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Aluminum (Al), one of the most versatile, cost-effective, and appealing metals for 

use in construction, has no known biological function. Al alloys in aquatic environments 

provide a surface for attachment and can be advantageous for nutrient acquisition. Due to 

Al’s toxicity, there is little competition for colonizing the surface of Al alloys; therefore, 

organisms that survive in these conditions have an advantage over others that cannot. 

Previous research on the microbial communities that attach to a variety of surfaces like 

copper, Al, steel alloys, and plastics has shown that they are unique in composition and 

that certain community members may be preferentially selecting the surfaces they attach 

to. Because of this, I hypothesized that the microbial communities attached to Al alloys 

will be different than those attached to other metal alloys and surface materials. This will 

then be evident by variation in the microbial community composition between the 



substrates. To test this hypothesis, a field-based environmental study was conducted at 

two locations in the Pamlico River in North Carolina for 8 months investigating the 

microbial communities that colonize different substrates of interest—Al alloys 2024 & 

7075, stainless steel alloys 304 & 316, a non-metal biofouling plate, and sediment. After 

6-8 weeks, DNA was extracted from the material attached to the metal coupons and the 

microbial community was sequenced via 16S rRNA gene amplicon Illumina sequencing. 

Results suggest the microbial communities attached to all substrates were more similar in 

July than December. Salinity and water temperature were found to drive the variation in 

community composition. Gammaproteobacteria were found to primarily contribute to the 

dissimilarity between Al 2024 and Al 7075, with a higher abundance on Al 2024. Using 

the biomass attached to the Al alloys, Bacillus and Pseudoalteromonas sp. were isolated 

from Al 2024 in the presence of aluminum. The isolate’s growth limits were 

characterized to further understand the microorganisms that attach to Al surfaces and how 

they are able to withstand changes in the environment in the presence of Al. I 

hypothesized that decreasing the temperature below the isolate’s optimal growth 

temperature would negatively affect its tolerance to aluminum. Results suggest that 

isolates from Al 2024 in an estuary environment are negatively affected by a 5°C drop in 

temperature at 1 mM AlCl3, as their maximum optical density at 600 nm decreased. 

These findings can be used to understand the variation in microbial communities attached 

to Al 2024 in estuaries globally, and ultimately to develop specialized management 

strategies to preserve Al alloy infrastructure in aquatic systems. 
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CHAPTER ONE 

ENVIRONMENTAL STUDY OF ALUMINUM ALLOYS 2024 & 7075 IN PAMLICO 

RIVER  

INTRODUCTION 

The toxic and inert nature of aluminum (Al), one of the most abundant metals in Earth’s 

crust, is an increasingly interesting field of research. Not only is it the most abundant metal in 

Earth's crust, but it is one of the most versatile, cost-effective, visually appealing metals and is 

completely recyclable (Emsley, 2011). Al has been used in everyday materials from wrapping 

foil to components of airplanes since 1854 (Emsley, 2011, Hatch, 1984). Due to its density and 

overall light weight its use in structural applications, when alloyed with other metals, comes 

second to steel in its industrial use and is a third of the weight of steel (Emsley, 2011). Once 

exposed to air, a passive Al oxide film forms to protect the surface of Al alloys from further 

oxidation which could eventually result in corrosion of the metal surface (McNamara et al., 

2005, Rajasekar & Ting, 2010). Unlike iron-based metals like carbon and stainless-steel alloys, 

Al alloys exhibit higher corrosion resistance competitive with other corrosion resistant metals 

alloyed with titanium and copper (Emsley, 2011, Hatch, 1984). Like all metal alloys, compared 

to the atmosphere, Al alloys corrode faster when submerged in an aquatic environment due to the 

pH and surrounding ions which has sparked the interest of researchers to identify causes of 

accelerated deterioration (McNamara et al., 2005, Rajasekar & Ting, 2010, Total Materia, 2008). 

When Al infrastructure does corrode, it displays “pitting” which is a non-uniform localized area 

of corrosion across the metal surface (Hatch, 1984, Total Materia, 2008). Previous research on 

the surface of submerged Al alloys, as well as inside jet fuel tanks constructed with Al alloys, 

has revealed microbial communities that attach to the metal surface, penetrate the passive Al 
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oxide layer, and either exacerbate these conditions or protect them in a biofilm state (McNamara 

et al., 2005, Rajasekar & Ting, 2010). 

Due to its reactivity, Al is always found complexed in nature primarily in the form of Al 

silicate minerals such as bauxite or cryolite ores (Bruckard et al., 2010, Total Materia, 2008). To 

be used, it needs to be extracted using an energetically expensive process called the Hall–Héroult 

process—this is where Al oxide in the molten ore is dissolved and electrolytically reduced to 

pure Al giving it qualities characteristic of the Al we use day-to-day, difficult to corrode and 

easy to recycle (Bruckard et al., 2010, Emsley, 2011, Hatch, 1984). Al is becoming an increasing 

environmental concern. The use of Al in food products, pharmaceuticals, and water treatment 

along with acid rain and other anthropogenic activities, have led to an increase in the 

solubilization of Al, overall increasing the concentration of toxic Al in the environment 

(Bruckard et al., 2010, Emsley, 2011, Hatch, 1984). 

In the 1930’s, the booming innovation of aircraft industries resulted in the development 

of new alloys displaying better strength while maintaining a light weight (Öksüz et al., 2013, 

Total Materia, 2004). This study used two of the three most commonly used Al alloys used in the 

construction of aircrafts during World War II (WWII): Al 2024 and Al 7075. Al alloy 2024 has 

been in use since 1931, with copper as the primary alloying element and trace elements like 

magnesium and manganese, it showed increased strength from any other Al alloy used before 

(Öksüz et al., 2013, Total Materia, 2004). It was also favored over other alloys due to its high 

strength:weight ratio and primarily used when high cyclic stress resistance is required like in the 

aerospace industry, more specifically in aircraft structures, the transportation industry, like in 

hydraulic systems, and in marine applications where fatigue resistance is needed (Öksüz et al., 

2013, Total Materia, 2004). Al alloy 7075 was put in use in the US in 1943; with zinc as the 
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primary alloying element it has a high strength:weight ratio and is one of the highest strength Al 

alloys available. The high strength and light weight of Al 7075 allow its use in a variety of fields 

like aerospace, marine, transportation, and military applications; even some high-end bicycles 

contain Al 7075 (Öksüz et al., 2013, Total Materia, 2004).  

Differences in the chemical composition of Al alloy 2024 and 7075 can be seen in Table 

1. The main difference is in the primary alloying element—copper for Al 2024 and zinc for Al 

7075 (Öksüz et al., 2013, Total Materia, 2004). Al 2024 does contain some zinc and Al 7075 

contains some copper, but they are at trace amounts compared to their primary alloying metal 

counterpart. Al 2024 contains more manganese while Al 7075 contains more magnesium and 

chromium. Even though Al 2024 is one of the most durable Al alloys, having copper as the main 

alloy element makes 2024 more susceptible to corrosion and less ductile (Öksüz et al., 2013, 

Total Materia, 2004, Total Materia, 2008). The chemical composition of Al 7075 makes it less 

ductile than Al 2024 but provides significantly better stress and corrosion resistance, making it 

more suitable for applications that require high constant stress resistance (Öksüz et al., 2013, 

Total Materia, 2004, Total Materia, 2008). 

Table 1: Variations in metal composition of the two Al alloys of interest: Al 2024 and Al 7075. The 
concentrations of each metal are in % wt. and were obtained from the documentation received from the 
manufacturer, Metal Samples Company (ALSPI). The different amounts of metals are bolded to emphasize 
them from the other metal species. 

Al 2024 Al Si Fe Cu Mn Mg Cr Zn Ti V Zr Other 
Min 

(wt. %) 
90.65 0.00 0.00 3.8 0.30 1.2 0.00 0.00 0.00 0.00 0.00 Each, 

0.05 
Max 

(wt. %) 
94.55 0.50 0.50 4.9 0.9 1.8 0.10 0.25 0.15 0.05 0.05 Total, 

0.15 
Al 7075 Al Si Fe Cu Mn Mg Cr Zn Ti V Zr Other 

Min 
(wt. %) 

87.07 0.00 0.00 1.2 0.00 2.1 0.18 5.1 0.00 0.00 0.00 Each, 
0.05 

Max 
(wt. %) 

91.45 0.40 0.50 2.0 0.30 2.9 0.28 6.1 0.20 0.05 0.05 Total, 
0.15 
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Aquatic environments are limited in nutrients and hard substrata; thus, attachment to 

surfaces such as metal infrastructure can be advantageous for nutrient acquisition (N-Uptake, 

1999). Due to Al’s toxicity, there is little competition for colonizing the surface of Al alloys; 

therefore, organisms that can survive in these conditions have an advantage over others that 

cannot. Previous research on the microbial communities that attach to a variety of surfaces like 

copper, Al, steel alloys, and plastics has shown that they are unique in composition and that 

certain microbial community members may be preferentially selecting the surfaces they attach to 

(Zhang et al., 2019). In a study conducted by Zhang et al., 2019, the dominant genera found on 

different metal alloys were found to be the copper-tolerant, acid-producing Lactobacillus on the 

copper alloys, common aerobic surface colonizers Bacillus and Ruegeria for Al alloys, and 

aerobic biofilm-forming Pseudomonas on carbon steel alloys. For surfaces that have the same 

composition, the microbial communities demonstrate consistent patterns of taxonomic 

distributions between replicates (McBeth & Emerson, 2016). This supports the hypothesis that 

the metal type present in an environment influences the microbes that attach and subsequently, 

the microbial interactions with each other and the metal surface.  

Due to Al’s toxic and inert nature, the microbes that colonize the surface of Al alloys 

2024 and 7075 may have adapted tolerance to this metal and equip themselves with biological 

defense systems to reduce or eliminate toxic effects (Little et al., 1991, Little et al., 1992, Zuo et 

al., 2005, Zuo, 2007). Al has no known biological function and is toxic to cells. Al, like other 

heavy metals, acts as a competitive inhibitor to disrupt enzyme structure and function (Sterritt & 

Lester, 1980). Al can bind with thiol and other groups on protein molecules, replace metals 

naturally occurring in enzyme prosthetic groups, and potentially bind to and affect DNA (Sterritt 

& Lester, 1980). If Al is toxic to biological cells, how can these microbes attach and survive on 
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Al surfaces? Known mechanisms that aid in microbial tolerance of such conditions include 

producing a biofilm, export, chelation, and metabolism (Mansfeld, 2007, Sterritt & Lester, 1980, 

Videla & Herrera, 2009, Zarasvand & Rai, 2013, Zuo, 2007, Zuo et al., 2005).  

Some bacteria have the ability to organize themselves with others in a biofilm matrix, 

composed of extracellular polymeric substances, DNA and proteins (Davey & O’toole, 2000, 

Zuo, 2007). Biofilm formation is considered a selective advantage in aquatic systems where hard 

surfaces are uncommon; attachment to surfaces in aquatic systems provides microorganisms with 

more available resources for nutrient acquisition (Davey & O’toole, 2000, Zuo, 2007). Besides 

providing an attachment advantage, microbial cells act differently in a biofilm than their 

planktonic counterparts. They can display unique morphological as well as physiological traits 

like enhanced antibiotic and heavy metal resistance (Davey & O’toole, 2000, Zuo, 2007). These 

traits allow biofilms to survive on surfaces for long periods of time, and influence the metabolic 

functions carried out by members of the biofilm community. To exploit metal surfaces in aquatic 

environments that most organisms cannot tolerate, microbes can change the conditions of the 

metal to make it more suitable for colonization and then finish by ridding their cells of these 

toxic metal species (Juzeliūnas et al., 2006, Mansfeld, 2007). When in a biofilm, they have the 

ability to change the electrochemical conditions of metal surfaces by producing substances like 

metal-binding proteins also known as chelating-agents. Previous research on organism 

Rhizobium viscosum by Jo et al., 1997 found a protein related to Al tolerance called ALU1-P. 

Homologs of this protein are found in other bacteria like Pseudomonas aeruginosa (ie. ExsB) 

which function as transcriptional regulators that control exoenzyme levels. When this fragment 

of DNA was transformed into E. coli, which is an Al susceptible organism, they noticed the 

organism began to tolerate Al more than normal (Jo et al., 1997). Zuo et al. (2005) looked for 
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novel Al and mild steel-binding proteins that have the potential to protect metals against 

corrosion. By forming a biofilm, bacteria can stably attach to metal surfaces, and express these 

metal-binding proteins (Zuo et al., 2005). Microbes use chelating agents such as siderophores to 

break the passive layer that form on the metal surface. Siderophores bind to metal cations, like 

iron, which exist in the oxide film and promote iron oxide dissolution, which influences 

corrosion (Zuo, 2007, Zuo et al., 2005). Exley & Mold, 2015, discuss how siderophores involved 

in iron acquisition have the ability to form strong complexes with Al (Exley & Mold, 2015).  

The production of metabolic substances are additional mechanisms through which 

microbes can tolerate aluminum. Some organisms can create sack-like structures made up of a 

variety of compounds to sequester heavy metals (Appanna et al., 1994, Appanna & St. Pierre, 

1996, Appanna & St. Pierre, 1994). Appanna & St. Pierre, 1996 evaluated the growth of 

Pseudomonas fluorescens in the presence of millimolar concentrations of Al and saw the 

formation of inclusion bodies made up of gelatinous phosphatidylethanolamine (PE) residues 

where Al was sequestered (Appanna et al., 1994, Appanna & St. Pierre, 1996, Appanna & St. 

Pierre, 1994). A study by Appanna & Hamel, 1996 looking at Pseudomonas fluorescens and how 

iron affects its ability to detoxify Al from its cell, showed citrate is rapidly used and the two 

trivalent metals are immobilized in a gelatinous lipid-rich residue (Appanna & Hamel, 1996). A 

combination of these mechanisms may be used by the microbial communities present and 

determining which taxa are present aids in our ability to understand how microbes are interacting 

with Al surfaces in aquatic environments. 

Environmental factors like water temperature and salinity are important drivers of which 

microbes can survive in a particular ecosystem (Faust et al., 1975, Fu et al., 1991, Gikas et al., 

2009, Li & Torres, 1993, McMeekin et al., 1987, Price & Sowers, 2004). Estuaries are dynamic 
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ecosystems that contain strong gradients due to the mixing freshwater and marine water, where 

temperature and salinity play a major role in organismal interactions. Depending on the 

proximity of the estuary to its outlet, the salinity fluctuates largely but it is always temporary and 

recoverable (Crump et al., 2004). With the climate warming over time, and evaporation of water 

sources increasing, the temperature and salinity of water are steadily increasing which may have 

long-term impacts on the structure of estuary ecosystems (Dahlman & Lindsey, 2020, Jenkins, 

2014). Saltwater intrusion is also expected to increase in low-lying coastal areas like Eastern NC 

so studying its effects on overall functional diversity of ecosystems is important (Colombani et 

al., 2016). Water temperature and salinity also change in response to season (Sieburth, 1967). 

Investigating the microbial communities attached to Al structures over time can be used to 

understand how salinity, temperature, and other environmental factors affect community 

composition and biofilm attachment. These results can then be applied to other aquatic 

environments around the globe. 

To date, there are no studies comparing the microbial communities attached to Al alloys 

2024 & 7075, stainless steel alloys 304 & 316, and a non-metal substrate over different seasons, 

in the same estuarine system, and at two different sites. Understanding how the microbial 

communities are different between substrate type, season and site and overall identifying who is 

present on them will help to understand how the interactions between the microbes themselves, 

and the metals surface influence the quality and integrity of the metal alloy. These metal 

substrates provide microorganisms with an opportunity for attachment, and because Al is toxic, 

having the ability to colonize it is more favorable than not. I hypothesize that the microbial 

communities attached to Al alloys will be different than those attached to other substrates (eg. 

Stainless steel, non-metal biofouling plate, sediment) and the communities attached to the Al 
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alloys will be influenced by seasonal and environmental changes. If the communities differ 

between the Al alloys and the stainless-steel alloys, then the microbes present on the Al and not 

the steel may suggest a preference for Al over iron or were outcompeted from attachment. If the 

community composition changes between the months and sites, then the microbes present on the 

Al alloys are sensitive to environmental changes.  

METHODS 

Environmental Study 

Metal alloy coupons (Al 2024 & 7075, 304 & 316L stainless steel, and non-metal 

biofouling plate) were deployed in duplicate at two sites (P3-Mallard Creek & P7-North Creek 

Landing) that have been previously used for an environmental study on stainless steel along the 

Pamlico River in North Carolina (Garrison et al., 2019). The communities that are found in or 

attached to the stainless-steel metals, non-metal biofouling plate and sediment that was collected 

from the site, serve as controls when comparing the microbial communities found on the Al 

alloys. The metal coupons were protected inside a 50 mL conical with the bottom sawed off and 

were zip-tied to create a “coupon tube”. The deployment apparatus was a milk crate filled with 

oyster shell and the aforementioned coupon tubes were zip-tied to the outsides of the crate 

(Figure 1).  
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Figure 1: Deployment crates used to attach protected metal coupons (A) and biofouling plate (B). 

 

This crate was attached via rope to a dock and submerged approximately 1 m into the water 

column, sitting on top of the sediment.  

The two sampling sites were chosen because they are brackish, well-protected from 

natural disturbances, and experience similar fluctuations in water temperature and salinity but are 

consistently different from each other on the same sampling day. Air and water temperature, 

salinity, trap depth, and dissolved oxygen were recorded for each sampling trip (Table 2), except 

for the month of July which is missing data for dissolved oxygen due to instrumental error in the 

field. Although these end point measurements were taken for each sampling trip, it should be 

noted they are not representative of the fluctuations in environmental parameters experienced by 

these communities in situ.  
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Table 2: Sampling details from Environmental study conducted July-December 2019. Parameters 
annotated with NA were not able to be determined due to instrumental error while out in the field. 

Month Site Salinity 
(ppt) 

Water 
temp. 
(⁰C) 

Air 
temp. 
(⁰C) 

Dissolved 
O2 (mg/L) 

Trap 
Depth 

(m) 

Samples Collected 
(duplicate) 

July P3 5.0 34.6 34.0 NA 0.53 Al 2024 
Al 7075 
304 SS 

P7 7.6 31.5 32.0 NA 0.92 316 SS 
Biofouling Plate 

Sediment 
September P3 11.8 27.0 30.0 4.87 0.6 Al 2024 

Al 7075 
304 SS 

P7 14.0 28.3 27.0 7.44 1.2 316 SS 
Biofouling Plate 

Sediment 
November P3 11.0 16.5 16.0 7.04 0.3 Al 2024 

Al 7075 
304 SS 

P7 14.6 18.0 16.0 8.97 0.96 316 SS 
Biofouling Plate 

Sediment 
December P3 10.5 13.5 19.4 8.93 0.38 Al 2024 

Al 7075 
304 SS 

P7 15.5 13.5 18.3 8.13 0.96 316 SS 
Biofouling Plate 

Sediment 
 

The Mallard Creek site (referred to as P3) is located at 35.4754 °N, -76.926 °E and over 

the span of 8 months in the year 2019 (May-December) the water temperature and salinity varied 

from 13.5-34.6 °C and 1.5-11.8 ppt respectively, while the North Creek Landing site (referred to 

as P7) located at 35.4286 °N, -76.7088 °E experienced water temperature and salinity variability 

from 13.5-31.5°C and 2.8-15.5 ppt respectively (Figure 2). At P3, the trap was deployed just off 

the dock which is next to the shoreline and on average was half of a meter down into the water. 

At P7, the trap was deployed off the dock but further from the shore by approximately 10 m and 

on average was one meter down into the water. Coupons were submerged for a 6-8-week period 
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over an 8-month period to span multiple seasons for comparative purposes. To collect them, the 

zip-tie that secured the coupon was clipped off and a 50 mL conical was used to catch the 

coupon; the tube was subsequently filled to the top with in situ water and stored in a cooler until 

taken back to the lab for processing.  

 
Figure 2: The two sites used for the environmental study are located along the Pamlico River. P3-Mallard 
Creek is located 35.4754 °N, -76.926 °E and P7-North Creek Landing is located 35.4286 °N, -76.7088 °E. 
Photo modified from Google Earth. 

 

Processing Coupon Samples 

In the lab, the outer surface of the coupons was aseptically scraped with a pre-autoclaved 

spatula and captured in the 50 mL conical the coupon was originally collected in. The tubes were 

centrifuged at 4,000 x g for 15 minutes and then the supernatant was removed until ~5 mL was 

left so that the pellet could be stored at -80°C for later use in nucleic acid extractions. This 

material was also used to inoculate enrichment cultures (see Chapter 2). 

Microbial Community Analysis 

DNA extractions of the material collected (250 µL or 0.25 g) from the metal coupons, 

biofouling material, and nearby sediment was performed with the DNeasy Powersoil kit (Qiagen, 

Inc., Carlsbad, Ca). The resulting DNA was sent off for microbial community sequencing of the 
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V4-V5 region of the 16S rRNA gene at the Integrated Microbiome Resource (IMR) at Dalhousie 

University to identify the microbial community members associated with colonizing the different 

metal alloys (Lane, 1991, Turner et al., 1999). Only one sample came back having failed to 

sequence, P7-Al 7075 #2 from November, and was therefore removed from the data set since it 

could not be used for analysis. Sequences were analyzed using MOTHUR v1.43.0 to identify the 

microbial community structure. Diversity indices were calculated to investigate the variation in 

microbial community composition between substrates and seasonality/location: richness was 

measured using Chao1, evenness was measured using Pielou’s evenness, and alpha diversity was 

measured using Shannon’s diversity index. The Krustal-Wallis test was used to determine 

statistical significance. Variation in community composition was analyzed between the substrate 

types (e.g. Al alloys, stainless steel alloys, non-metal biofouling plate, sediment), geographical 

sampling sites, environmental conditions of these sites (salinity, water temperature, dissolved 

oxygen, and trap depth), and seasons (over 8-month period, with 4 collection dates). The 

aforementioned factors were analyzed together using both CCA (canonical correspondence 

analysis) plots and NMDS (non-metric multidimensional scaling) plots, to order the variables in 

terms of which influences dissimilarities between the communities. For the CCA plot, ANOVA 

(analysis of variance) was used to evaluate statistical significance of each of the environmental 

parameters and stress values were used to estimate whether the NMDS plots were of a good fit. 

The communities found on the two Al alloys (Al 2024 and Al 7075), summer and winter seasons 

(July and December), and sites were compared using SIMPER analysis which makes species 

comparisons between two groups using Bray-Curtis similarities. This analysis helped to 

determine which species, if any, significantly contribute to dissimilarities in community 

composition. Relative abundance box plots of specific members in the microbial communities 
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were created along with bar charts of phyla present in the communities to help visualize and 

support the SIMPER results as well as isolation results from Chapter 2. 

RESULTS 

Microbial Community Diversity between Substrates 

Of the substrates used in the environmental study, sediment exhibited the highest species 

richness, evenness, and alpha diversity (4923.87 ± 700.95, 0.91 ± 0.02, and 7.02 ± 0.23, 

respectively), while Al 2024 exhibited the most variation (2185.24 ± 714.94, 0.78 ± 0.09, and 

5.45 ± 0.86, respectively) in diversity indices compared to all other substrates used in the 

environmental study (Al 7075, 304 & 316 SS, and non-metal biofouling plate; all p<0.01) 

(Figure 3).  

 
Figure 3: Diversity indices used to determine the differences in (A) richness, alpha diversity and (B) 
evenness between the communities attached to the substrates from all samples collected (p<0.01).  

 

Richness, evenness, and diversity were more variable in communities associated with Al 2024 

regardless of which site they were collected from (Figure 4; all p<0.01 for both site).  
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Microbial Community Diversity between Sites and Seasons 

All of the diversity indices were higher for site P7 on all the substrates, especially Al 

2024, supporting my hypothesis that environmental location influences who can attach to Al 

2024. The variation in diversity indices on Al 2024 can be accounted for when the communities 

are separated by month (Figure 5 & 6).  

 
Figure 4: Diversity indices for samples collected at (A) P3 Mallard Creek and (C) P7 North Creek Landing 
as well as evenness at (B) P3 Mallard Creek and (D) P7 North Creek Landing (all p<0.01).  

 

In July (Figure 5A & 5B), the richness, evenness, and diversity on Al 2024 was higher 

(2447.99 ± 1072.74; p<0.05, 0.83 ± 0.12; p>0.05, and 5.92 ± 1.08; p<0.05, respectively) than in 

December (1373.12 ± 130.30; p<0.01, 0.67 ± 0.01; p<0.01, and 4.33 ± 0.17; p<0.01) (Figure 6C 



 

15 
 

& 6D). The communities attached to the substrates tested were more similar between September 

(Figure 5C & 5D) and November (Figure 6A & 6B). The diversity results separated by month 

support my hypothesis that the communities attached to Al alloys, specifically Al 2024, are 

influenced by seasonal changes.  

 

Figure 5:  Diversity indices for samples collected in (A) July (p<0.05) and (C) September (p>0.05) as well 
as evenness in (B) July and (D) September (both p>0.05). 
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Figure 6:  Diversity indices for samples collected in (A) November and (C) December as well as evenness 
in (B) November and (D) December (all p<0.01). 

  

Microbial Community Composition between Sites and Seasons 

In order to determine how similar or dissimilar communities were based on substrate, 

site, and month, NMDS analysis was performed. Results suggest the communities in the NMDS 

plots were influenced by environmental location and seasonal changes (Figure 7). When 

separated by site, the samples cluster together based on substrate type at P3 and by month at P7, 

suggesting the communities attached to the different substrates at P3 are more similar to each 
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other than at P7 (Figure 7). When plotting the months separately, the samples cluster together 

based on site rather than substrate, and the stress values decreased to 0.05-0.08 which indicates 

the months explain a portion of the variation seen in the composition of the communities 

attached to the substrate types (Figure 8A-D). Based on the NMDS plots separated by month, the 

communities that attach to the different substrates appear to be more similar in July than in 

December, suggesting seasonal variation in attachment.  

 

Figure 7: Non-metric multidimensional scaling (NMDS) plots of 16S rRNA gene amplicon sequence data 
which demonstrate differences in microbial community composition between sites, P3 (left) and P7 (right). 
Microbial community composition more similar by month at P3 and by substrate at P7. Stress values for 
P3 and P7 plots are 0.09 and 0.08, respectively. 
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Figure 8: NMDS plots of 16S rRNA gene amplicon sequence data which demonstrate differences in 
microbial community composition based on the 4 months used in this study: (A) July, (B) September, (C) 
November and (D) December. Microbial community composition was distinct between the sites for all 
months. Stress values were 0.05, 0.08, 0.08, and 0.07, respectively.  
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Environmental Factors Influence Variation in Community Composition 

A CCA analysis was performed in order to determine what environmental factors 

influences the dissimilarities seen in community composition. Based on the CCA plot, the 

communities separate from each other by month, site, and substrate supporting my hypothesis. 

Salinity and water temperature were determined to be the largest drivers of community 

composition on the substrate types (p<0.001) (Figure 9).  

 
 
Figure 9: Canonical correspondence analysis (CCA) plot shows salinity and water temperature largely 
influence who can attach to the substrates by the length of their respective arrows. Samples also diverged 
by month which support the finding that salinity and water temperature drive community composition. 
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Contribution of Taxa to Dissimilarities in Composition between Al 2024 and Al 7075 

When investigating the composition of the microbial communities, there was a distinction 

in the taxa present in all samples, and more interestingly between Al 2024 and Al 7075. The taxa 

present in the communities were also influenced by site and month. The taxa that contributed to 

the most differences seen in community composition between Al 2024 and Al 7075 at the phyla 

level were Bacteroidetes (SIMPER analysis: 5.7%) and Proteobacteria (32.9%), both found 

more abundant on Al 2024 with Proteobacteria showing the most variation. At the class level, 

Alphaproteobacteria (4.8%), Betaproteobacteria (1.2%), Deltaproteobacteria (1.9%), and 

Gammaproteobacteria (25.1%) contributed to the 32.9% dissimilarity seen in Proteobacteria, 

with only Gammaproteobacteria being most abundant on Al 2024, while Flavobacteria (4.7%) 

and Sphingobacteria (1.0%) contributed to the 5.7% dissimilarity in Bacteroidetes, 

Flavobacteria being more abundant on Al 7075, and Sphingobacteria being of similar 

abundance to the other substrates (Figure 10A). The taxa that contributed to the most variation 

seen in community composition between the two sites at the class level were unclassified 

bacteria (1.2%), Flavobacteria (1.0%) and Gammaproteobacteria (1.4%) (Figure 10B). The 

contrasting community composition between the summer and winter seasons (months July and 

December) at the class level was influenced by Alphaproteobacteria (2.8%), 

Gammaproteobacteria (2.5%), and Flavobacteria (2.5%). Based on previous literature and the 

isolation of bacteria in Chapter 2, abundances of Bacillus and Pseudoalteromonas sp. and their 

respective higher order classifications were visualized to determine how representative these taxa 

are of the communities that attached to the Al 2024 in the environmental study (Figure 10C & 

10D). 
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Figure 10: Taxa plots show abundance of significant taxa either attributing to dissimilarities between Al 
2024 and Al 7075 or of particular interest for investigation in Chapter 2. (A) Proteobacteria, the most 
abundant and varied phylum, varied the most on Al 2024, and made up of mostly (B) 
Gammaproteobacteria. Bacillus and Pseudoalteromonas and their respective family classifications (C & 
D) were included in this investigation based on isolation results from Chapter 2 and previous literature. 
Bacillus sp. were not as abundant as expected, while Pseudoalteromonas sp. were more abundant on the Al 
alloys.  
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Bar graphs of the phyla present in the microbial communities on each substrate were used to 

visualize the SIMPER results (Figure11A). The community composition varies slightly at the 

phyla level between sites, with the presence of Actinobacteria at P3 (Figure 11B) and 

Chloroflexi at P7 (Figure 11C) on Al 2024, and the abundance of Planctomycetes decreasing 

from P3 to P7. On the SS alloys, Acidobacteria were only present at P3 (Figure 11B). The results 

separated by month support the variation seen in Proteobacteria on Al 2024 between months 

from the SIMPER analysis and taxa plots specifically made for that phylum (Figure 12). When 

looking further at the community composition between the months, the communities on all of the 

substrates tested were more similar in September (Figure 12B), and distinct from each other in 

July, November, and December (Figure 12A, 12C, & 12D), supporting the previous results seen 

in the diversity indices and NMDS plots. There was a lot of variation in the presence of 

Bacteroidetes and Proteobacteria between the months tested on all metal alloys, with an increase 

in abundance from July to December in Proteobacteria on Al 2024. 
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Figure 11: (A) Bar charts of taxa that make up the communities on all the substrates at the phyla level. The 
community composition varies slightly at the phyla level between (B) P3 and (C) P7, with the presence of 
Actinobacteria at P3 and Chloroflexi at P7 on Al 2024, and the abundance of Planctomycetes decreasing 
from P3 to P7. 
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Figure 12: Bar charts of taxa that make up the communities on all the substrates at the phyla level between 
months. There was a lot of variation in the presence of Bacteroidetes and Proteobacteria between the 
months, with an increase in abundance from (A) July to (D) December in Proteobacteria. The composition 
in (B) September and (C) November were notably more similar than between (A) July and (D) December.   

 

DISCUSSION 

This study focused on investigating the microbial communities that attach to Al 2024 and 

Al 7075, commonly used in the aerospace industry and hydraulic systems, at two sites along the 
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Pamlico River over an 8-month period with 4 collection dates. The results from this study aim to 

provide fundamental knowledge of the microbial communities associated with Al alloys 2024 

and 7075, in comparison to other metal and non-metal substrates, so that future research can be 

conducted to understand who attaches to these surfaces in other environments and how these 

particular microorganisms are able to attach to toxic Al surfaces.  

Sediment exhibited the highest alpha diversity compared to all other substrates, 

suggesting only a subset of microorganisms are capable of attaching to hard substrates in aquatic 

environments. Between the two Al alloys, Al 2024 generally exhibited lower diversity than Al 

7075, with a mix of high and low diversity in the summer months (July) and the lowest diversity 

of all substrates, sites, and seasons, in the winter months (December). The decrease in diversity 

for Al 2024 may be due to seasonal changes in the environment like an increase in salinity and 

decrease in temperature during winter months, which adds additional stress to the organisms that 

can attach. The differences in diversity observed between the microbial communities attached to 

Al 2024 and Al 7075 could be due to their chemical composition. Al 2024 primarily contains 

copper with a small amount of zinc while Al 7075 primarily contains zinc with less copper. 

Microorganisms have been found to be able to tolerate high concentrations of these metals, 

especially in estuaries and coastal systems contaminated with industrial runoff (Rajaram et al., 

2013). Since diversity is lowest in December for Al 2024, further hypotheses could be made to 

test whether a decrease in temperature affects organismal attachment to Al alloys made with 

copper. Determining who in the community contributes to the variation in diversity for Al 2024 

between months could also be used to understand which organisms are better suited to deal with 

high concentrations of copper instead of zinc between the different seasons.  
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The microbial communities were found distinct in their composition between substrates 

in December only suggesting seasonal environmental changes, like a decrease in temperature, 

influences who can attach to all substrates. When looking at the variation in composition 

between sites (P3 and P7) and months, there was more variation seen on the Al alloys compared 

to the other substrate types, especially between the summer and winter seasons (July and 

December), supporting my hypothesis that environmental changes influence attachment. Since 

the main distinguishing factor between the substrates is the presence of toxic Al, organisms that 

can attach to and tolerate these surfaces are impacted by their surrounding environment. 

Seasonality was the biggest driver of microbial attachment to Al 2024 and was observed 

in the microbial community analyses as variation in diversity and composition was seen between 

months. The environmental parameters most notably affected by changes in season are water 

temperature and salinity, which were found to heavily influence microbial community 

composition on Al 2024. The two seasonal extremes, represented by samples collected in July 

and December, contrasted the most in community composition and diversity. September and 

November were more alike due to the subtle variability in environmental conditions between 

these months. The September samples were collected after a hurricane, so the lack of diversity 

and variation in community composition between the substrate types and sites may have been 

due to this weather event. These findings suggest that the environmental factors salinity and 

water temperature drive variation in the microbial communities attached to all the metal alloys, 

most prominently Al 2024 due to the presence of Al and copper in the alloy which is not found 

in the other metals, allowing assumptions to be made for Al 2024 in other similar aquatic 

systems globally. These findings also support the idea that succession in the microbial 

communities attached to metal substrates is variable and dependent on the environment. 
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Identifying how the communities that attach to Al 2024 and Al 7075 contrast to other substrates 

in this estuary system allows predictions to be made about what they are doing at the metal 

surface and aids in further hypothesis development. 

The microorganisms that were found to contribute to the dissimilarities between Al 2024 

and Al 7075 were found to be Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria, 

the same classes that contributed most to the dissimilarities between the sites and seasons. Both 

Alphaproteobacteria and Flavobacteria were consistently more abundant on Al 7075, while 

Gammaproteobacteria was more abundant on Al 7075 in July and September, and then more 

abundant on Al 2024 in November and December. Members of both classes, 

Alphaproteobacteria and Gammaproteobacteria, have been previously isolated from Al surfaces 

(Mansfeld, 2007, McNamara et al., 2005, Rajasekar & Ting, 2010, Zhang et al., 2019), 

suggesting some taxa in this class are capable of attaching to a variety of Al surface types in 

different environmental locations. The SS alloys were found to be consistently more similar to 

each other and the non-metal biofouling plate than either Al alloy, but Al 7075 was found more 

similar to the other substrate types than Al 2024. Since there is no copper in the stainless steels 

and less in Al 7075 than Al 2024, the amount of copper present in the metal alloy may influence 

attachment. 

For Chapter 2, microorganisms were isolated from Al 2024 in the presence of aluminum 

and used for further studies. These isolates were identified as Bacillus sp. and 

Pseudoalteromonas sp; Bacillus sp. are part of the phylum Firmicutes while Pseuodalteromonas 

sp. are part of the Proteobacteria phylum. After analyzing the taxa plot results, Bacillus sp. and 

Firmicutes were found to be at very low abundances in the communities that attached to Al 2024 

in the environmental study. However, the opposite was found for the Pseudoalteromonas sp. 
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when looking at taxonomic levels higher than order. The Gammaproteobacteria, a large and 

diverse class, were the most abundant Proteobacteria on Al 2024 and contributed to the variation 

in composition seen between month, warranting further study of members in this class.  

There are countless variables that may have affected the microbial communities that 

attach to the Al alloys investigated in this study, especially due to the dynamic nature of an 

estuary system adding to the novelty of this research, but the results suggest the variation seen in 

this study was influenced by the environmental location and season. Salinity was a main driver in 

the results of this study, but due to the fluctuating salinity in estuarine environments, it may be 

more of an influence than what the results of this study suggest. Obtaining continuous 

measurements of salinity over time would provide more insight to the role it plays in microbial 

attachment to Al alloys. In an environment with stable salinity concentrations, like marine 

systems, the microbial communities will likely be influenced more so by changes in temperature.  

Temperature was also a main driver in the results of this study, suggesting it plays a 

major role in microbial attachment to Al alloys in the environment. Furthermore, microbial 

communities attached to Al alloys that are geographically separated will vary in both 

composition and diversity. In aquatic systems that experience higher temperatures the 

communities attached to different metal substrates are expected to be more similar to each other 

in composition, than that of communities in colder environments. Also, in these warmer 

environments, the communities attached to Al 2024 are expected to have both high and low 

diversity measures, whereas Al 2024 in colder environments should have only low diversity.  

The presence of Al surfaces in aquatic environments provides a substrate for attachment, 

but also provides a selective pressure; if organisms are able to attach, they are at an advantage in 

this system. This ability to attach may be random or dependent on cellular physiology, but 
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regardless, will be influenced by the surrounding conditions of the aquatic system, especially for 

structures made with aluminum. Outside of a dynamic estuarine system, like in the ocean, these 

communities may be more stable in their succession due to the lack of environmental 

fluctuations. Regardless of the aquatic environment, results from this study can aid researchers 

interested in microbial attachment to Al alloys by providing knowledge of how these 

communities are influenced by their surrounding the environment. 



 
 

 
 

CHAPTER TWO 

ISOLATION AND CHARACTERIZATION OF MICROORGANISMS FROM 

ALUMINUM ALLOY 2024 

INTRODUCTION 

Attachment to hard substrates in aquatic environments provides microorganisms with an 

advantage of being able to access resources more readily than planktonic microorganisms. Some 

organisms are able to attach to surfaces and influence the integrity of that surface, especially in 

regard to metal alloys that are submerged in aquatic systems, since structural integrity is of 

extreme importance (McNamara et al., 2005, Rajasekar & Ting, 2010). Of the microorganisms 

that can attach to metal surfaces, most are able to produce biofilms or spores to withstand 

changes in the surrounding environment and maintain attachment (Davey & O’toole, 2000). 

Microorganisms that attach to aluminum (Al) alloy surfaces, and penetrate the passive 

oxide layer, encounter an influx of Al and other heavy metals at higher concentrations than 

experienced before (Rajasekar & Ting, 2010). Previous research shows microorganisms like 

Pseudomonas sp. can tolerate from 0-50 mM Al salt (Appanna et al., 1994, Appanna & St. 

Pierre, 1994, Appanna & St. Pierre, 1996). A microorganism isolated from either Al alloy 2024 

or 7075 is hypothesized to be tolerant of the same range mentioned above. In order to determine 

how additional stressors may affect these isolate’s tolerance in the environment, the isolates will 

be grown at different temperatures under increasing amounts of Al.  

When bacteria encounter stressors in their environment, they must adapt to overcome or 

be outcompeted by others that can. The microbial communities present on Al alloys in an aquatic 

system, especially in estuary environments, are sensitive to fluctuations like temperature and 
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salinity which may affect the microbe’s ability to tolerate aluminum due to the additional stress 

added to the cell (Faust et al., 1975, Fu et al., 1991, Gikas et al., 2009, Li & Torres, 1993, 

McMeekin et al., 1987, Price & Sowers, 2004). Microorganisms attached to Al in the 

environment are expected to grow, in the lab, at similar conditions to the environment they were 

isolated from. It should be noted that salinity and water temperature fluctuate during the 

environmental study, so the one reading taken for each sampling trip is used as an estimate 

because it is not representative of the variability they experienced in situ. To date, there have 

been no studies observing how a bacteria’s tolerance to Al is influenced by additional stress like 

changes in temperature and salinity.  

The goal of experiment 2 was to isolate microorganisms from Al 2024 in the presence of 

aluminum chloride and characterize their aluminum tolerance as well as other growth conditions 

to help elucidate what these organisms could be doing in the environment. When 

microorganisms attach to Al alloys, they experience an influx of aluminum oxide. Aluminum 

disassociates rapidly and forms complexes with surrounding chloride ions in the water, creating 

aluminum chlorides (Rao & Rao, 2004) which is why aluminum chloride was chosen for this 

study. The two isolates focused on in this study were identified as Bacillus sp. and 

Pseudoalteromonas sp. As found in chapter 1, temperature is an important environmental factor 

that influenced attachment and with this potential increase in exposure of aluminum chloride due 

to corrosion, it is necessary to understand how these dual stressors could affect how these 

microbes’ function. I hypothesize that decreasing the temperature 5°C below the isolate’s 

optimum growth temperature will negatively affect growth and aluminum tolerance. I expect to 

see less growth (as measured by optical density OD600) as I decrease temperature and increase 

the aluminum chloride concentration. Characterizing these isolates and their tolerance of Al will 
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be used to make further hypotheses about what environments these organisms can be found in 

and help elucidate what they are doing at the surface of the alloy. Since estuaries are a dynamic 

environment, with temperature and salinity fluctuating mildly, microorganisms attached to Al 

alloys in estuary environments are posed with endless threats that potentially effect tolerance and 

overall attachment to Al surfaces.  

METHODS 

Isolation of Bacteria from Aluminum Alloys 2024 & 7075 

 To isolate bacteria from both Al alloy types, 100 µL of coupon material was plated on 

different agar types in the presence of Al chloride hexahydrate (AlCl3•6H2O). Al chloride was 

chosen because it is the most representative salt of what the organisms experience in the 

environment (MacLeod, 1983). Aluminum ions dissociating from the Al alloy combine with 

chloride ions from the surrounding aquatic environment and create Al chloride. Nutrient agar 

(NA), estuary media agar (EMA), diluted marine agar (DMA), with 0.5 mM AlCl3•6H2O, were 

used to select for organisms capable of surviving on micromolar concentrations of Al. Twelve 

colony types were selected—based on their unique colony morphology—and isolated via a 

streak for isolation until a pure culture was obtained and confirmed via epifluorescence 

microscopy (Table 3). Once a pure culture was confirmed, frozen stocks were made for later 

revival and leftover culture was transferred to an Al-free broth twice consecutively, and after 

incubation the second culture was poured into a 50 mL conical and pelleted via centrifugation at 

4,000 x g for 15 minutes. The supernatant was removed until ~5mLs left, and the pellet was 

stored at -80°C for later use in nucleic acid extractions. 
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Table 3: Isolated bacteria from Al alloy coupons, their colony morphology, and putative identities based 
off of 16S rRNA sequencing. Agar types: Nutrient agar (NA), Estuary media agar (EMA), Diluted marine 
agar (DMA). 
Isolate 

# 
Site Al 

alloy 
Agar 
Type 

Isolated 
From 

Can 
Grow 

On 

Colony 
Morphology 

(color, size, form, 
margin, elevation, 

texture) 

 
Preliminary ID 

(genus) 

1 P3 Al 
2024 

DMA DMA & 
EMA 

Red, small, circular, 
entire, convex, hard 

 

Pseudoalteromonas 

4 P7 Al 
7075 

DMA DMA & 
NA 

White, small, 
circular, entire, 

convex, mucousy 
 

Photobacterium 

5 P7 Al 
7075 

NA NA Cream, large, 
circular, entire, 

crateriform, hard 
 

Bacillus 

6 P3 Al 
7075 

NA NA White, large, 
irregular, undulate, 
crateriform, hard 

 

Bacillus 

7 P3 Al 
2024 

DMA DMA & 
NA 

Tan, small, circular, 
entire, raised, hard 

 

Shewanella 

10 P7 Al 
2024 

NA NA White, small, 
circular, entire, 
raised, mucousy 

 

Enterobacter 

11 P3 Al 
2024 

NA EMA & 
NA 

Yellow, small, 
circular, entire, flat, 

hard 
 

Staphylococcus 

12 P3 Al 
2024 

NA EMA & 
NA 

White, large, 
irregular, undulate, 
crateriform, hard 

 

Bacillus 

Isolate Identification 

 Pellets of the Al isolate cultures were used to extract DNA using the DNeasy Powersoil 

kit (Qiagen, Inc., Carlsbad, Ca). The 16S rRNA was amplified via PCR using the universal 

primers 8F and 1492R and subsequently purified using QIAquick PCR Purification kit (Qiagen, 

Inc., Carlsbad, Ca). The purified PCR products were quantified and aliquoted for subsequent 
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Sanger sequencing at ECU Genomics Core Facility. Universal primers 8F, 1492R, 533F, and 

907R were sent along with the purified PCR products for use in sequencing. The sequence 

results were aligned using Sequencher and analyzed using BLAST to determine what the closest 

identity of the isolates are. Of the aforementioned 12 isolates, two (isolates 1 & 12) were chosen 

for further characterization in this study based on their identities and previous research 

recognizing their ability to produce biofilms in harsh environments. These isolates were 

identified as Bacillus sp. and Pseudoalteromonas sp. Leftover DNA retrieved from the isolates 

was cleaned up using the QIAquick PCR Purification kit (Qiagen, Inc., Carlsbad, Ca) and sent 

off for whole genome sequencing (Dalhousie University) to confirm the identity of the isolates 

and characterize their genomic capabilities. 

Metabolic Characterization of Two Isolates 

The two isolates, Bacillus and Pseudoalteromonas, used in this study were characterized 

in terms of their ability to grow with or without oxygen and using a series of biochemical tests, 

their potential to carry out the catabolism of specific carbohydrates and proteins. To determine if 

the isolates’ grow with or without oxygen, their respective optimal agar types (NA for Bacillus 

and MA for Pseudoalteromonas) were inoculated with one single line—in triplicate—then 

placed in either an anaerobe bag or an open box to be incubated at their optimal growth 

temperature (30°C for Bacillus, 25°C for Pseudoalteromonas) for 48 hours. A thioglycolate 

broth was also inoculated by stabbing with an inoculating loop for each isolate and incubated at 

their optimal growth temperature for 48 hours to validate the plate results. A series of 

biochemical tests were performed in triplicate on both isolates to provide a simple 

characterization of the isolates’ catabolic abilities based on commonly used biochemical testing 

methods (Andrews, 2019). The following agar plates were inoculated with each isolate by 
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streaking a single line through the middle of the plate: starch agar plate and spirit blue agar plate. 

The following tests were inoculated by stabbing the tube with an inoculating loop: 

oxidation/fermentation (OF) glucose test, triple sugar iron (TSI) agar test, Simmons citrate agar 

test, gelatin hydrolysis test, and ornithine decarboxylase test. Two of the OF glucose test tubes 

were inoculated and one of them, as well as the ornithine decarboxylase test tube, were overlaid 

with mineral oil to create an anoxic environment in the tubes. The following tests were 

inoculated by pipetting 200 µL of the isolates culture: sucrose and lactose fermentation tests and 

urea broth test. All of the inoculated biochemical tests were incubated at the isolates’ optimal 

growth temperatures for 48 hours prior to reading results. The gelatin hydrolysis test tubes were 

placed in the fridge for 15 minutes prior to reading their results to solidify any undegraded 

gelatin as it becomes a liquid regardless at the incubation temperatures. 

Determining Growth Conditions and Ranges on Solid Media 

A growth/no growth study was performed to narrow down the temperature range used to 

incubate the isolates in. The temperatures used were expected to span their growth range and 

beyond. When in situ these isolates experienced between 27-35°C, based on the endpoint 

measurements collected for the environmental study. In triplicate, a streak for isolation was 

performed for each isolate on their respective favored agar type and incubated in either 4, 10, 20, 

30, or 45°C to characterize the isolates’ growth range based on temperature. Using the results 

from this experiment, temperatures 4, 15, 25, 30, and 35°C were used to test the growth of the 

isolates in a factorial experiment with AlCl3•6H2O. Both nutrient agar and marine agar plates 

were made with differing concentrations of AlCl3•6H2O to use for the factorial experiment: 0, 

0.1, 0.5, 1, 5, 10, and 20 mM. These concentrations were chosen based on previous research 

isolating bacteria and fungi from aluminum environments (Appanna & Pierre, 1996, Fischer et 
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al., 2002). In triplicate, 100 µL of each isolate was spread plated on the various agar types 

ensuring there was triplicate of each Al concentration for each temperature being tested. The 

spread plates were incubated in all of the previously mentioned temperatures to characterize the 

isolates ability to grow in the presence of AlCl3•6H2O while experiencing temperature stress.  

Temperature Effects on Al Tolerance in Liquid Medium 

One of the two isolates, the Bacillus sp., was chosen to use in a spectrophotometric 

growth study in order to evaluate the isolates’ ability to grow in the presence of micromolar 

concentrations of Al chloride at its optimal growth temperature (30°C) and 5°C lower (25°C). A 

96-well plate was set up in conjunction with spot plates to assess the optical density at 600 nm 

(OD600) and original colony forming units/milliliter, respectively, for each condition. The 

following concentrations of AlCl3•6H2O were used in this study based off of the previous 

experiment qualitatively assessing their Al tolerance using spread plates: 0, 0.1, 0.5, ,0.75, 1, and 

1.5 mM. Each condition was performed in triplicate with negative controls. Absorbance 

measurements, which correspond to optical density, were taken at 600 nm every 10 minutes over 

a 24-hour period. The absorbance data was analyzed first by subtracting the negative controls 

from all the isolate treatments, then averaging the triplicates together and plotting the 

absorbances over time. The maximum absorbances for each treatment was then identified and 

used to make a bar graph showing the maximum OD600 for each treatment at the two 

temperatures. This study was performed three times for each of the two temperatures, and the 

data averaged together to increase statistical power. A t-test was performed on the maximum 

OD600 both between the treatments in the same temperature run and the different temperature, to 

determine statistical significance of results. 
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RESULTS 

Isolation and Identification of Bacteria from Aluminum Alloys 2024 & 7075  

Eight of the 12 isolates were sent off for Sanger sequencing and identification since they 

were confidently deemed pure cultures, while the other four were not. These eight isolates were 

successfully identified at the genus level as a variety of microorganisms including 

Pseudoalteromonas sp., Photobacterium sp., Bacillus sp., Shewanella sp., Enterobacter sp., and 

Staphylococcus sp. (Table 3). One of the Bacillus sp. isolates and the Pseudoalteromonas sp. 

isolate were chosen to use for the rest of the study because of their interesting colony 

morphology when grown in the presence of Al or under heat stress, use in previous studies on 

aluminum alloys (Mansfeld, 2007, McNamara et al., 2005, Rajasekar & Ting, 2010, Zhang et al., 

2019), and advantageous physiological properties. This Bacillus isolate was isolated from the 

control plate, without Al. The Bacillus isolate’s colony morphology without Al present was 

characterized as white, large, irregular, undulate, crateriform, and hard (Figure 13A), but when 

Al was present was characterized as white, small, irregular, crateriform, and hard (Figure 13B). 

The largest difference between the morphologies on Al compared to off Al is the bacteria looked 

like it was growing on top of itself to get away from the solid Al agar surface. When Bacillus 

isolate was grown at 45°C (Figure 13D), 15°C higher than its optimal growth temperature 

(Figure 13C), it exhibited signed of heat stress. The colonies became mucous-like and the agar 

became a yellow pigment that fluoresced under UV light.  
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Figure 13: Bacillus isolate changes (A) colony morphology when under stress. When grown in the presence 
of Al (B) the colonies grow vertically rather than horizontally across the agar surface, and when grown in 
(D) higher temperatures than their (C) optimum, the colonies appear mucous-like and potentially secrete a 
secondary metabolite.  

 

Pseudoalteromonas isolate’s colony morphology was characterized as red, small, circular, entire, 

raised, and hard (Figure 14A). When grown in liquid medium, the entire culture turned pinkish-

red (Figure 14B). After a week of growth, all colonies displayed bullseye coloration with the 

darker coloration gradually increasing towards the outer edge of the colonies (Figure 14C).  
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Figure 14: Pseudoalteromonas isolate produces a pigment both (A) on solid media and (B) in liquid media 
and the (C) colonies have a bullseye appearance to the coloration. 

 

Metabolic Characterization of Two Isolates 

Both isolates grew only on the aerobically incubated plate, as well as at the top of the 

thioglycolate broth suggesting they are obligate aerobes. From the biochemical tests used to 

characterize the catabolic potential of the isolates, it was determined that the Bacillus isolate is 

capable of fermenting sucrose with acid production only and the Pseudoalteromonas isolate is 

capable of decarboxylating ornithine. Both isolates were capable of producing the enzyme 

gelatinase to break down gelatin. All of the other biochemical tests were either negative or 

unable to be read because of the pigment produced by the Pseudoalteromonas isolate (Table 4; 

Figure 15).  
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Table 4: Results from biochemical tests performed on Bacillus and Pseudoalteromonas isolates. Bacillus 
isolate was found positive for sucrose fermentation and gelatin hydrolysis and Pseudoalteromonas isolate 
was found positive for ornithine decarboxylation and gelatin hydrolysis. 

Biochemical Test Pseudoalteromonas sp. Bacillus sp. 
Starch Hydrolysis Test - - 

Spirit Blue Agar - - 
OF Glucose Test - - 

Lactose Fermentation Test - - 
Sucrose Fermentation Test - acid; - gas  + acid; + gas 

TSI Slant - acid; - gas + acid; - gas 
Simmons Citrate Test - - 

Gelatin Hydrolysis Test + + 
Urea Broth Test - - 

Ornithine Decarboxylase Test + - 

 
Figure 15: Images of positive gelatinase test results for (A) Pseudoalteromonas isolate and (B) Bacillus 
isolate. Image of positive (C) ornithine decarboxylase test and (D & E) sucrose fermentation. 
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Determining Growth Conditions and Ranges on Solid Media 

Results from the growth/no growth study showed the Bacillus isolate grew at 20, 30, and 

45°C within 48 hours and displayed signs of cellular stress due to the increase in heat such as a 

mucous-like appearance to the once hard colonies and yellow coloration to the agar, which 

fluoresces when exposed to UV light (Figure 11D). The Pseudoalteromonas isolate grew at 20, 

30, and 45°C within 48 hours and at 10°C in 2 weeks. The higher the temperature, the darker the 

red pigment of the colonies became.  

Results from the factorial experiment showed when both isolates were incubated at 30°C, 

in the presence of AlCl3•6H2O concentrations spanning from 0-20 mM, growth was observed by 

both isolates between 0-1 mM but not at the higher concentrations. As the temperature increased, 

both isolates were able to grow more, as observed by cell density and pigment, in the presence of 

AlCl3•6H2O (Table 5 & 6). At 15°C, the Pseudoalteromonas isolate grew but displayed less 

pigment (Figure 16A) than when grown at its optimum (Figure 16B) and was least at 0 mM, 

increasing as the Al concentration increased.  

Table 5: Factorial experiment results for Bacillus isolate after 1 week. Growth was rated using the 
following designation: - (no growth), + (least growth), ++ (moderate growth), and +++ (most growth). 

mM AlCl3•6H2O 4°C 15°C 25°C 30°C 35°C 
0 mM - + ++ +++ +++ 

0.1 mM - + ++ +++ +++ 
0.5 mM - + + ++ ++ 
1 mM - + + ++ ++ 
5 mM - - - - - 

10 mM - - - - - 
20 mM - - - - - 
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Table 6: Factorial experiment results for Pseudoalteromonas isolate after 1 week. Growth was rated using 
the following designation: - (no growth), + (least growth), ++ (moderate growth), and +++ (most growth). 
No pigment was produced in the highlighted cell.  

mM AlCl3•6H2O 4°C 15°C 25°C 30°C 35°C 
0 mM - + ++ +++ +++ 

0.1 mM - ++ ++ +++ +++ 
0.5 mM - ++ ++ +++ +++ 
1 mM - +++ ++ +++ +++ 
5 mM - - - - - 

10 mM - - - - - 
20 mM - - - - - 

 

 
Figure 16: Pigment production decreases as a stress response by Pseudoalteromonas isolate. Top row of 
plates are all negative controls. AlCl3•6H2O concentrations increase from left to right (0, 0.1, 0.5 and 1.0 
mM, respectively). When grown at (A) 15°C, which is 10°C below its (B) optimum growth temperature, 
there is less pigment produced than normal. As AlCl3•6H2O increases at 15°C, pigment production 
increases. 

Temperature Effects on Al Tolerance in Liquid Medium 

Since absorbance and cell growth have a linear relationship, when looking at the 

absorbances of Bacillus isolate over time, the biggest differences between the two temperatures 

tested was at 1.0 mM AlCl3•6H2O (Figure 17) where the maximum optical densities were 

significantly lower at 25°C compared to 30°C (p<0.05; Figure 18; Table 7). The Bacillus isolate 

consistently showed the highest maximum optical density (OD600) in the presence of 0.5 mM 
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AlCl3•6H2O at both 30 and 25°C ((0.50 ± 0.01 OD600 and 0.52 ± 0.02 OD600, respectively) 

respectively (p>0.05). The lowest maximum OD600 (0.20 ± 0.11 and 0.16 ± 0.04) was seen in the 

presence of 1.5 mM AlCl3•6H2O at 30 and 25°C, respectively (p>0.05) (Figure 18). Within the 

temperatures tested, there was statistical significance when comparing the maximum OD600 

between 0.1 mM and 0.5 mM mM AlCl3•6H2O and between 0.75 and 1.0 mM AlCl3•6H2O (both 

p<0.05). Within the 25°C trials, the jump from 0.5 to 0.75 mM AlCl3•6H2O was also considered 

statistically significant (p<0.05) (Table 7). Results from the spectrophotometric study support my 

hypothesis that decreasing temperature will negatively affect the isolate’s ability to grow in the 

presence of AlCl3•6H2O. 
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Figure 17: Bacillus isolate was grown in different concentrations of AlCl3•6H2O over a 24-hour period and 
absorbances were taken every 10 minutes at 600 nm. Treatments were performed in triplicate, averaged, 
and used to plot absorbances over time. Trials A-C were performed at 30°C, its optimum growth 
temperature, and trials D-F were performed at 25°C. The 5°C drop in temperature drastically affected the 
ability of the isolate to grow in the presence of 1.0 mM AlCl3•6H2O. 
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Figure 18: Average maximum optical density (OD600) at 600 nm between different concentrations of 
AlCl3•6H2O. Trials A-C were performed at 30°C, its optimum growth temperature, and trials D-F were 
performed at 25°C. The maximum OD600 significantly decreased in the presence of 1.0 mM AlCl3•6H2O 
from 30°C to 25°C.  
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Table 7: T-test results from pairwise comparisons of maximum OD600. Under the p-value column, the 
bolded values were found to be statistically significant. 

Pairwise Comparisons (Max OD600) t-value p-value 
@30C--0:0.1 mM AlCl3 0.368522 0.7478366 

@30C--0.1:0.5 mM AlCl3 12.70542 0.0061377 
@30C--0.5:0.75 mM AlCl3 0.623597 0.5965337 
@30C--0.75:1.0 mM AlCl3 -7.80303 0.0160299 
@30C--1.0:1.5 mM AlCl3 -2.53742 0.1265062 
@25C--0:0.1 mM AlCl3 -0.67888 0.5672387 

@25C--0.1:0.5 mM AlCl3 6.329734 0.0240619 
@25C--0.5:0.75 mM AlCl3 8.984609 0.0121625 
@25C--0.75:1.0 mM AlCl3 45.76695 0.0004771 
@25C--1.0:1.5 mM AlCl3 -1.39014 0.2989891 

0 mM AlCl3--30C:25C 1.025572 0.4129324 
0.1 mM AlCl3--30C:25C -1.68747 0.2335656 
0.5 mM AlCl3--30C:25C 2.221685 0.1564097 

0.75 mM AlCl3--30C:25C 2.268831 0.1513625 
1.0 mM AlCl3--30C:25C 8.161707 0.0146822 
1.5 mM AlCl3--30C:25C 0.59905 0.6099573 

DISCUSSION 

Some of the microorganisms successfully isolated from Al alloys on agar made of 0.5 

mM AlCl3•6H2O from Al 2024 and Al 7075 have been previously isolated from Al surfaces 

including Bacillus and Shewanella sp. (Mansfeld, 2007, McNamara et al., 2005, Rajasekar & 

Ting, 2010, Zhang et al., 2019). As previously described, due to their relevance in literature 

regarding bacteria in Al environments, their unique colony morphologies and presence in the 

microbial communities attached to Al alloys in the environmental study, one of the Bacillus sp. 

and the Pseudoalteromonas sp. were chosen for further characterization. Bacillus sp. are a genus 

of known spore- and biofilm-formers and can survive in a variety of extreme environments due 

to these characteristics. They have been isolated from biofilm attached to a variety of metal 

surfaces thought to both influence and inhibit corrosion depending on the species and 

environment (Zuo, 2007). Pseudoalteromonas sp. are a genus of known biofilm- and pigment-

producing bacteria. Other studies have concluded their pigments are normally produced under 
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optimal growth conditions and have antimicrobial and antifouling properties when secreted in the 

presence of other organisms (Cai, 2006, Rao et al., 2005). Antifouling may be of particular 

interest in terms of microorganisms that attach to Al alloy surfaces. If this isolate is secreting 

compounds that inhibit the attachment of fouling organisms it may be useful to promote its 

growth within the community. If major environmental changes in water temperature and salinity 

affect the isolates ability to produce these substances, and ultimately attachment to the Al alloy 

surface, it will no longer be of use to inhibit deterioration of the metal.  

The results from the biochemical tests suggest both isolates are obligate aerobes with the 

ability to produce gelatinase. Gelatinase allows gelatin to be broken down into smaller 

polypeptides, peptides, and amino acids that can cross the cell membrane and be used by the 

organism. Organic corrosion inhibitors (like gelatin and other polymers) have been used to 

protect Al surfaces for decades which suggests these isolates have an advantage of being able to 

gain essential amino acids even while attached to metal substrates (Abdallah et al., 2016). The 

Pseudoalteromonas isolate was capable of decarboxylating ornithine, which is essential for cell 

growth, allowing for polyamines to be created when necessary to stabilize newly synthesized 

DNA. Spermidine is most common polyamine in cyanobacteria and is known to promote gene 

expression and the replacement of damaged proteins under prolonged cold stress, suggesting this 

isolate may be using this method of protein catabolism to protect itself when temperature stress 

occurs (Zhu et al., 2015). Overall, results from the biochemical tests can help us understand the 

isolate’s role in the environment.  

Both isolates grew within the same temperature range (20-45°C) and in the presence of 

the same Al concentration range (0-1 mM AlCl3•6H2O). The isolates used in this study were 

collected from the same site in the same month and isolated from the same Al 2024, which 
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supports the finding their optimal growth temperature is 30°C. The Pseudoalteromonas isolate 

did grow at 10°C after 2 weeks suggesting it grew slow due to the low temperature or the ability 

to adapt and survive under cold stress. This isolate also exhibited interesting pigment production 

during the factorial experiment with temperature and Al. At 15°C, the pigment was close to non-

existent at 0 mM but increased as the Al concentration increased to 1 mM. This supports the idea 

that Pseudoalteromonas changes its pigment production in response to stress (Sakai-Kawada et 

al., 2019). From 25-35°C, the pigment produced by Pseudoalteromonas did not seem to be 

significantly affected between Al concentrations based on observed coloration. The Bacillus 

isolate displayed more translucent growth on all Al concentrations at 15°C but grew normally 

from 25-35°C with little variation in growth characteristics between Al concentrations. This 

reflects their environmental conditions in the summer months and microbial attachment to Al 

alloys under these conditions. Since the water temperature was slightly below 15°C in the winter, 

this suggests the Bacillus isolate may not be able to stay attached year-round, but the 

Pseudoalteromonas isolate can.  

The 24-hour spectrophotometric growth study conducted on the Bacillus isolate provided 

fundamental knowledge on how decreasing temperature 5°C below it optimum, will affect the 

isolates ability to grow in increasing amounts of Al.  The 5°C shift in temperature produced a 

significant difference in maximum OD600 at 1.0 mM AlCl3•6H2O. At 30°C, the isolate’s 

optimum growth temperature, the absorbances were higher at 1.0 mM AlCl3•6H2O compared to 

25°C. The highest absorbance reading for both temperatures was at 0.5 mM AlCl3•6H2O, 

suggesting either more growth, more cell death, or for the Al to absorb enough at 600 nm to 

cause an increase in absorbance. By looking at how the absorbance of each treatment increases 
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overtime and to what extent, further hypotheses can be made and tested about the limitations of 

the Bacillus isolate and other isolates taken from Al alloy surfaces and their ability to tolerate Al 

under environmental conditions that inevitably change. Based on the results of this study, the 

ability for the Bacillus isolate to attach to Al alloys would be negatively affected by a 5°C 

decrease in temperature, more specifically in the summer months since they may not be present 

in the winter.  

These results provide further insight in the environmental role of the two isolates, as well 

as created a model to allow the implications of aluminum tolerance in an estuary to be 

understood in the lab setting. In an environment that is constantly changing, and in a world that 

is steadily getting warmer, it’s necessary to understand not only the microbial communities that 

will attach to metal structures in estuaries, but also more about the particular microorganisms 

themselves. The findings from this study can be used to make hypotheses about the communities 

that would attach to Al 2024 in other environments across the globe because of the consistent 

presence of certain taxa like Gammaproteobacteria, regardless of their variation. 

Gammaproteobacteria were consistently present on the Al alloys between sites and were most 

abundant in the winter months, suggesting they are widespread and important in the microbial 

communities attached to Al alloys.  

Microbial interactions with Al surfaces in estuaries are largely dependent on the 

surrounding environment, both in terms of salinity and water temperature, suggesting the 

communities that attach will vary globally and seasonally. Besides aircraft/marine wreckage and 

other aluminum structures, industrial runoff is a major contributor to the increasing amount of 

solubilized Al in the environment. By investigating the microorganisms that survive in these 

environments and evaluating the conditions that constrain their tolerance to Al, we can make 
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further predictions about the mechanisms they are using, the environments they can be found in, 

and expand upon the idea that microorganisms are constantly adapting to their surrounding 

environment.  

CONCLUSION AND FUTURE DIRECTIONS 

Chapter 1 of this thesis provided novel insights to the microbial communities that will 

attach Al alloys 2024 and 7075 in estuaries along the Pamlico River. Between the two Al alloys, 

Al 2024 generally exhibited lower diversity than Al 7075, with a mix of high and low diversity 

in the summer months (July) and the lowest diversity of all substrates, sites, and seasons, in the 

winter months (December). The microbial communities were found distinct in their composition 

between substrates in December only suggesting seasonal environmental changes, like a decrease 

in temperature, influences who can attach to all substrates. Why was there so much variation in 

microbial community diversity and composition between seasons on Al 2024 and not Al 7075? 

First, to get a better idea of the overall differences in the microbial communities that attach to Al 

2024 and Al 7075, the number of sampling events as well overall time frame of the 

environmental study could be increased. This would allow for a better representation of how 

different locations and seasons influence microbial attachment to the Al alloys. More sampling 

sites could be added to the study, or another estuarine system could be used, which could be used 

to determine how the dynamic nature of estuaries influences attachment. Only discrete readings 

of the water temperatures and salinities from the environmental study were used for analysis. 

This did not allow for a complete picture to be drawn of the ever-changing environment these 

communities experienced. In order to better understand how the microbial community diversity 

and composition are influenced by these factors, temperature and salinity loggers could be used 

to gather continuous data, and then ultimately be used determine how constant fluctuations 
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influence attachment. This dynamicity could also be compared to a more static environment, like 

marine systems, to determine if these results are only representative of an estuarine environment 

and potentially elucidate a core aluminum microbiome between all the different environmental 

locations. To see how these small changes in chemical composition influence attachment, other 

Al alloys can be tested in addition to the Al 2024 and Al 7075. Al alloys are given a 4-digit 

number designation based on their chemical composition; the first number indicates the principle 

alloying element and also denotes the series it is in (there are 8 series of Al alloys). A 

representative study of all Al alloys would consist of one Al alloy from each of the 8 series 

available, allowing an understanding of how chemical composition influences microbial 

attachment to metal surfaces. Lastly, a third replicate could be added to the study to increase 

statistical power of the results. 

Chapter 2 of this thesis investigated two microorganisms isolated from Al alloy 2024 that 

was previously submerged at site P3 along the Pamlico River from July to September. The 

investigation provides basic characterizations of their growth limits as well as sets up future 

experiments that can be used to determine how temperature and salinity affect the isolates ability 

to grow in the presence of increasing Al concentrations. Both isolates grew within the same 

temperature range (20-45°C) and in the presence of the same Al concentration range (0-1 mM 

AlCl3•6H2O), which was comparable to the water temperatures experienced in situ. The 24-hour 

spectrophotometric growth study conducted on the Bacillus isolate provided fundamental 

knowledge on how decreasing temperature 5°C below it optimum, will affect their ability to 

grow in the presence of AlCl3. The isolates retrieved from this study need to be further 

characterized, especially since they both have the ability to form biofilms and Bacillus sp. can 

form endospores under stressful conditions. Both of these traits could be used to adapt to Al 
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environments and provides a selective advantage over other organisms that cannot. Staining 

followed by microscopy or boiling the culture then seeing if they survive could work to 

determine if the Bacillus isolate can produce endospores. This stress response could also have 

affected the optical density of the isolate, making it appear higher than it should. Future 

experiments could be performed using liquid cultures and spot plating to determine colony 

forming units/mL so that results could be normalized to cell number and compared confidently. 

The genomes of both isolates still need to be analyzed to characterize the genomic potential of 

the organisms and further understand how they are able to tolerate Al surfaces and survive in Al 

cultures. Genes that could potentially be used to detoxify the cell of or sequester heavy metals 

have yet to be identified. To understand how the isolates are genetically interacting with Al, a 

transcriptional study could be performed looking at these particular genes and seeing if they’re 

upregulated in the presence of increasing concentrations of Al. The dynamic nature of the 

environment they were isolated from could also influence gene expression, which could be 

elucidated by looking at specific genes used for osmoregulation and protection against reactive 

oxygen species.  

Overall, the findings of this work contribute to the knowledge gaps found in research 

involved with microbial attachment to Al surfaces. Al is a toxic metal that is incapable of being 

used by biological cells, but with the increase of solubilized Al due to pollution and placement of 

Al structures in aquatic systems, microorganisms are faced with both a substrate for attachment 

and a selective pressure. Whether these microorganisms persist, depends on the surrounding 

environment and seasonal changes, suggesting microbial communities found in Al environments 

around the world will vary in their diversity and composition. 
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