
APPLIED MACHINE LEARNING FOR CYBERSECURITY IN SPAM

FILTERING AND MALWARE DETECTION

by

Mark Sokolov

December, 2020

Director of Thesis: Nic Herndon, PhD

Major Department: Computer Science

Machine learning is one of the fastest-growing fields and its application to cy-

bersecurity is increasing. In order to protect people from malicious attacks, several

machine learning algorithms have been used to predict the malicious attacks. This

research emphasizes two vulnerable areas of cybersecurity that could be easily ex-

ploited. First, we show that spam filtering is a well known problem that has been

addressed by many authors, yet it still has vulnerabilities. Second, with the increase

of malware threats in our world, a lot of companies use AutoAI to help protect their

systems. Nonetheless, AutoAI is not perfect, and data scientists can still design better

models. In this thesis I show that although there are efficient mechanisms to prevent

malicious attacks, there are still vulnerabilities that could be easily exploited. In

the visual spoofing experiment, we show that using a classifier trained on data using

Latin alphabet, to classify a message with a combination of Latin and Cyrillic let-

ters leads to much lower classification accuracy. In Malware prediction experiment,

our model has been able to predict malware attacks on Microsoft computers and got

higher accuracy than any well known Auto AI.

APPLIED MACHINE LEARNING FOR CYBERSECURITY IN SPAM

FILTERING AND MALWARE DETECTION

A Thesis

Presented to The Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

by

Mark Sokolov

December, 2020

Copyright Mark Sokolov, 2020

APPLIED MACHINE LEARNING FOR CYBERSECURITY IN SPAM

FILTERING AND MALWARE DETECTION

by

Mark Sokolov

APPROVED BY:

DIRECTOR OF THESIS:

Nic Herndon, PhD

COMMITTEE MEMBER:

Rui Wu, PhD

COMMITTEE MEMBER:

Mark Hills, PhD

CHAIR OF THE DEPARTMENT

OF COMPUTER SCIENCE: Venkat Gudivada, PhD

DEAN OF THE

GRADUATE SCHOOL: Paul J. Gemperline, PhD

Table of Contents

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 INTRODUCTION . 1

2 VISUAL SPOOFING IN CONTENT-BASED SPAM DETECTION 3

2.1 Problem Description . 3

2.2 Experimental Design . 6

2.2.1 Data Source and Format . 6

2.2.2 Text Preprocessing . 7

2.2.3 Feature Extraction . 7

2.2.4 Experiment A – Control Group 9

2.2.5 Experiment B – Experimental Group 10

2.2.6 Experiment C – Proposed Solution 10

2.2.7 Models and Model Evaluation Metrics 10

2.2.8 Production Testing . 11

2.3 Machine Learning Algorithms Used 11

2.3.1 Algorithms . 11

Näıve Bayes . 11

Support Vector Machine . 12

Decision Tree . 13

Random Forest . 14

2.3.2 Evaluation Metrics . 15

Confusion Matrix . 15

Accuracy . 16

Precision . 16

Recall . 17

F1 Score . 17

2.4 Results and Discussion . 17

2.5 Related Work . 20

3 PREDICTING MALWARE ATTACKS USING MACHINE LEARNING

AND AUTOAI . 27

3.1 Problem Description . 27

3.2 Experimental Design . 29

3.2.1 Data Source and Format . 30

3.2.2 Dataset . 30

3.2.3 Experiment A . 36

3.2.4 Experiment B . 36

3.2.5 Experiment C . 36

3.2.6 Auto AI . 37

3.2.7 Model and Model Evaluation Metrics 37

3.3 Machine Learning Algorithms Used 37

3.3.1 Algorithm . 37

3.3.2 Evaluation Metrics . 39

3.4 Results and Discussion . 39

3.5 Related Work . 40

4 CONCLUSION AND FUTURE WORK 46

4.1 Conclusion . 46

4.2 Future Work . 47

BIBLIOGRAPHY . 48

LIST OF TABLES

2.1 Description of Confusion Matrix . 16

2.2 Confusion Matrices for Email Spam Experiments 18

2.3 Cross-validation accuracy averaged over five folds, for the three exper-

iments . 19

3.1 Microsoft Malware Prediction Dataset Description 36

3.2 Accuracy for Malware Prediction Experiments 38

3.3 Confusion Matrices for Malware Prediction Experiments 41

3.4 Precision for Malware Prediction Experiments 42

3.5 Recall for Malware Prediction Experiments 43

3.6 F-1 Score for Malware Prediction Experiments 44

LIST OF FIGURES

2.1 Experimental Design for Email Spam Experiment 8

2.2 An Example of How Each Email is Preprocessed 9

2.3 An Example of Text Emailed with Two Different Outcomes 22

2.4 Evaluation Metrics for Email Spam Experiments 23

2.5 Google Search . 24

2.6 Google Translate . 25

2.7 Microsoft Email . 26

Chapter 1

Introduction

Nowadays, it’s hard to deploy effective cybersecurity technology without relying heav-

ily on machine learning. Machine learning is used in cybersecurity to analyze patterns,

learn from them to avoid similar attacks, and respond to changing behaviour. It can

enable cybersecurity teams to be more proactive when preventing threats and re-

sponding in real time to active attacks. It can reduce the amount of time spent on

routine tasks and allow organizations to use their resources more strategically [35].

Main contribution: This dissertation presents new security insights of the two

areas that seemed to be solved but there are still vulnerabilities in the defense mech-

anisms that could be easily exploited. First, we present one such vulnerability, in

which one could replace some characters with corresponding characters from a differ-

ent alphabet. In particular, we show how substituting letters with their corresponding

confusable tricks spam filters into classifying spam emails as ham emails, and show

methods to address this threat. This will protect people from cybercriminals and los-

ing personal information such as bank account and card data, logins and passwords

of Internet services, and so on. Second, we propose a model that achieves an increase

in accuracy over AutoAI on the Microsoft Kaggle’s Malware Prediction dataset, i.e.,

the probability of a Windows machine being infected by different malware families,

based on different properties such as defender state information, number of logical

cores in the processor, amount of disk space on primary disk of the machine in MB

and etc. With the increase of malware threats in our world, a lot of companies use

AutoAI to help protect their systems. However, when the dataset is large and sparse,

conventional machine learning algorithms and Auto AI have limitations and they

don’t generate the best results. We propose an ensemble of Light Gradient Boosted

Machines to predict malware attacks on computing systems. Light Gradient Boosted

Machines is prefixed as ‘Light’ because it can handle large size of data and takes lower

memory to run. The architecture that proposed is designed to detect malware with-

out a lot of computational power, yet with increased accuracy. Research emphasizes

existing problems that need to be fixed in order to protect us from cybercriminals

and cybercrime.

2

Chapter 2

Visual Spoofing in Content-Based Spam Detection

2.1 Problem Description

The electronic mail appeared almost simultaneously with the advent of the Internet.

Over the years, it has almost completely replaced traditional mail. Today, most of the

communication between people over long distances is done through email. Owing to

ease of access, the number of email users today continues to grow rapidly. The use of

email extends beyond just messages in text form; it is also used for sharing other types

of data – images, videos, archive files, etc. [28]. As with many technologies intended

for the good of humanity, the mass adoption of email as a quick and efficient means of

written exchange also enabled the rapid proliferation of spam – the mass transmission

of unwanted messages. Scammers soon began to refine their approach into one that

involves the fraudulent use of emails to induce individuals to reveal sensitive or private

information, a practice known as phishing [8]. The purpose of phishing is to gain

access to confidential user data such as usernames and passwords. This is achieved

by sending bulk emails on behalf of popular brands, or private messages within various

services on behalf of banks or within social networks. The message often contains

a direct link to a site that is apparently indistinguishable from the genuine one,

or to a site with a redirect. After a user lands on a fake page, scammers try to

induce the user to enter their username and password on the counterfeit page using

various psychological tricks. Once the user reveals the appropriate credentials, they

inadvertently grant access to fraudulent third party.

A spam filter is used in email applications to detect and separate spam from

genuine messages based on certain criteria. Different kinds of spam filters are used

to achieve this; for example, allow list/deny list filter, header filter, content-based

filter, etc. Deny list strategy blocks messages from email addresses, and IP addresses

known to be spammers. Allow list strategy specifies which senders to permit. Header

filters check the header of the email for its source, substance of the message and other

details contained in the header of the email. Content based filters are, for the most

part, used to check the body of messages and decide if the email is spam or not [33].

While spammers are unrelenting in developing different approaches for modifying

data identifying spam-related words, usually through the expansion of complexities,

different algorithms are also being utilized to combat these tactics.

Different machine learning classifiers have been utilized in the exploration to han-

dle such issues [31]. These procedures extract data from prepared datasets and use

these data to train the classifier [17]. The machine learning algorithms that are gen-

erally well known in spam classification are näıve Bayes, support vector machine,

decision tree and random forest1. Näıve Bayes is a classifier that allows you to deter-

mine the probability that an observation or object belongs to one of the classes. At the

same time, an assumption is made about the independence attributes (the assump-

tion of independence between the features), which greatly simplifies the accompanying

calculations. In this regard, this method is called a näıve (simple) Bayesian classifier

[29]. Support vector machine (SVM) is a learning machine developed from the sta-

tistical learning theory. The main idea of this method is a translation of the original

vectors into a space of higher dimension and the search for a separating hyperplane

1We briefly introduce them here, and describe them in more detail in Section 2.3.

4

with a maximum gap in this space. Two parallel hyperplanes are constructed on

both sides of the hyperplane separating the classes. A separating hyperplane is a

hyperplane that maximizes the distance to two parallel hyperplanes. The algorithm

works under the assumption that the greater the difference or distance between these

parallel hyperplanes, the smaller the average error of the classifier [29]. Decision tree

is a tree where each node represents a test of an attribute and leaf nodes provide

classification. A test model is ordered by beginning at the root, testing property

estimations at every node and arranging down to the fitting branch until it arrives at

leaf node which gives grouping [9]. Random forest is a controlled learning algorithm.

A random forest algorithm creates multiple, distinct decision trees for a solution, and

finally chooses the best solution using voting [9]. These machine learning algorithms

are more successful among different techniques at detecting spam messages [11].

Machine learning is a powerful tool and can be applied for other scenarios besides

email. Examples include avoiding plagiarism detection by automated software, elud-

ing detection when sending malicious messages with instant messaging applications,

and a range of other applications that use natural language processing for automatic

analysis of text documents.

Spammers constantly explore different methods and new ways of hacking and

stealing information. This is the main reason why companies are trying to improve

the quality of machine learning algorithms and protect their data. Specialists today

are increasingly keen on considering the shared traits between various spamming

techniques used by spammers. They accept that it is more effective to eliminate the

source of spam by taking legal action instead of simply sifting messages. This is where

data mining using machine learning techniques plays a role [10].

The main repository for our Email Spam Experiments can be found at https:

//github.com/sokolovm19/Visual_Spoofing.

5

2.2 Experimental Design

The goal of our experimental design is to assess the effect of confusables on the

performance of typical content-based spam detection machine learning models. To

this end, three different experiments were conducted. Experiment A is the control

experiment involving entirely unmodified datasets – the default encoding of characters

in both the training and testing sets is preserved. This replicates how current spam

filters operate, i.e., they assume that the spam data is from the same distribution used

in training the filters. In Experiment B, the encoding of the training set is preserved

whereas the encoding of certain characters in the testing set is switched from the

default Latin alphabet to their corresponding confusables from the Cyrillic alphabet.

This showcases the scenario in which spammers can change some characters, thus

modifying the spam messages to be from a different distribution than the messages

used in training a spam filter, rendering the spam filters useless in preventing such

an attack. In Experiment C, confusables are introduced to both the training and

testing sets so that each model is trained and evaluated with data from a single,

mixed-script, that contains confusables. This setup, presents a simple solution to

address the issue raised/showcased in Experiment B. The steps of each experiment

are shown in Fig. 2.1.

2.2.1 Data Source and Format

The experiments were performed using the emails from the Enron1 dataset, a pre-

processed subset of the publicly available Enron Corpus [19]. Enron1 consists of

1500 spam emails and 3672 legitimate or “ham” emails stored as plain text docu-

ments in separate files. The dataset and relevant metadata is available online at

http://www2.aueb.gr/users/ion/data/enron-spam/. The experiments were run

6

entirely in a Python environment using the scikit-learn machine learning library [22],

the Natural Language Toolkit (NLTK) [3], and using pandas library [18] for data

manipulation. We reformatted the Enron1 dataset to suit this setup by pooling the

entire set of email messages in a single comma-separated values file such that each row

is a full representation of an individual email’s information consisting of a “spam” or

“ham” label, comma-separated from the email text. The reformatted file was parsed

and converted to a pandas dataframe with no headers. The resulting dataframe is

a simple framework that consists of two columns only: the email instance and the

corresponding label, with the label appearing before the email instance. Each email

message is a single space-delimited stream of words.

2.2.2 Text Preprocessing

We preprocessed each email by replacing any email addresses, URLs, currency sym-

bols, and numbers with suitable string placeholders that identifies the original token,

as shown in Fig. 2.2. Each token that does not start with with letters, digits, or spaces

was replaced with a space, and multiple spaces were trimmed to a single space. Empty

lines and stop words were also removed. Stemming was done using the Porter stem-

ming algorithm [32] from NLTK. Using the scikit-learn dataset splitting utility, we

split our dataset into random training and testing subsets such that 80 percent of the

sample is devoted to model training and the other 20 percent to testing.

2.2.3 Feature Extraction

Word tokenization and feature creation for our word dictionary was carried out using

the NLTK word tokenization and frequency distribution utilities. The label encoder

utility in scikit-learn was used to generate features from the words in emails.

7

Figure 2.1: Experimental design: The emails from the Enron1 dataset are combined
into one file, with each email having its associated label, ham or spam. This file
is loaded in memory and preprocessed prior to analysis, by replacing URLs, emails,
phone numbers, and numbers with their corresponding placeholders, followed by re-
moving stop words and punctuation symbols, and then stemming the words. Before
generating the dictionary from these processed emails, in Experiments B and C, some
of the characters are replaced with their corresponding confusables from the Cyrillic
alphabet. The emails are then converted to a table format required by the machine
learning algorithms, with each email represented by a vector indicating the presence
or absence of the words from the dictionary in the body of the email. With this
representation the emails from the training set are used to train the classifiers, which
are then evaluated with the emails from the testing set.

8

(a) Python code fragment and an original email

(b) Python code fragment used to pre-process emails, and a processed email

Figure 2.2: An example of how each email is preprocessed, with (a) showing the email
before it was processed, i.e., the original email, and (b) showing the email after it
was processed. In the modified email any email address is replaced with the string
“emailaddress”, any web address is replaced with the string “webaddress”, currency
symbols £ and $ are replaced with the string “moneysymb”, phone numbers are
replaced with the string “phonenumbr”, other numbers are replaced with the string
“numbr”, tokens that don’t start with with letters, digits, or spaces are replaced with
a space, multiple consecutive spaces are replaced with a single space, blank lines are
removed, and characters are converted to lower case.

2.2.4 Experiment A – Control Group

Each email text was preserved in its original form – i.e., no characters are replaced.

We trained and evaluated our set of classifiers using data from this distribution only.

9

2.2.5 Experiment B – Experimental Group

We modified our testing data by introducing corresponding Cyrillic letters in place

of the Latin letters ‘a’, ‘e’, ‘k’, ‘o’, ‘p’, ‘c’, and ‘y’. As desired, this resulted in single

and mixed-script confusables in our testing dataset. The intent here was to simulate

a visual spoofing effect in the email messages that our testing set consists of. With

the original character encoding in our training dataset still preserved, we trained all

classifiers using data from the same distribution as in experiment A. However, the

trained model is evaluated with data effectively from a different distribution than the

one used in experiment A.

2.2.6 Experiment C – Proposed Solution

We modified both our training and testing datasets to replicate visual spoofing in the

entire distribution used to develop our model, using the set of confusables introduced

in experiment B. Training and evaluation was performed using data from this modified

distribution only. As a result, unlike experiments A or B, each of our models would

simulate spam filters designed to classify emails that contain visual spoofing.

2.2.7 Models and Model Evaluation Metrics

We evaluated these three scenarios with four machine learning algorithms frequently

used for spam detection: decision tree, random forest, näıve Bayes, and support

vector machine. The goal was not to compare these algorithms, but rather to show

that regardless of the algorithm used, this method leads to similar results. Each of

these classifiers was evaluated using accuracy, precision, recall, F1 score, and confusion

matrices.

10

2.2.8 Production Testing

We also tested this method with a production email. We first sent an email containing

a lot of keywords frequently encountered in spam emails (Fig. 2.3a), and this email

was flagged as spam. Then we sent the same email, with some of the characters

replaced by their “visually equivalent” characters from Cyrillic alphabet, and this

email was delivered to the Inbox (Fig. 2.3b). This suggests that this method can

currently bypass existing spam filters.

2.3 Machine Learning Algorithms Used

2.3.1 Algorithms

Näıve Bayes

A näıve Bayes algorithm (NBA) is a classification algorithm based on the Bayes

theorem with the assumption of independence of features. For example, a fruit can

be considered an apple if it is red, round and its diameter is about 8 centimeters.

Even if these measures depend on each other, they make an independent contribution

to the likelihood that this fruit is an apple. In connection with this assumption, the

algorithm is called “näıve”.

A näıve Bayes algorithm is quite simple and extremely useful when working with

very large data sets. With its simplicity, the NBA is able to surpass even some

complex classification algorithms.

All model parameters can be approximated by relative frequencies from a train-

ing data set. These are estimates of the maximum likelihood of probabilities. If a

given class and property value are never present together in a training set, then a

probability-based estimate will be zero. This is a problem, since when multiplying

11

a zero estimate will lead to a loss of information about other probabilities. There-

fore, it is preferable to make small corrections to all probability estimates so that no

probability is strictly equal to zero.

Support Vector Machine

A support vector machine (SVM) is a linear algorithm used in classification problems.

This algorithm is widely used in practice to solve both linear and nonlinear problems.

The SVM algorithm is designed to identify the instances closest to the separating hy-

perplane. These points are called the support vectors. Then, the algorithm calculates

the distance between the support vectors and the dividing hyperplane. This distance

is called the margin of the classifier. One of the main goals of this algorithm is to

maximize the distance between the support vectors and the separating hyperplane.

The best hyperplane is considered to be a hyperplane for which this gap is as large

as possible. Most of the time, a dataset cannot be divided linearly. But, this dataset

can be divided linearly by projecting it into a higher dimension.

One of its parameter, C, adjusts the margin between the support vectors and the

separating hyperplane. The higher the C value, the smaller the margin, and more

objects in the training set will be correctly classified. With higher values of C though,

the chances that the model will generalize and show equally good results on new data

are very small. The lower the C value, the larger the margin, which leads to lower

accuracy. Therefore, it is important to tweak the model parameters for a specific data

set in order to avoid retraining but, at the same time, achieve high accuracy.

The gamma parameter determines how far each of the elements in the data set

have an influence in determining the “ideal hyperplane”. The lower the gamma, the

more elements, even those that are far enough from the dividing hyperplane, take

part in the process of choosing it. If the gamma is high, then the algorithm will

12

“rely” only on those elements that are closest to the hyperplane.

If the gamma value is set too high, then only the elements closest to the hyperplane

will participate in the decision-making process on the location of the hyperplane. This

will help to ignore outliers in the data. The SVM algorithm is designed in such a

way that the points located closest to each other have more weight when making a

decision. However, with the correct settings for C and gamma, an optimal result can

be achieved that builds a more linear hyperplane that ignores outliers and, therefore,

is more generalizable.

Decision Tree

Decision trees are one of the most effective tools for data mining and predictive

analytics, which allow us to solve classification and regression problems. Actually,

the decision tree itself is a method of representing decision rules in a hierarchical

structure, consisting of elements of two types – nodes and leaves. Decision rules are

located in the nodes, and each instance is evaluated by the rules in the nodes traversed

from the root to a leaf. In the simplest case, as a result of verification, the set of

examples that fall into the node is divided into two subsets, one of which includes

examples that satisfy the rule, and the other that do not.

Then, a rule is again applied to each subset and the procedure is repeated recur-

sively until a certain condition for stopping the algorithm is reached. As a result, in

the last node, verification and splitting are not performed and it is declared as a sheet.

The sheet defines a solution for each example that falls into it. For the classification

tree, this is the class associated with the node, and for the regression tree, the modal

interval of the target variable corresponding to the sheet.

Thus, unlike a node, a sheet does not contain a rule, but a subset of objects that

satisfy all the rules of a branch that ends with this sheet.

13

Obviously, to get on the sheet, the example must satisfy all the rules that lie on

the way to this sheet. Since the path in the tree to each sheet is unique, then each

example can fall into only one sheet, which ensures the uniqueness of the solution.

The process of constructing decision trees consists in a sequential, recursive par-

tition of the training set into subsets using decision rules in nodes. The splitting

process continues until all nodes at the end of all branches are declared leaves. Dec-

laration of a node as a leaf can occur naturally (when it will contain a single object,

or objects of only one class), or upon reaching some stopping condition specified by

the user (for example, the minimum allowable number of examples in a node or the

maximum depth of a tree).

Algorithms for constructing decision trees are classified as so-called greedy algo-

rithms. Algorithms are called greedy, which assume that locally optimal solutions at

each step (partitions in nodes) lead to an optimal final solution. In the case of decision

trees, this means that if an attribute was selected once, and it was partitioned into

subsets, then the algorithm cannot go back and select another attribute that would

give the best final partition. Therefore, at the construction stage, it cannot be said

whether the selected attribute will ultimately provide an optimal partition.

The statistical approach is based on the use of the Gini index. The statistical

meaning of this indicator is that it shows how often a randomly chosen example of a

training set will be recognized incorrectly, provided that the target values in this set

were taken from a certain statistical distribution.

Random Forest

A random forest is a model consisting of many decision trees. Instead of just averaging

the forecasts of different trees, this model uses two key concepts that make this forest

random:

14

1. Random sampling of instances from a dataset when building trees. During

training, each random forest tree learns from a random sample from a data set.

Sampling takes place with replacement, this makes it possible to reuse samples with

the same tree. Although each tree can be highly varied with respect to a specific

set of training data, training trees on different sets of samples allows us to reduce

the overall variability of the forest without sacrificing accuracy. During testing, the

result is displayed by averaging the forecasts received from each tree. The approach

in which each learning element receives its own set of training data, after which the

result is averaged, is called bagging.

2. When separating nodes, random sets of features are selected. The second basic

concept of a random forest is to use a specific sample of features to separate each

node in each individual tree. Typically, the sample size is equal to the square root

of the total number of features. That is, if each sample of the data set contains 16

features, then each individual node will use 4. A random forest combines hundreds

or thousands of decision trees, training each on a separate data sample, dividing the

nodes in each tree using a limited set of features. The final forecast is made by

averaging forecasts from all trees.

2.3.2 Evaluation Metrics

Confusion Matrix

When describing metrics used in machine learning, it helps to put them in the context

of the confusion matrix, shown in Table 2.1. The confusion matrix shows the number

of instances correctly classified as positive (or ham in the case of spam classification,

TP = true positive), the number of instances correctly classified as negative (or

spam in the case of spam classification, TN = true negative), the number of positive

15

instances classified as negative (or ham classified as spam, FN = false negative), and

the number of negative instances classified as positive (or spam classified as ham, FP

= false positive).

Accuracy

Accuracy is the ratio of correctly classified instances to all instances classified. In

other words, it indicates how many of the instances classified have been assigned the

correct label.

ACC =
TP + TN

TP + TN + FP + FN

Precision

Precision is the ratio of spam emails classified as spam (TP) to all emails classified as

spam (TP + FP). In other words, how many emails classified as spam, are actually

spam emails.

P =
TP

TP + FP

Predicted class
ham spam

Actual
class

ham TP FP
spam FN TN

Table 2.1: Confusion matrix, used to describe the evaluation metrics used in infor-
mation retrieval and machine learning.

16

Recall

Recall is the ratio of the number of spam emails found to the total number of spam

emails in the test set. In other words, out of all spam emails in the test data set (TP

+ FN), how many of them are correctly classified as spam (TP).

R =
TP

TP + FN

F1 Score

F1-score is defined as the weighted harmonic mean of precision and recall. In other

words, it measures the effectiveness of retrieval with respect to the number of times

the recall is more important than precision.

F1 = 2 · P · R

P + R
=

2 · TP

2 · TP + FP + FN

2.4 Results and Discussion

Experiment A simulates an existing spam filter, by assuming the same distribution

for training and testing data. In this experiment we did not replace any characters,

and all classifiers correctly identified most of the emails as either ham or spam, as

shown in Fig. 2.2a. All evaluation metrics used – accuracy, precision, recall, and F1

score – had values close to 100% for all classifiers, as shown in Fig. 2.4a.

Experiment B simulates an approach that can be used to mislead a spam filter,

by changing the distribution of the test data from the distribution of the training

data through the use of characters assumed either not present, or rarely present in

the training data. With this change, most of the emails are mislabeled, as shown

in Fig. 2.2b, and accuracy, recall, and F1 score decrease by about half, whereas

17

D
T

predicted
ac

tu
al ham spam

ham 701 30
spam 35 269

R
F

predicted

ac
tu

al ham spam
ham 712 19
spam 35 269

N
B

predicted

ac
tu

al ham spam
ham 725 6
spam 14 290

S
V

M

predicted

ac
tu

al ham spam
ham 717 14
spam 26 278

(a) Experiment A

predicted

ac
tu

al ham spam
ham 207 524
spam 4 300

predicted

ac
tu

al ham spam
ham 267 464
spam 8 296

predicted

ac
tu

al ham spam
ham 211 520
spam 7 297

predicted

ac
tu

al ham spam
ham 262 469
spam 11 293

(b) Experiment B

predicted

ac
tu

al ham spam
ham 704 27
spam 31 273

predicted

ac
tu

al ham spam
ham 711 20
spam 35 269

predicted

ac
tu

al ham spam
ham 725 6
spam 14 290

predicted

ac
tu

al ham spam
ham 717 14
spam 26 278

(c) Experiment C

Table 2.2: Confusion matrices for Experiment A (no characters replaced), Experiment
B (characters replaced in the test set), and Experiment C (characters replaced in train
and test sets) from the following machine algorithms used: decision tree (DT), random
forest (RF), näıve Bayes (NB), and support vector machine (SVM). Notice that when
replacing characters only in the test set, i.e., Experiment B, most of the ham emails
get misclassified as spam.

the precision decreases by about 20%, as shown in Fig. 2.4b. Also, five-fold cross-

validation was performed, as show in Table 2.3, to show that the drop in values for

Experiment B are not due to the data split. It is interesting to note that while these

models label most emails as spam, their behavior is opposite of what is seen in the

commercial mail servers, where emails with confusable characters bypass spam filters,

as shown in Fig. 2.7.

Experiment C simulates one way a spam filter can adapt to detect emails con-

taining characters replaced with their “visually equivalent” counterparts. With this

approach, the training and testing data are assumed to be drawn from the same dis-

18

tribution, i.e., some characters are replaced in both data sets. With this modification,

all classifiers correctly identified most of the emails as either ham or spam, as shown

in Fig. 2.2c. In addition, all evaluation metrics used had values close to 100% for all

classifiers, as shown in Fig. 2.4c.

Another way to address this situation is to detect the language used in the email,

and then replace all characters to the alphabet used with that language. After the

characters from a different alphabet are replaced, the training and testing data can

be assumed to be drawn from the same distribution, and then the experiment would

be similar to experiment A.

We also evaluated how replacing some characters affect other applications used

with text classification:

• For web search, replacing some characters with their confusables caused the
search engine to not find the document, as shown in Fig. 2.5. This suggests
that applications used to detect plagiarism could also be affected.

• For text translation, Google was able to correctly identify the language even
with confusables used in text, yet it left those characters unchanged in the
“translated” text, as shown in Fig. 2.6.

Experiment A Experiment B Experiment C
DT 93.73% 48.95% 93.71%
RF 97.46% 55.18% 97.17%
NB 97.44% 48.23% 97.44%
SVM 95.90% 53.37% 95.90%

Table 2.3: Cross-validation accuracy averaged over five folds, for Experiment A (no
characters replaced), Experiment B (characters replaced in the test set), and Ex-
periment C (characters replaced in train and test sets) from the following machine
algorithms used: decision tree (DT), random forest (RF), näıve Bayes (NB), and sup-
port vector machine (SVM). Notice that when replacing characters only in the test
set, i.e., Experiment B, the classifiers misclassify most emails than in the other two
experiments, and all metrics have lowest values for this experiment.

19

2.5 Related Work

To solve the issues brought about by spam, many spam sifting arrangements were pro-

posed in the ongoing past years. In [10], the authors described a method that used text

features that were long established, such as frequency of spam words and HTML tags,

as well as some that were new. The novelty of their work was that they introduced

language-centric features such as grammar and spell errors, used function words,

presence of verbs and alphanumerics, TF-IDF, and inverse sentence frequency. They

evaluated the classifier performance on four benchmark email datasets: CSDMC2010,

SpamAssassin, LingSpam, and Enron-Spam. Since the highlights identified with the

meaningfulness of email writings are language-independent, the strategy proposed

in this paper is conceivably ready to group messages written in any language. The

aforementioned features, as well as the traditional ones, are used to generate binary

classifiers by five well-known learning algorithms.

In [28], the authors presented different classifiers for detecting spam. They evalu-

ated two main approaches to detect spam: header-based features and content-based

features. The classifiers presented in this paper include Support Vector Machine

(SVM), näıve Bayes (NB) and J48. The dataset utilized in this paper is enron1 from

Enron spam. It contains 3762 spam messages and 5172 ham messages. To assess their

effectiveness they compute accuracy, precision and recall. They found that SVM is

the best classifier as far as accuracy and False Positive Rate are concerned.

In [20], the authors evaluated SVM classifiers with different values for the C

parameter, given that SVM is one of the best algorithms when it comes to text

analysis and prediction. Their observation was that for high values of C the model

overfits, and for low values of C the model underfits, thus highlighting the importance

of choosing the appropriate value for the C parameter.

20

In [33], the authors proposed a weighted SVM method for spam filtering. This

method used weight variables obtained by KFCM algorithm. They evaluated this

method with emails from the UCI Repository SMS Spam base dataset, and com-

pared with SVM and Improvised WSVM. Based on their analysis, Improvised WSVM

produced lower misclassification rates than SVM.

In [23], the authors proposed a method that used the näıve Bayes algorithm with

word features in which symbols within words are replaced by the letter that most

likely substitutes that symbol. With this change, their method increased the classi-

fication accuracy by over two hundred percent over Spamassassin. They evaluated

this method using the Ling-Spam corpus, a dataset that best emulates genuine cir-

cumstances.

21

(a) Text unchanged (b) Text changed

Character Replacement
a U+0430
e U+0435
k U+043A
o U+043E
p U+0440
c U+0441
y U+0443

(c) Characters replaced in text
(d) Spell checker highlights “misspelled”
words

(e) Unchanged text shown in TextMagic (f) Changed text shown in TextMagic

Figure 2.3: An example of text emailed with two different outcomes. The text in
sub-figure (a) uses the Latin alphabet, and was detected by the spam filter. The
text in sub-figure (b) has some characters replaced with their “visual-equivalent”
from the Cyrillic alphabet, and was not detected by the spam filter. The characters
replaced, and their replacements are shown in sub-figure (c). Some of the words
in the modified text cause the spell checker to highlight them, as shown in sub-
figure (d). The initial text and the modified text are shown side-by-side in https:

//www.textmagic.com/free-tools/unicode-detector, an online application that
shows non-ASCII characters with red background, sub-figures (e) and (f), respectively.

22

A
cc

u
ra

cy
P

re
ci

si
on

R
ec

al
l

F
1

sc
or

e

(a) Experiment A (b) Experiment B (c) Experiment C

Figure 2.4: Evaluation metrics for Experiment A (no characters replaced), Experi-
ment B (characters replaced in the test set), and Experiment C (characters replaced
in train and test sets) from the following machine algorithms used: decision tree
(DT), random forest (RF), näıve Bayes (NB), and support vector machine (SVM).
Notice that when replacing characters only in the test set, i.e., Experiment B, the
classifiers misclassify most emails than in the other two experiments, and all metrics
have lowest values for this experiment.

23

11/30/2019 I am so distraught. I thought i could reach out to you to help me out. I came down to United Kingdom for a short vacation unfortunately i was mu…

https://www.google.com/search?sxsrf=ACYBGNR3TBVdD_fkrtm3N12e26NBRjSnEQ%3A1575144769316&ei=Qc3iXf_sEtLn5gL4w41Q&q=I+am+so+distr… 1/4

About 295,000 results (1.48 seconds)

"for" (and any subsequent words) was ignored because we limit queries to 32 words.

For the Love of Viagra Spam and the 419 Email Scam | HuffPost
https://www.huffpost.com › entry › for-the-love-of-viagra-an_b_766530
Oct 19, 2010 - I am so distraught. I thought i could reach out to you to help me out. I came down
to United Kingdom for a short vacation unfortunately i was mugged at the park of the hotel i
stayed, all cash, credit card and cell phone was stolen from me but luckily for me i still have my
passport with me. I've been to the ...

Feedback

People also ask

What to do if you get robbed in a foreign country?

What should I do if I get robbed?

Does travel insurance cover being robbed?

My Mom Got Robbed In Our Hotel! | One Mile at a Time
https://onemileatatime.com › my-mom-got-robbed-in-our-hotel
The story of how my mom got robbed in our hotel, the W Barcelona. ... It's a safe city (in the
sense that you don't have to fear for your life), but you do ... “Told me that he likes me very much
and wants to go out with me to �nd out more about him! ... I'm about to board a �ight to get out
of Spain so we can get to a consulate and ...

All Images News Videos Maps More Settings Tools

I am so distraught. I thought i could reach out to you to help me out. I came down

(a) Results returned by Google Search when the input text contained
only characters from the Latin alphabet

11/30/2019 I аm sо distrаught. I thоught i соuld rеасh оut tо уоu tо hеlр mе оut. I саmе dоwn tо Unitеd Kingdоm fоr а shоrt vасаtiоn unfоrtunаtеlу i wаs mu…

https://www.google.com/search?sxsrf=ACYBGNSzYsKLVYeh4qeUzxmSATT_Ptx9JQ%3A1575144767276&source=hp&ei=P83iXe6IDu3P5gL3o4D4BA&q=… 1/3

About 5 results (0.89 seconds)

"аll" (and any subsequent words) was ignored because we limit queries to 32 words.

Did you mean: I am sо distraught. I thought i could rоасh оut tо уоu tо hеlр
mе оut. I саmе dоwn tо Unitеd Kingdоm fоr а shоrt vасаtiоn unfоrtunаtеlу
i wаs muggеd аt thе pаrк оf thе hоtеl i stауеd, аll саsh, сrеdit саrd сnd сеll
рhоnе wаs stоlеn frоm mе but lucкily fоr mе i still hаvе mу pаsspоrt with
mе. I'vе bееn tо thе еmbаssy аnd tо thе роliсе hеrе but thеу'rе nоt hеlрing
issuеs аt аll аnd, mу �ight lеаvеs in fеw hоurs timе frоm nоw but. I аm
hаving рrоblеms sеttling thе hоtеl bills аnd thе hоtеl mаnаgеr wоn't lеt mе
lеаvе until i sеttlе mу hоtеl bills. I аm frеакеd оut аt thе mоmеnt.

Trump lashes out at Iran for shutting down internet - KEYT ...
https://keyt.com › news › national-world › 2019/11/21 › trump-lashes-out-...
Published November 21, 2019 10:21 am. Trump lashes out at Iran for shutting down internet.
WASHINGTON (AP) — President Donald Trump says Iran is so “unstable” that the Iranian
government has shut down the internet so Iranians cannot ...

Trump lashes out at Iran for shutting down internet - KTVZ
https://ktvz.com › news › national-world › 2019/11/21 › trump-lashes-out-...
Published November 21, 2019 10:21 am. Trump lashes out at Iran for shutting down internet.
WASHINGTON (AP) — President Donald Trump says Iran is so “unstable” that the Iranian
government has shut down the internet so Iranians cannot ...

[PDF] Time Exception Sheet
https://www.bcswan.net › cms › lib › Centricity › Domain

All Videos Maps Images News More Settings Tools

I аm sо distrаught. I thоught i соuld rеасh оut tо уоu tо hеlр mе оut. I саmе dоwn

(b) Results returned by Google Search when the input text contained
characters from both the Latin and the Cyrillic alphabets

Figure 2.5: Google Search returns the document containing the searched text as
the top result when the characters are not changed, yet it does not find the same
document when some characters are changed.

24

11/30/2019 Google Translate

https://translate.google.com/#view=home&op=translate&sl=auto&tl=en&text=I аm sо distrаught. I thоught i соuld rеасh оut tо уоu tо hеlр mе оut. I саmе dоwn… 1/1

ENGLISH - DETECTED ENGLISH

I аm sо distrаught. I thоught i соuld rеасh оut tо уоu tо hеlр mе оut. I саmе dоwn tо Unitеd
Kingdоm fоr а shоrt vасаtiоn unfоrtunаtеlу i wаs muggеd аt thе pаrк оf thе hоtеl i stауеd, аll
саsh, сrеdit саrd сnd сеll рhоnе wаs stоlеn frоm mе but lucкily fоr mе i still hаvе mу pаsspоrt
with mе. I'vе bееn tо thе еmbаssy аnd tо thе роliсе hеrе but thеу'rе nоt hеlрing issuеs аt аll
аnd, mу �ight lеаvеs in fеw hоurs timе frоm nоw but. I аm hаving рrоblеms sеttling thе hоtеl
bills аnd thе hоtеl mаnаgеr wоn't lеt mе lеаvе until i sеttlе mу hоtеl bills. I аm frеакеd оut аt
thе mоmеnt.

I аm sо distrаught. I thоught i соuld rеасh оut tо уоu tо hеlр mе оut. I саmе dоwn tо Unitеd
Kingdоm fоr а shоrt vасаtiоn unfоrtunаtеlу i wаs muggеd аt thе pаrк оf thе hоtеl i stауеd, аll
саsh, сrеdit саrd сnd сеll рhоnе wаs stоlеn frоm mе but lucкily fоr mе i still hаvе mу pаsspоrt
with mе. I'vе bееn tо thе еmbаssy аnd tо thе роliсе hеrе but thеу'rе nоt hеlрing issuеs аt аll
аnd, mу �ight lеаvеs in fеw hоurs timе frоm nоw but. I аm hаving рrоblеms sеttling thе hоtеl
bills аnd thе hоtеl mаnаgеr wоn't lеt mе lеаvе until i sеttlе mу hоtеl bills. I аm frеакеd оut аt
thе mоmеnt.

Figure 2.6: Google Translate correctly identified the language even with confusables,
yet it left those characters unchanged in the “translated” text.

25

(a) Email with unchanged text is flagged as
spam.

(b) Email with text changed using confus-
ables by-passes the spam filter and is deliv-
ered to the inbox.

Figure 2.7: Based on the content of this email, the spam filter of the email server flags
it as spam (left), whereas by changing some of the characters with their corresponding
confusables tricks the spam filter into marking this message as safe (right).

26

Chapter 3

Predicting Malware Attacks using Machine Learning and AutoAI

3.1 Problem Description

One of other cybersecurity problem is malware. Malware is deliberately designed to

be hostile, intrusive, and aggressive. It seeks to penetrate the system, inflict damage,

partially take over control of some processes, or completely disable computers, com-

puter systems, networks, tablets, and mobile devices. Like a human virus, malware

interferes with the normal functioning of a system. The purpose of malware is to

make illegal profits at your expense. In addition, malware can damage system hard-

ware and network equipment. Hackers can steal, and encrypt or delete your data and

it can monitor computer activity without your knowledge.

Malware is commonly used by cyber criminals as primary attack vectors, and mal-

ware proliferation is thus a significant challenge for security professionals to adapt and

develop a matching defense mechanism. The prediction of malware attacks remains

one of the most challenging problems for companies and academics. Traditional se-

curity solutions can not keep pace with the ever-evolving threats that cause damage

to critical systems, leading to loss of money, sensitive information, and reputation.

The malware threat continues to grow along with the drastic rise in the number of

victims due to the growing number of users in cyberspace, financial gains, seeking

increased computational power for further attacks (botnets), availability of malware

scripts, etc. Panda Security Company revealed in 2015, that 230,000 new malware

attacks occurred daily [16]. It is no longer possible for traditional signature-based

and heuristics-based technologies to keep pace with malware proliferation due to the

vast quantities of malware. In addition, security analysts can not perform a manual

analysis on every new malware.

One of the big problems facing anti-malware applications today are the large

volumes of data that need to be analyzed for possible malicious intent. Each day

people generate and capture more than 2.5 quintillion bytes of data. More than 90%

of the data was generated in the last two years and it is approximately 40 Zettabytes

or 40 trillion gigabytes [6]. This makes detection of malware more complicated when

dealing with such a large volume of data. This applies to Microsoft’s real-time anti-

malware detection application because it runs on 600 million computers worldwide

[4].

Different machine learning methods have been proposed to address the problem

of predicting malware attacks. Light Gradient Boosted Machine (LGBM) is the most

popular classification technique currently used in detecting malware. Some of the

benefits of LGBM are that it is easy to create, easy to understand, and reduces com-

plexity [24]. In addition, with the increase of malware threats in our world, a lot

of big companies use AutoAI to help protect their systems. Automated Artificial

Intelligence (AutoAI) is a variant of automated machine learning technology that au-

tomates the entire life cycle of machine learning [34]. Automation evaluates a number

of tuning choices to obtain the best possible outcome, then ranks model-candidates.

The best-performing pipelines can be placed into production for processing new data

and generating predictions based on model training [26]. Automated artificial intel-

ligence can also be implemented to ensure that the model has no inherent bias and

automates the tasks for continuous model development. However, even with the ad-

28

vanced technology of AutoAI, machine learning experts can, at times, obtain better

results.

The main repository for our Malware Prediction Experiments can be found at

https://github.com/sokolovm19/malware_prediction.

3.2 Experimental Design

The goal of our experimental design is to test our framework on Microsoft Malware

Prediction dataset and compare the results with AutoAI as well as [30] and [21].

We conducted three experiments. Experiment A is the control experiment, in which

the whole dataset was used. In Experiment B, we used LGBM feature extraction to

remove less important features and decrease the number of columns in the dataset. We

removed the 30 lowest-ranked features, and kept the 84 highest-ranked features. We

removed features that have less than 3% of importance on the dataset. In Experiment

C, we used Random Forest feature extraction to select the features. We removed 73

lowest-ranked features and kept the 41 highest-ranked features. We removed features

that have importance less than 3%.

LGBM feature selection was used to remove less important columns from the

training and testing sets to improve score. Importance feature offers a score showing

how useful or beneficial each feature has been in the construction of the boosted

decision trees within the model. The higher its relative value, the more an attribute

is used to make important decisions with the decision trees. For each attribute in

the dataset this value is determined directly, allowing attributes to be listed and

compared with each other.

29

3.2.1 Data Source and Format

The experiments were performed using the Microsoft Malware Prediction dataset,

the dataset is publicly available on Kaggle website [1]. The data consists of 4,458,892

malware instances and 4,462,591 benign instances. We used only the training dataset

from the website since the testing data is unlabelled. The training dataset includes

8,921,483 instances and 83 features. The experiments were run entirely in a Python

environment using the scikit-learn machine learning library [22], the LGBM [13],

and using pandas library [18] for data manipulation. The following columns ‘En-

gineVersion’, ‘AppVersion’, ‘AvSigVersion’, ‘OsBuildLab’, ‘Census OSVersion’ were

converted into multiple features by using the split function. By doing so, we have

created dataset with 114 features.

3.2.2 Dataset

Microsoft made these data publicly available to evaluate the probability of malware

infection on Windows machines. The dataset contains Microsoft’s Windows Defender

telemetry data and the system’s infection status, generated by combining heartbeat

and threat reports. This dataset contains 4.04 GB of data and has two types of

variables: numerical columns and categorical columns [1]. It includes 27 numerical

columns and 56 categorical columns. The description of the dataset is shown in

Table. 3.1

Column Description

Machine Identifier Individual machine ID

ProductName Defender state information e.g. win8defender

Engine Version Defender state information e.g. 1.1.12603.0

AppVersion Defender state information e.g. 4.9.10586.0

30

IsBeta Defender state information e.g. 1.217.1014.0

DefaultBrowserslden-

tifier

Defender state information e.g. false ID for the machine’s default

browser

AVProductStateslden-

tifier
ID for the specific configuration of a user’s antivirus software

Has True if machine has tpm

CountryIdentifier ID for the country the machine is located in

CityIdentifier ID for the city the machine is located in

OrganizationIdentifier
ID for the organization the machine belongs in. organization ID

is mapped to both specific companies and broad industries

GeoNameIdentifier ID for the geographic region a machine is located in

LocalEnglish-

Nameldentifier
English name of Locale ID of the current user

Platform Calculates platform name

Processor This is the process architecture of the installed operating system

OsVersion Version of the current operating system

OsBuild Build of the current operating system

OsSuite Product suite mask for the current operating system.

OsPlatformSubRe-

lease
Returns the OS Platform sub-release

OsBuildLab Build lab that generated the current OS.

SkuEdition

The goal of this feature is to use the Product Type defined in the

MSDN to map to a SKU-Edition’ name that is useful in population

reporting.

31

IsProtected

This is a calculated field derived from the Spynet Report’s AV

Products field. Returns:

a. TRUE if there is at least one active and up-to-date antivirus

product running on this machine

b. FALSE if there is no active AV product on this machine, or if

the AV is active, but is not receiving the latest updates.

c. null if there are no Anti Virus Products in the report. Returns:

Whether a machine is protected

AutoSampleOptin
This is the SubmitSamplesConsent value passed in from the ser-

vice. available on CAMP 9+

PuaMode Pua Enabled mode from the service

SMode

This field is set to true when the device is known to be in ’S Mode’,

as in, Windows 10 S mode, where only Microsoft Store apps can

be installed

SmartScreen This is the SmartScreen enabled string value from registry.

Firewall
This attribute is true (1) for Windows 8.1 and above if windows

firewall is enabled. as reported by the service.

UacLuaenable
This attribute reports whether or not the administrator in Admin

Approval Mode” user type is disabled or enabled in

Census DC2

FormFactor

A grouping based on a combination of Device Census level hard-

ware characteristics

The logic used to define Form Factor is rooted in business and

industry + standards and aligns with how people think about

their device.

32

Census DeviceFamily
As known also DeviceClass Indicates the type of device that an

edition of the OS is intended for

Census Processor

CoreCount
Number of logical cores in the processor

Census Processor

Class

A classification of processors into high/medium/low Initially used

for Pricing Level SKU.

Census Primary

DiskTotalCapacity
Amount of disk space on primary disk of the machine in MB

Census PrimaryDisk

TypeName
Friendly name of Primary Disk Type - HDD or SSD

Census SystemVolume

TotalCapacity

The size of the partition that the System volume is installed on

in MB

Census asOptical

DiskDrive

True indicates that the machine has an optical disk drive

(CD/DVD)

Census Total

PhysicalRAM
Retrieves the physical RAM in MB

Census hassis

TypeName

Retrieves a numeric representation of what type of chassis the

machine has A value of 0 means xx

Cen-

sus InternalPrimary

DiagonalDisplay

SizeInInches

Retrieves the physical diagonal length in inches of the primary

display

33

Cen-

sus InternalPrimary

DisplayResolution

Horizontal

Retrieves the number of pixels in the horizontal direction of the

internal display.

Cen-

sus InternalPrimary

DisplayResolution

Vertical

Retrieves the number of pixels in the vertical direction of the in-

ternal display

Cen-

sus PowerPlatform

RoleName

Indicates the OEM preferred power management profile.

Census OSVersion Numeric OS version

Cen-

sus OSArchitecture

Architecture on which the OS is based Derived from OS Version-

Full.

Census OSBranch Branch of the OS extracted from the Os VersionFull.

Cen-

sus OSBuildNumber
OS Build number extracted from the sersionFull

Census

OSBuildRevision
OS Build revision extracted from the

Census OSEdition Edition of the current OS.

Census OSSkuName OS edition friendly name (currently Windows only)

Cen-

sus SInstallTypeName

Friendly description of what install was used on the machine i.e.

clean of the the machine

34

Census sWUAuto

UpdateOptionsName

Friendly name WindowsUpda auto-update settings on the ma-

chine

Census sPortable

OperatingSystem

Indicates whether OS is booted up and running via Windows-To-

Gi on a USB stick.

CensusGenuine

StateName
Friendly name of OSGenuineStatelID. 0 = Genuine

Census Activation

Channel
Retail license key or Volume license key for a machine

Census Flights

Disabled
Indicates if the machine is participating in flighting

Census lightRing The ring that the device user would like to receive flights for.

Census Secure

BootEnabled
Indicates if Secure Boot mode is enabled.

Census VirtualDevice Identifies a Virtual Machine (machine learning model)

Census TouchEnabled Is this a touch device?

Census PenCapable Is the device capable of pen input?

Census Always

OnAlways

ConnectedCapable

Retreives information about whether the battery enables the de-

vice to be AlwaysOnAlwaysConnected

Wdft Gamer
Indicates whether the device is a gamer device or not based on its

hardware combination

HasDetections
Feature of output file, which contains probability of getting in-

fected by malware

35

Table 3.1: The data from Microsoft Malware Prediction dataset has 83 columns. In
addition to the column names, Microsoft also provided descriptions for the data in
each column.

3.2.3 Experiment A

We preprocessed the data, replaced the category variables with the category codes,

and replaced the missing values in the numerical columns with their median. Then

we converted this to a pandas dataframe. The data was split into two subsets: 80%

for training, and 20% for testing, and no columns were removed. Then, we divided

the entire training set into five equal sets, and trained LGBM on each one of them.

Each model was then used with testing data. We also used these five models in an

ensemble setting, using their majority voting.

3.2.4 Experiment B

We modified our testing and training data by removing some of the columns. LGBM

feature selection was used to remove columns that have lower impact on the model.

Importance provides a score that indicates how useful or valuable each feature was in

the construction of the boosted decision trees within the model. The intent here was

to select features that are more important than the others. There are many attributes

in data, some of the attributes may have irrelevant or partially relevant predictions so

if these are selected, it will cause a largely negative impact on the prediction model.

3.2.5 Experiment C

We modified both our training and testing datasets to remove even more columns.

Random forest feature selection was used to remove 73 columns. LGBM was trained

36

on training data and used to predict testing data. The intent here was to clean as

much data as we could to help LGBM to get higher accuracy. However, it led to

the opposite effect as shown in the in Table 3.2, Table 3.3, Table 3.4, Table 3.5, and

Table 3.6.

3.2.6 Auto AI

We also tested this dataset with Auto AI. We have used four of the most popular

Auto AIs: AutoAI from IBM Watson Studio [12], Auto-sklearn [7], hyperopt-sklearn

[2], and TPOT [14]. All Auto AI randomly divided the data set into two subsets for

training (80%) and testing (20%).

3.2.7 Model and Model Evaluation Metrics

Each of these models were evaluated using accuracy, confusion matrix, precision,

recall, F1 score and confusing matrices. All the results were collected and shown in

Table 3.2, Table 3.3, Table 3.4, Table 3.5, and Table 3.6, respectively.

3.3 Machine Learning Algorithms Used

3.3.1 Algorithm

LightGBM [13] is a Gradient Boosted Decision Trees model. Since traditional GBDT

consumes a lot of time to find the best split, several approaches have been suggested

to reduce overhead efficiency. One can downsample the data, for example, to reduce

the size of the training data. However, this requires native weights and can not be

applied directly to GBDT. Similarly, decreasing the number of features could be one

solution, but can have an impact on accuracy. LightGBM uses two techniques, called

Gradient-based One-Side Sampling (GOSS) that reduces data size, and Exclusive

37

Experiment A Experiment B Experiment C
LGBM 1 67.03% 67.07% 66.58%
LGBM 2 67.29% 67.18% 66.42%
LGBM 3 67.12% 67.20% 66.49%
LGBM 4 67.31% 67.09% 66.77%
LGBM 5 67.18% 67.11% 66.71%

LGBM(100,000) 67.01%
LGBM(Entire Trainig Set) 67.99%

Ensemble of LGBM 69.03% 68.78% 67.53%
Onodera 64.91%

Stephan Michaels 66.18%
IBM Watson 64.40%
Auto-sklearn 64.02%

Hyperopt-sklearn 62.37%
TPOT 57.89%

Table 3.2: Accuracy for Experiment A (no column removed), Experiment B (30
columns were removed), Experiment C (73 columns were removed), Onodera’s repli-
cated experiment, Michaels’ replicated experiment, IBM Watson used LGBM, Auto-
sklearn used LGBM, Hyperopt-sklearn used Gradient Booster, and TPOT used XG-
Boost. LGBM (100,000), LGBM (Entire Traninig Set), Onodera, Stephan Michaels,
IBM Watson, Auto-sklearn, Hyperopt-sklearn and TPOT are individual results that
are not related to Experiment B. IBM Watson is limited to 100,000 instances per
experiment so we used the same data for LGBM (100,000). Moreover, LGBM (Entire
Training Set) is used to compare results with Ensemble of LGBMs. Notice that En-
semble outperformed all the AutoAI and replicated experiments. This is a significant
improvement since it can save more than 400,000 computers from malware attacks.

Feature Bundling (EFB) that reduces the number of features using histogram-based

algorithms rather than finding the best split point to solve the GBDT problem.

GOSS keeps all instances with large gradients and conducts random sampling with

small gradients on the instances. In order to compensate for the data distribution

impact, GOSS introduces a constant multiplier for data instances with small gradi-

ents when calculating the information gain. Specifically, GOSS first sorts the data

instances according to their gradient’s absolute value and selects the top instances.

By doing so, without modifying the original data distribution by much, we put more

focus on the under-trained instances.

38

Exclusive Feature Bundling is helping to reduce the number of features without

loss of much information. The sparsity of the function space gives us the opportunity

to design an approach that is almost lossless in order to reduce the number of features.

In particular, many features are mutually exclusive in a sparse feature space, i.e., they

never take non-zero values simultaneously. Exclusive Feature Bundling can bundle

exclusive features securely into a single feature.

We set the same parameters for all our methods to be able to compare results. The

parameters’ values were tuned on smaller subsets of data, by maximizing accuracy.

Below are the list and description of involved hyperparameters [13]:

• Maximum number of leaves in one tree (num leaves): 250.

• Number of boosted trees to fit (n estimators): 6,000.

• Boosting learning rate (learning rate): 0.02.

• How much data to allow in leaves (min data in leaf): 42.

• Number of features selected in each iteration (feature fraction): 0.8.

• Frequency for bagging (bagging freq): 5.

• How much data to select without resampling (bagging fraction): 0.8.

• Random seed for bagging (bagging seed): 11.

• Maximum tree depth for base learners (max depth): -1.

3.3.2 Evaluation Metrics

Evaluation metrics used for evaluation are the same as previous experiment and can

be found Section 2.3.2.

3.4 Results and Discussion

LGBM achieved the highest accuracy when no columns were removed. All evaluation

metrics used – accuracy, confusion matrix, precision, recall, and F1 score – shown in

39

Table 3.2, Table 3.3, Table 3.4, Table 3.5, and Table 3.6, respectively.

We replicated the experiment [30] because the authors did not present results on

this data. We got the accuracy score of 66.18% which is below our score but higher

than the Auto AI as shown in Table 3.2.

Also, we replicated another experiment [21] that was not evaluated on these data.

We got the accuracy score of 64.9% which is below our score and very similar to the

Auto AI score as shown in Table 3.2.

Experiment A, B and C show that removing features from the dataset is not a

good strategy for this particular problem.

IBM Watson is limited to 100,000 instances per experiment so we used the same

data for LGBM(100,000). As shown in Table 3.2, Table 3.3, Table 3.5, and Table 3.6,

we were able to outperform IBM Watson. LGBM (entire training set) is used to

compare Ensemble of LGBMs to one single LGBM model that was trained with the

entire training set. As shown in Table 3.2, Table 3.3, Table 3.4, Table 3.5, and

Table 3.6, ensemble of LGBMs has a better performance to a single model. As

shown in Table 3.2, we outperformed any well known AI by 4-4.5%, which shows that

machine learning scientists and data engineers could get better results and save more

computers from malware attacks. 4-4.5% does not seem a lot but it is around 416,000

computers that could be saved from malware attack.

3.5 Related Work

In [15], the authors described a method that used Naive Transfer Learning approach

on Kaggle’s Microsoft Malware Prediction dataset. They trained a Gradient Boosting

Machine (GBM) to get a simple prediction model based on the training data, and

then fine-tuned it to suit the test dataset. The authors tried to minimize the marginal

40

Experiment A Experiment B
Predicted Predicted

A
ct

u
al Benign Malware

A
ct

u
al Benign Malware

Benign 611,585 281,502 Benign 607,327 285,760
Malware 297,831 594,379 Malware 300,831 590,379

Experiment C IBM Watson
Predicted Predicted

A
ct

u
al Benign Malware

A
ct

u
al Benign Malware

Benign 604,409 287,974 Benign 6,390 3,604
Malware 306,482 585,432 Malware 3,489 6,517

LGBM(Entire Training Set) LGBM(100,000)
Predicted Predicted

A
ct

u
al Benign Malware

A
ct

u
al Benign Malware

Benign 605,174 286,717 Benign 6,585 3,415
Malware 303,612 588,794 Malware 3,739 6,261

Table 3.3: Confusion matrices for Experiment A (no column removed), Experiment B
(30 columns were removed), Experiment C (73 columns were removed), IBM Watson
used LGBM, LGBM (with entire training set), and LGBM (with 100,000 instances).
IBM Watson is limited to 100,000 instances or 100 Mb of data per experiment so
we used the same data for LGBM (100,000). Notice that only Ensemble results are
included in the table since they show the highest accuracy.

distribution gap between the source and target domains, figure out the key features

for domain adaptation and change the results of predictions according to the general

statistical regularities extracted from the training set. They ran a GBM to collect

each feature’s importance ratings, and then picked 20 of the most important category

features for further study. This was done to simplify the problem and reduce the costs

of the computation. The first model used 20 most of the most important features, and

achieved an accuracy of 63.7%. A second model, in which columns with maximum

mean discrepancy were removed achieved an accuracy of 64.3%.

In [27], the authors presented a lightweight malware detection and mobile cate-

gorisation security framework. They evaluated the method with malware on Android

41

Experiment A Experiment B Experiment C
LGBM 1 67.07% 66.82% 66.55%
LGBM 2 67.27% 67.14% 66.46%
LGBM 3 67.18% 67.36% 66.38%
LGBM 4 67.28% 67.02% 66.86%
LGBM 5 67.26% 67.13% 66.78%

LGBM(100,000) 67.02%
LGBM(Entire Trainig Set) 67.97%

Ensemble of LGBM 69.01% 68.64% 67.57%
Onodera 64.93%

Stephan Michaels 66.19%
IBM Watson 64.43%
Auto-sklearn 64.03%

Hyperopt-sklearn 62.17%
TPOT 57.95%

Table 3.4: Precision for Experiment A (no column removed), Experiment B (30
columns were removed), Experiment C (73 columns were removed), Onodera’s repli-
cated experiment, Michaels’ replicated experiment, IBM Watson used LGBM, Auto-
sklearn used LGBM, Hyperopt-sklearn used Gradient Booster, and TPOT used XG-
Boost. LGBM (100,000), LGBM (Entire Traninig Set), Onodera, Stephan Michaels,
IBM Watson, Auto-sklearn, Hyperopt-sklearn and TPOT are individual results that
are not related to Experiment B. IBM Watson is limited to 100,000 instances per
experiment so we used the same data for LGBM (100,000). Moreover, LGBM (En-
tire Training Set) is used to compare results with Ensemble of LGBMs. Notice that
Ensemble outperformed all the AutoAI and replicated experiments.

devices. Because of the success and openness of the Android platform, it is con-

stantly under attack. They performed the analysis on a very large dataset consisting

of 184,486 benign applications and 21,306 malware samples. They randomly divided

the data set into two subsets for training (80%) and testing (20%), and evaluated

five classifiers: k-nearest neighbor (KNN), Ada, random forest (RF), support vector

machine (SVM), and GBM. The GBM classifier achieved the best accuracy, of 96.8%.

Since the Gradient Booster algorithm outperformed all other well known algorithms

in predicting malware, we decided to use it on another malware problem.

In [25], the authors used classifiers such as XG-Boost and LGBM to detect net-

42

Experiment A Experiment B Experiment C
LGBM 1 67.70% 67.27% 67.00%
LGBM 2 68.03% 67.51% 66.76%
LGBM 3 67.97% 67.70% 66.86%
LGBM 4 68.12% 67.58% 67.01%
LGBM 5 68.11% 67.67% 67.34%

LGBM(100,000) 67.21%
LGBM(Entire Trainig Set) 67.98%

Ensemble of LGBM 69.88% 69.07% 68.06%
Onodera 65.61%

Stephan Michaels 66.94%
IBM Watson 65.10%
Auto-sklearn 64.78%

Hyperopt-sklearn 62.63%
TPOT 58.52%

Table 3.5: Recall for Experiment A (no column removed), Experiment B (30 columns
were removed), Experiment C (73 columns were removed), Onodera’s replicated ex-
periment, Michaels’ replicated experiment, IBM Watson used LGBM, Auto-sklearn
used LGBM, Hyperopt-sklearn used Gradient Booster, and TPOT used XGBoost.
LGBM (100,000), LGBM (Entire Traninig Set), Onodera, Stephan Michaels, IBM
Watson, Auto-sklearn, Hyperopt-sklearn and TPOT are individual results that are
not related to Experiment B. IBM Watson is limited to 100,000 instances per ex-
periment so we used the same data for LGBM (100,000). Moreover, LGBM (Entire
Training Set) is used to compare results with Ensemble of LGBMs. Notice that
Ensemble outperformed all the AutoAI and replicated experiments.

work intrusion, and evaluated them using the NSL KDD dataset [5]. The dataset

is built on 41 features including basic features, traffic features and content features,

and 21 classes of attack. The authors’ experimental results showed that Gradient

Boosting Decision Tree ensembles like LGBM, XG-Boost, and the stacked ensemble

outperformed linear models and deep neural networks. Similar with the previous re-

lated work, since ensemble methods outperformed linear models and a deep neural

network, we would like to evaluate such methods on a more recent malware problem.

In [30], the author proposed a method for malware prediction. Two models were

trained and evaluated using LGBM. With one method, the data set was cleaned and

43

Experiment A Experiment B Experiment C
LGBM 1 67.58% 67.09% 66.71%
LGBM 2 67.82% 67.27% 66.58%
LGBM 3 67.77% 67.46% 66.65%
LGBM 4 67.92% 67.28% 66.70%
LGBM 5 67.91% 67.47% 67.09%

LGBM(100,000) 67.09%
LGBM(Entire Trainig Set) 67.78%

Ensemble of LGBM 69.63% 68.77% 67.80%
Onodera 65.57%

Stephan Michaels 66.73%
IBM Watson 64.83%
Auto-sklearn 64.54%

Hyperopt-sklearn 62.32%
TPOT 58.10%

Table 3.6: F-1 Score for Experiment A (no column removed), Experiment B (30
columns were removed), Experiment C (73 columns were removed), Onodera’s repli-
cated experiment, Michaels’ replicated experiment, IBM Watson used LGBM, Auto-
sklearn used LGBM, Hyperopt-sklearn used Gradient Booster, and TPOT used XG-
Boost. LGBM (100,000), LGBM (Entire Traninig Set), Onodera, Stephan Michaels,
IBM Watson, Auto-sklearn, Hyperopt-sklearn and TPOT are individual results that
are not related to Experiment B. IBM Watson is limited to 100,000 instances per
experiment so we used the same data for LGBM (100,000). Moreover, LGBM (En-
tire Training Set) is used to compare results with Ensemble of LGBMs. Notice that
Ensemble outperformed all the AutoAI and replicated experiments.

string values encoded. Afterwards a LightGBM was trained. With the other method,

the preprocessed data from first model was extended with new features. Then, im-

portant features were selected and a LightGBM was trained. Finally, an average of

the predictions of both models was calculated. We replicated the experiment because

the authors did not present results on Microsoft Malware Prediction data [1]. We got

the accuracy score of 66.18% which is below our score but higher than the Auto AI.

In [21], the author engineered five features, which were discovered by trying hun-

dreds of engineered variables to increase Time Split Validation. Each variable was

added to the model one at a time and validation score was recorded. After every

44

variable was changed to dtype integer, each variable was tested one by one to see if

making it categorical increases LGBM validation score. We replicated the experiment

and we got the accuracy score of 64.91% which is below our score and very similar to

the Auto AI score.

45

Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this research, we presented two problems that seemed to be solved, yet can be

improved: spam filtering and Auto AI.

in Section 2, we presented a method that can be used to avoid detection by a

spam filter. With this approach, a sender can replace a limited number of letters

from the Latin alphabet with letters from other alphabet(s) that look alike, and in

doing so it tricks the spam filter to produce more errors. We evaluated this method

using publicly available copies of spam and ham emails, namely from Enron1 data set,

with four machine learning algorithms: decision trees, random forests, näıve Bayes,

and support vector machine. Our experiments indicate that using a classifier trained

on data using Latin alphabet, to classify a message with a combination of Latin

and Cyrillic letters leads to much lower classification accuracy compared to the same

classifier used with a message with Latin characters only.

Moreover, we tested this method with a Microsoft Business email. We first sent

an email containing a lot of keywords frequently encountered in spam emails, and this

email was flagged as spam. Then we sent the same email, with some of the characters

replaced by their “visually equivalent” characters from Cyrillic alphabet, and this

email was delivered to the Inbox. This suggests that this method can currently

bypass existing spam filters.

in Section 3, we used gradient boosting decision trees to predict potential malware

attacks on different computers, and compared results to the most common Auto AI.

Our system has been able to predict malware attacks on Microsoft cloud and got

higher accuracy than any well known Auto AI.

4.2 Future Work

As discussed in Section 2, we evaluated this method in the context of spam filtering,

this has implications for other text communication and documents, as described in

Section 2.4. Examples include avoiding plagiarism detection by automated software,

eluding detection when sending malicious messages with instant messaging applica-

tions, and a range of other applications that use natural language processing for

automatic analysis of text documents.

In future work we plan to evaluate this approach with characters from multiple

alphabets. In addition, we would like to investigate the impact of this method with

other applications used for text communication.

For the method proposed in Section 3, we plan to evaluate it with different

datasets, and further investigate the impact of the different features on the classi-

fication accuracy.

47

BIBLIOGRAPHY

[1] Microsoft Malware Prediction. kaggle.com/c/microsoft-malware-

prediction/data, Dec 2018.

[2] Bergstra, J., Yamins, D., and Cox, D. D. Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Ar-
chitectures. In Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28 (2013), ICML’13, JMLR.org,
p. I–115–I–123.

[3] Bird, S., Klein, E., and Loper, E. Natural language processing with Python:
analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[4] Caparas, M. J. Threat Protection. docs.microsoft.com/en-us/windows/

security/threat-protection/, Sep 2020.

[5] Choudhary, S., and Kesswani, N. Analysis of KDD-Cup’99, NSL-KDD and
UNSW-NB15 Datasets using Deep Learning in IoT. Procedia Computer Science
167 (2020), 1561 – 1573. International Conference on Computational Intelligence
and Data Science.

[6] Dobre, C., and Xhafa, F. Intelligent services for Big Data science. Future
Generation Computer Systems 37 (2014), 267 – 281. Special Section: Innovative
Methods and Algorithms for Advanced Data-Intensive Computing Special Sec-
tion: Semantics, Intelligent processing and services for big data Special Section:
Advances in Data-Intensive Modelling and Simulation Special Section: Hybrid
Intelligence for Growing Internet and its Applications.

[7] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum,
M., and Hutter, F. Efficient and Robust Automated Machine Learning.
In Advances in Neural Information Processing Systems 28, C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates,
Inc., 2015, pp. 2962–2970.

[8] Gad, W., and Rady, S. Email filtering based on supervised learning and
mutual information feature selection. In 2015 Tenth International Conference
on Computer Engineering Systems (ICCES) (Dec 2015), pp. 147–152.

[9] Gavankar, S. S., and Sawarkar, S. D. Eager Decision Tree. In 2017 2nd
International Conference for Convergence in Technology (I2CT) (April 2017),
pp. 837–840.

[10] Halder, S., Tiwari, R., and Sprague, A. Information extraction from
spam emails using stylistic and semantic features to identify spammers. In 2011
IEEE International Conference on Information Reuse Integration (Aug 2011),
pp. 104–107.

[11] Hassan, M. A., and Mtetwa, N. Feature Extraction and Classification of
Spam Emails. In 2018 5th International Conference on Soft Computing Machine
Intelligence (ISCMI) (Nov 2018), pp. 93–98.

[12] Hoyt, R. E., Snider, D., Thompson, C., and Mantravadi, S. IBM Wat-
son Analytics: Automating Visualization, Descriptive, and Predictive Statistics.

[13] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q.,
and Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision
Tree. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Red Hook, NY, USA, 2017), NIPS’17, Curran Associates
Inc., p. 3149–3157.

[14] Le, T. T., Fu, W., and Moore, J. H. Scaling tree-based automated machine
learning to biomedical big data with a feature set selector. Bioinformatics 36, 1
(2020), 250–256.

[15] LIN, C. Naive Transfer Learning Approaches for Suspicious Event Prediction. In
2019 IEEE International Conference on Big Data (Big Data) (2019), pp. 5897–
5901.

[16] Lou, R. PandasLab. pandasecurity.com/mediacenter/press-releases/

all-recorded-malware-appeared-in-2015/, Jan 2016.

[17] Louridas, P., and Ebert, C. Machine Learning. IEEE Software 33, 5 (Sep.
2016), 110–115.

[18] McKinney, W. Data Structures for Statistical Computing in Python . In
Proceedings of the 9th Python in Science Conference (2010), S. van der Walt
and J. Millman, Eds., pp. 51 – 56.

[19] Metsis, V., Androutsopoulos, I., and Paliouras, G. Spam filtering with
Naive Bayes-which Naive Bayes? In CEAS (2006), vol. 17, Mountain View, CA,
pp. 28–69.

49

[20] Mishra, S., and Malathi, D. Behaviour analysis of SVM based spam filtering
using various parameter values and accuracy comparison. In 2017 International
Conference on Computing Methodologies and Communication (ICCMC) (July
2017), pp. 27–31.

[21] Onodera, K. Microsoft Malware Prediction. github.com/KazukiOnodera/

Microsoft-Malware-Prediction, Mar 2019.

[22] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 12 (2011), 2825–2830.

[23] Peng, W., Huang, L., Jia, J., and Ingram, E. Enhancing the Naive
Bayes Spam Filter Through Intelligent Text Modification Detection. In 2018 17th
IEEE International Conference On Trust, Security And Privacy In Computing
And Communications/ 12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE) (Aug 2018), pp. 849–854.

[24] R, V., Alazab, M., Kp, S., Poornachandran, P., and Venkatraman,
S. Robust Intelligent Malware Detection Using Deep Learning. IEEE Access PP
(04 2019), 1–1.

[25] Rai, M., and Mandoria, H. L. Network Intrusion Detection: A compar-
ative study using state-of-the-art machine learning methods. In 2019 Interna-
tional Conference on Issues and Challenges in Intelligent Computing Techniques
(ICICT) (2019), vol. 1, pp. 1–5.

[26] Rauf, A., and Alanazi, M. N. Using artificial intelligence to automatically
test GUI. In 2014 9th International Conference on Computer Science Education
(2014), pp. 3–5.

[27] Ren, B., Liu, C., Cheng, B., Guo, J., and Junliang, C. MobiSentry:
Towards Easy and Effective Detection of Android Malware on Smartphones.
Mobile Information Systems 2018 (11 2018), 1–14.

[28] Shajideen, N. M., and V, B. Spam Filtering: A Comparison Between Differ-
ent Machine Learning Classifiers. In 2018 Second International Conference on
Electronics, Communication and Aerospace Technology (ICECA) (March 2018),
pp. 1919–1922.

[29] Singh, G., Kumar, B., Gaur, L., and Tyagi, A. Comparison between
Multinomial and Bernoulli Näıve Bayes for Text Classification. In 2019 Interna-
tional Conference on Automation, Computational and Technology Management
(ICACTM) (April 2019), pp. 593–596.

50

[30] Stephan Michaels, F. I. Microsoft Malware Prediction on Kaggle.
github.com/imor-de/microsoft_malware_prediction_kaggle_2nd/

tree/master/code, Mar 2019.

[31] Trivedi, S. K. A study of machine learning classifiers for spam detection. In
2016 4th International Symposium on Computational and Business Intelligence
(ISCBI) (Sep. 2016), pp. 176–180.

[32] Van Rijsbergen, C. J., Robertson, S. E., and Porter, M. F. New
models in probabilistic information retrieval. British Library Research and De-
velopment Department London, 1980.

[33] Vishagini, V., and Rajan, A. K. An Improved Spam Detection Method with
Weighted Support Vector Machine. In 2018 International Conference on Data
Science and Engineering (ICDSE) (Aug 2018), pp. 1–5.

[34] Wangoo, D. P. Artificial Intelligence Techniques in Software Engineering for
Automated Software Reuse and Design. In 2018 4th International Conference
on Computing Communication and Automation (ICCCA) (2018), pp. 1–4.

[35] Zhang, F. The Growing Role of Machine Learning in Cybersecu-
rity. securityroundtable.org/the-growing-role-of-machine-learning-

in-cybersecurity/, May 2020.

51

