features would be eliminated to reduce over-fitting, on this model I kept 

them to increase the opportunity to detect an anomaly associated with a failure mode not seen 

in the evaluation set. A similar analysis on the two hyper-parameters of the LOF model,  the 

number of nearest neighbors and the contamination, shown in Table 4.3 Impact of Hyper-

Parameters on LOF Model resulted in the best F1 score using the SciKit learn recommended 

values of 20 and ‘auto’.  

Table 4.2 Precision and Recall vs Feature Selection 

Features Precision 
(F) 

Recall 
(F) 

Precision 
(A) 

Recall(A) 

('hotend1_temp', 'hotend1_target', 'hotend1_err', 
'hotend2_temp', 'bed_change') 

. 636 . 024 . 056 . 003 

('hotend1_temp', 'hotend1_target', 'hotend1_err', 
'hotend2_temp') 

. 636 . 024 . 056 . 003 

('hotend1_temp', 'hotend1_target', 'hotend1_err') . 091 . 033 . 019 . 011 
('hotend1_temp', 'hotend1_target', 'hotend2_temp') . 636 . 023 . 093 . 006 

('hotend1_temp', 'hotend2_temp') . 636 . 024 . 096 . 006 
('hotend2_temp') . 121 . 019 . 148 . 039 

 



34 
 

Table 4.3 Impact of Hyper-Parameters on LOF Model 

 

Neighbors  

  

Contamination  

Precision 

(F)  

Recall 

(F)  

F1-

Score 

Precision 

(A)  

Recall 

(A)  

 20   auto  0.636   0.024   0.046   0.056   0.003  

 30   auto  0.636   0.024   0.046   0.056   0.003  

 10   auto  0.576   0.022   0.042   0.037   0.003  

 20    0.2  0.727   0.021   0.040   0.017   0.008  

 20    0.3  0.818   0.021   0.040   0.024   0.010  

 20    0.1  0.666   0.022   0.042   0.074   0.004  

 20    0.05  0.636   0.023   0.044   0.056   0.004  

 20  0.01 0.212    0.018  0.034  0  0 

 

4.2 Results 

There are multiple differences between the Aircraft Engine and 3D Printer data sets. The one 

that made the largest impact on the result evaluation was that all 100 engines in the validation 

set eventually failed. There was no way to tell if the anomaly were valid or a false alarm 

because they all came from an engine that would fail in the provided data. There was no 

ground truth available on individual samples to say this was a True Positive or this was a False 

Negative. All that could be determined was that for both algorithms an anomaly was detected 

on every engine before the failure. From the data it is also apparent that the OCSVM detected 

the anomaly earlier and with a wider spread of detection times, but it is unknown if that is a 

better or worse characterization of the data set. After developing the model, it was tested on 

an additional data set provided as part of the Aircraft Engines Data Set. This set also consisted 

of 100 engines operating under the same conditions as the training set but includes two 

different failure modes. The results shown in Figure 4.3 are consistent with the evaluation 

results.  
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Figure 4.3 Comparison of LOF and OCSVM on Test Set 

 

The 3D printer data was also evaluated on a new set of data, consisting of several more days of 

production. The results were like the test data on Failures, with a recall of 0.697 and precision 

of 0.050, and better on the Aborted runs with a recall of 0.512 and a precision of 0.031. Truth 

table is shown in Table 4.4, note that positive results (anomalies) are shown as -1 as returned 

by the LOF model.  

Table 4.4 Truth Table for 3D Printer Results 

ACTUAL 
PREDICTED 

ABORTED FAILED FINISHED 

-1 29 46 840 
1 27 20 1585 
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Because the test data was labeled, we know what type of failures were detected and how many 

anomalous pts were detected in each. These details are shown in Table 4.5. The filament failure 

which was planned for the original experiment has a relatively weak signal as compared to the 

Comm Error. There were also some heater failures included in the mix.  

Table 4.5 Details of Failures Detected 

 UUID   RESULT  FAILURE MODE 
DETAIL  

ANOM 
PTS  

 NORMAL 
PTS  

5c6b   Failed   Comm Err   5   1 
df1d   Failed   Comm Err   15   1 
edd0   Failed   Comm Err   3   1  
0f42   Failed   Heater Failure   6   10  
d508   Failed   Heater Failure  8   1  
1473   Abort    Filament   16   21  
dea6   Failed   Heater Failure   9   6 
2329   Abort    Filament   13   6 

 

The results of any individual data point do not tell the whole story, there is also the option to  

look at  the whole cycle. To do this we calculated the percentage of failures in any given cycle.  

Table 4.6 shows the truth table with a cutoff selected to maximize the F1 Score of the Failure 

class.  It is obvious that the recall has improved to 100% on both types of faults.  For the 

failures, the precision improved from 0.050 to 0.171, and on the Aborted class it improved from 

0.031 to 0.057. This improved the F1 on the Failures from 0.09 to 0.29 and on the Aborted from 

0.058 to 0.11. The tradeoff is that we end up with significantly less data.   

Table 4.6 Truth Table for complete cycles 

Actual 
Predicted 

Aborted Failed Finished 

-1 2 6 27 
1 0 0 52 
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Varying the cutoff allows the calculation the precision recall curve.  A precision-recall curve is 

the preferred method for validating the effectiveness of an imbalanced dataset because the 

ROC curve may provide an optimistic view of performance[90]. To make the P-R Curve Figure 

4.4  we combined the ‘Aborted’ and ‘Failed’ results, as they both indicate an unsuccessful print. 

We can see that it has better performance that a random model. 

 

Figure 4.4 Precision Recall Curve of the LOF model evaluating complete cycles of the printer.. 

From this curve we see that the anomaly model  returned several “normal“ points first causing 

the  P-R curve to start at the lower left and then grow as actual  “novel” points are  returned.  

Ideally, we would like  the plot to start out at the top left, retuning “novel points first.  By 

comparison with the green dotted line we can see the boost over a  random  model. 
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One way to improve the model would be to add additional data, however after  building all the  

face shields needed by the local hospitals the site returned to #SaferAtHome mode and ceased 

production. To test the effects of more data, the evaluation set was cannibalized and all the 

points that were not failures and were more than 5 runs before a failure from the eval set were 

included in the training set. The model was then retrained using the same features and 

hyperparameters as the first run. This provided better results, with the Precision-Recall curve 

shown in  Figure 4.5.  The need for more data is discussed in the conclusion. 

 

Figure 4.5 P-R curve after retraining on more data.  Same features, hyperparameters, and test set as previous. 

 

After reviewing the results, the first 3 points returned are the  “Comm Error” failures.  The 

model does a good job of detecting these but  is not able to detect  “Heater” and “Filament” 

faults.  



 

CHAPTER 5:  CONCLUSION 

This work demonstrated that novelty detection could be used successfully to detect failures in 

both a public data set and a real-world set collect for this purpose. The advantages of the 

anomaly detection were that it took very little data to test and was capable of detecting failure 

modes that it had not seen in training. This was offset by the reduced precision, either in the 

wide range of predicted failure warning on the Aircraft Engines set or the high false positive 

rate on the 3D Printer data set. This can be seen in that the Aircraft Engine model was trained 

on only 2500 rows of the 20,000 in the data set. A typical classification model would have left 

30%  for validation, meaning 14,000 rows for training, over 5 times the data. The additive data 

was trained on only 3000 rows of data originally, and the retrained model still only has about 

5200.  

There are several areas for investigation to improve these results using anomaly detection. The 

first is to take advantage of the Unreasonable Effectiveness of Data [55] and continue to gather 

more data. Increasing the data available has been shown to help machine learning models. This 

can be accomplished just with time, as the machine continues to make parts more data will be 

collected. It can be accelerated by increasing the rate of data collection from several minutes 

between points to collecting data every 10-20 seconds. A second option is to investigate 

additional anomaly detection algorithms that have been used in the literature, both 

dissimilarity-based [44] and neural network based [18]. 

The original reason for selecting an anomaly-based method was the difficulty and cost in 

obtaining and labelling the failure data. An alternate route would be to use a classification 
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model, and  instead of investigating a better algorithm, spend the effort on a Software 

Engineering solution to label data more easily.  Labelling the test samples was a manual process 

involving email.  An additional advantage of anomaly detection was not needing a large number 

of failures to create a model, but if the anomaly detection model needs a significant amount 

more training data, then the additional time to collect normal samples will also collect 

additional anomalous samples. 

This work also treated the points independently, ignoring the time series nature of the data. 

Possibly that anomalies are occurring multiple cycles before failure are not false positives, 

further investigation of this possibility could have significant economic benefits.  It is also 

possible that the random spikes in Figure 3.2 are signal and not noise.  

This work has demonstrated the ability to use novelty detection for predictive maintenance.  

Based on the results achieved it is suitable for a situation where faults are rare, and the cost of 

false positives is low. 
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