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Chapter 1

Introduction

The goal of this thesis is to develop a Windows-based (x86) transpiler for ATLAS

source code that will correctly interpret the ATLAS syntax and generate a syntacti-

cally correct C# target source code representation. After compilation on Windows, it

will accomplish the equivalent functionality that the OpenVMS-based ATLAS com-

piler generates. Considerable explanation is required in order to understand the moti-

vation for this thesis. For example, the reader most likely has never heard of ATLAS

and would have no idea what or who would benefit if this goal is achieved. Further,

one must consider the many paths to achieve the goal and analyze the competing

technologies and approaches to accomplish it. Finally, in order to appreciate the fruit

of this labor, an explanation of how and what was developed must be revealed.

Therefore, this thesis focuses on answering the following questions:

• RQ1:What existing work has been done on providing modern support for legacy
languages, including ATLAS?

• RQ2:What are the challenges to providing support for ATLAS on Windows?
How well do existing solutions handle these challenges?

• RQ3: How well does WATLAS address these challenges?

The rest of this thesis is organized as follows. In Chapter 2, an overview of

CASS/ATLAS is detailed along with its purpose and how it is used in the real world



today. In Chapter 3, we provide a deeper dive into the existing ATLAS Test Language

and provide analysis of language features that WATLAS must support. In Chapter

4, a detailed analysis of the tools and technologies used in this thesis is provided, as

well as a step-by-step review of the steps taken to develop WATLAS. In Chapter 5,

a consideration of other research projects related to analysis of legacy compilers is

given along with a consideration of how these technologies compete with WATLAS.

Finally, in Chapter 6, we share an analysis of the results from our work developing

WATLAS thus far, and concerns about the viability of this effort. Finally, in Chapter

7 we propose further work on WATLAS and ways to improve it with respect to the

viability concerns raised in Chapter 6. We also provide some suggestions for providing

benchmark analysis for WATLAS.

Research Contribution This thesis conducted a review of existing work on mod-

ernizing tool support for ATLAS, as well as related work on similar support for other

legacy languages. Further, an investigation of existing challenges currently occurring

in the ”ATLAS on Windows” domain was conducted and representations as to their

effect in this technology space is provided. Finally, this thesis presents the progress

that WATLAS has made to circumvent these challenges and how it compares to

similar technologies.

The topics discussed in this work present insights into how developers construct

compilers and transpilers from existing languages. This analysis is designed to enable

future work on building compilers and transpilers, and understanding of the trans-

formation tools used to migrate from legacy operating systems to newer technologies.

To enable future work in this area, all results, source code, a video presentation, a

PowerPoint presentation, and LaTeX materials shown in this work can be generated

using the functions found in the repository, which is publicly available and can be

2



downloaded using the links provided in the Appendix.
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Chapter 2

CASS/ATLAS Overview

ATLAS, which stands for Abbreviated Test Language for All Systems, 1 is an IEEE

Standard MIL-SPEC language. United States defense standards, often called a mili-

tary standard, ”MIL-STD” or ”MIL-SPEC”, are used to help achieve standardization

objectives by the U.S. Department of Defense.

ATLAS is used to develop avionics software for testing on Automated Test Equip-

ment (ATE) and specifically for Consolidated Automated Support Systems (CASS)

for the U.S. Department of Navy. The language has a large collection of dialects

that suit themselves to particular applications. While ATLAS is used for a variety of

aircraft, aerospace and other commercial ATE applications, we will limit the scope of

this project to features of ATLAS that provide compatibility to CASS applications

that are used primarily by the U.S. Navy to support naval aircraft systems. CASS

stations have embedded OpenVMS computers that ATLAS programs execute on and

they provide interfaces to the hardware assets and Units Under Test (UUT). A visual

of a typical CASS station is provided in Figure 2.1.

1https://web.archive.org/web/20051110020029/http://grouper.ieee.org/groups/scc20/atlas/



Figure 2.1: CASS ATE Station Example

2.1 The Operating System

CASS/ATLAS compilers have traditionally been deployed on computers running the

OpenVMS operating system. OpenVMS was first released in 1977 and was prevalent

in industries that supported engineering applications. In particular, electrical and

mechanical engineering applications of the 1980s and 1990s were well-suited to uti-

lization of OpenVMS due to its high-reliability and due to the fact that the operating

system was built by engineers specifically for engineering applications.

2.2 History of OpenVMS

Digital Equipment Corporation (DEC) originally developed OpenVMS as VAX (or

VMS) in the 1970’s. Subsequently, DEC was acquired by Compaq in 1998 and Com-
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paq merged with Hewlett Packard (HP) in 2002. The licensing rights were passed to

HP which was building a portfolio of many legacy operating systems such as Open-

VMS and Guardian (a.k.a.; NonStop) among others. Development on OpenVMS

virtually ceased around 2005 and HP set it on a path to extinction around 2012.

Despite this, there still exist many industries and hobbyists2 that remain devoted to

OpenVMS. There are several virtualized OpenVMS offerings on the market (vtAlpha

and vtVAX)3 and Charon4 solutions. There was even a project named FreeVMS that

undertook an effort to move OpenVMS to open source, but this project was aban-

doned shortly after it started. Since 2005, support for OpenVMS has primarily been

provided by third-party vendors on a contractual basis, and these contracts can be

quite costly.

It is interesting to note why the OpenVMS service life took the trajectory it has

experienced. While it is remarkable to see how design decisions and the flux of the

computer industry affect various technologies, we can also see why it is necessary to

continually evolve technologies. This also contributes to understanding the motivation

for developing WATLAS.

1) The VAX instruction set was a member of the Complex Instruction Set Com-

puter (CISC) families which were prevalent in the late 1970s. While aiding com-

piler development, this made hardware development more time-consuming and costly

which is why most hardware developers marketed not only their hardware but also

the software that ran on it. With the advent of Reduced Instruction Set Computers

(RISC), CISC technologies began to suffer due to their inflexibility.

2) VMS was written in VAX assembly language and there was neither broad

knowledge of its intricacies, nor a desire to acquire this knowledge.

2http://www.eight-cubed.com/
3https://www.salemautomation.com/vtalpha-bare-metal
4http:/https://www.stromasys.com/solutions/charon-vax/
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3) The architectural design of VMS had a major flaw involving early decisions

made by the operating systems developers concerning critical locking mechanisms.

Per Stanford university: ”VMS used a highly non-standard feature of interrupt pri-

ority levels to get the effect of locking. There were only 32 such levels, leading to

only 32 major locks. The physical lock table was only 32 by 32 while the effective

lock table was more like thousands by thousands. Every lock was highly overloaded

in meaning. This did not scale and made VMS more complex. After a decade of

development, VMS was moved to the alpha chip set, but only after the alpha chip set

was modified to support interrupt priority levels. Had the original team separated out

the locking mechanism to a more general architecture, this dependency could have

been avoided”. [2]

4) The locking scheme described above in the 3rd point was neither well-documented,

nor well understood by anyone outside of the original development team. This made

further development very costly and nearly impossible.

In 2014, HP reversed course on OpenVMS and moved the licensing rights to

a new entity named VMS Software Inc. (VSI). Since then, VSI has been actively

engaged in bringing OpenVMS back from its near death experience. This is a new

development for this author since the start of this thesis project back in 2018. It was

not widely known that this effort was underway, but VSI released an x86-64 Limited

Early Adopters Kit in 20215. This is an encouraging development for OpenVMS, but

it may be a little too little, and a little too late.

Electrical engineers are highly skilled workers and are often very motivated to

learn new technologies. This has presented a challenge for legacy CASS and ATLAS

since the newer entrants into the workforce do not want to expend the effort to

learn something considered to be very old with a fast approaching end-of-service-life

5https://vmssoftware.com/about/roadmap/
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(EOSL). This makes it hard to attract the best candidates to work on these types

of systems. At Marine Corps Air Station Cherry Point, experienced CASS/ATLAS

developers are retiring, yet the aircraft that depend on this technology are still on

the flight line daily and have been deployed to various parts of the world in recent

conflicts. It is neither feasible to simply decommission these costly weapons systems,

nor can replacement technologies be fielded as quickly as needed. Tools like WATLAS

will hopefully provide an interim solution that attracts workforce participants since

it takes from the old to build an application with a development experience that feels

more current and relevant.

2.3 CASS Station Components

The CASS station depicted in Figure 2.1 shows most of the components (a.k.a.; assets)

of the CASS station are embedded in the station itself. All of these components

are present when developing ATLAS programs, debugging them, and testing them.

However, the nature of the avionics equipment being tested determines which asset

classes will be utilized during test execution. Test Program Set (TPS) developers are

electrical engineers with experience regarding these components, their proper usage,

and how to set and read the input and output from them.

An interview with a senior CASS/ATLAS TPS developer who is a subject matter

expert was conducted to provide some descriptive information regarding these assets.

For each asset class, a brief description of what purpose they serve is provided. Where

an example that can be easily understood could be explained, it has been provided.

Finally, for each asset class, an estimate of the frequency of their usage in a typical

TPS is given. Note that percentages do not apply to the entire universe of TPSs, but

are limited to the knowledge of this particular subject matter expert (SME). This TPS

8



developer works mainly with V22 Osprey aircraft, but has had significant exposure

to several other vertical and/or short take-off and landing (V/STOL) aircraft.

A typical early release CASS station configuration consists of the following asset

classes:

2.3.1 Control Subsystem

The Control Subsystem is comprised of one 133 MHz OpenVMS Computer with 64

Mbytes memory, a 2.1 GB hard drive, a 1.3 GB optical disk, keyboard, trackball, bar

code reader, 16 inch display, and self-test diagnostics.

This asset class is the subject of this thesis and has been described above and

elsewhere in this document. Therefore, neither a purpose will be provided here nor

will an example of how it is used will be provided. As far as usage in typical TPSs,

100% of TPSs rely on this asset class.

2.3.2 General Purpose Interface

The General Purpose Interface (GPI) includes; 1,486 usable pins, a latching mecha-

nism for holding the UUT ID, instrumentation I/O brought directly to the pins, and

a user configuration switch.

The GPI is the main rectangular panel on the front of the CASS station to which

all UUT connect via some sort of Ancillary Equipment, or vendor-provided equipment.

Many of these are custom interfaces that the GPI mates to. All of the signals in the

station, be it measurement, response, switching, etc. are provided or interrogated

through this panel. The only thing these interfaces have in common is that in one

way or another, they will satisfy all of their connectivity needs via the GPI. The

cabling is generally the same as the cabling requirements inside the aircraft.
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2.3.3 Digital Test Unit

The Digital Test Unit (DTU) includes programmable logic levels negative 5V to

positive 15V, 384 bi-directional stimulus/response channels, expandable to 512, 50

Mbits/sec stimulus/response data rate, 25 MHz clock rate, 64K memory depth per

channel with 20 ns pulse detection, and a dynamic fault dictionary with data acqui-

sition RAM and a remote probe ranging from 0 to 50 MHz.

The DTU falls outside the scope of this thesis since we have limited the scope

of this paper to ATLAS. The DTU is used for very specialized testing of Printed

Circuit Boards (PCBs) and is not accessed via ATLAS-based syntax. Rather, a

language known as L200 performs DTU testing and executable L200 code is bound

into ATLAS programs to issue calls when necessary. A very small percentage of TPS

testing (less than 10%) involve the DTU on the CASS Station.

2.3.4 UUT Power Supplies

The following UUT Power Supplies must be present: (1) Direct Current (D/C) Pro-

grammable (800 W), (8) 0 to 32V at 25A, (1) 0 to 100V at 8 A, (2) 50V to 400V at

2A, (4) Alternating Current (A/C) Programmable (1 to 135 Vrms at 4.5 A max, and

55 to 1200 Hz, in 1, 2, or 3 phase)

An A/C Power Supply is generally used to provide 120 volt A/C power in the

135Hz to 400Hz range to a UUT. The usage of 400Hz is to mimic naval ship power

(a.k.a.; afloat environment). An example usage might be to provide lighting to a

display unit. The percentage of TPS that utilize the A/C asset is estimated at 50%.

The D/C Power Supply is generally used to provide primary or secondary power

to a UUT. It can also be used to provide discrete stimulus for something like 20 volt

or lower voltage logic inside the aircraft. It can be used for any device (depending

10



on the electrical current requirement) to drive a particular signal to the device. An

example usage might be to drive a mission computer being powered up by the primary

28 volt bus. The percentage of TPS that utilize the D/C asset is estimated at 90 to

95%.

2.3.5 Digital Multimeter

The Digital Multimeter (DMM) provides 6-1/2 digit resolution, voltage of 200 V at

GPI, a 0 to 1000 VDC probe, and a 0 to 700 Vrms probe with current of 0 to 2A

A/C-D/C and resistance of 0 to 30 mega-ohms.

DMMs are used to measure A/C or D/C voltage and resistance as well. Primary

usage is for ”safe to turn on tests” to detect short circuit situations before apply-

ing power to a UUT. They are also used for test point measurements periodically

throughout TPS execution. The percentage of TPS that utilize the DMM asset is

estimated at close to 100%.

2.3.6 Frequency Time/Interval Counter

The Frequency Time/Interval Counter (FTIC) provides 2 Channels with D/C cou-

pling (0.001 Hz to 200 MHz) and A/C coupling (100 Hz to 200 MHz) It supports

time intervals of 4 ns to 15,000 sec. Channel A ranges from negative 5 ns to 1000 sec,

Channel B ranges from negative 10 ns to 1000 sec with a maximum count event rate

of 20 MHz, with input voltage specified at +10 Vp D/C and Sensitivity of 0.1 Vpp.

FTICs are used to measure the frequency of a periodic signal. For example,

suppose a square wave is encountered during testing after a certain amount of time,

and that event might be a 1 KHz square wave. The FTIC could measure that signal

to a very tight tolerance. It could also measure the exact time between two different

events that occur during the test execution. Many times, this is used for checking or

11



verifying clock signals inside of units. The percentage of TPS that utilize the FTIC

asset is estimated at no more than 40%.

2.3.7 Waveform Digitizer

The Waveform Digitizer (WVFRMDIG) supports 0 to 500 MHz, 4 Channels (2 at

GPI, 2 external), Vertical Voltage at GPI: 8 mV to 40 V full scale, Maximum input

voltage: 5 Vrms (50 ohm input), Maximum sample rate: 20 mega samples/sec., and

Memory depth: 1024 points. It supports waveform types as follows: D/C, Sine,

Square, Step, Triangle and Pulsed D/C, Low Power Wattage Load Range: 1.5 to

99,999 ohms, Increments: 0.1 ohm, Power dissipation: 5 watts, High Power Wattage

Load, with programmable ranges of 0 to 20 Amps, 1 ohm to 5 Kohm, and Power

dissipation of 500 watts with Unipolar D/C only.

WVFRMDIGs are used to take samplings of analog signals and turn them into

a discrete representation of that signal. It can be thought of as a programmable

oscilloscope for any type of A/C wave form. For example; for a signal that should be

going to an A/C motor, this asset can ensure that the signal is at a certain frequency

and ripple. It is frequently used to detect noise and ripple inside a signal. The

percentage of TPS that utilize the WVFRMDIG asset is estimated at around 30 to

40%.

2.3.8 Pulse Generator

The Pulse Generator (PGEN) supports two channels with these operating modes:

Continuous, Gated, Burst, and Trigger, Output Voltage: +100 mV to +5 V into 50

ohms, Pulse period: 4 ns to 99.9 ms, Pulse width: 2.0 ns to 89.9 ms and Pulse delay:

0 ns to 89.9 ms.

PGENs are primarily used by TPS developers for creating timed events possibly
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of a certain wave form; a square wave every ”n” microseconds, or a continuous pulse

train. They allow for the creation of a synthetic testing environment to see how the

UUT reacts. They also allow for creation of circuitry signals that act as a clock and

allow the TPS developer to control the clock. The percentage of TPS that utilize the

PGEN asset is very low at probably no more than 15%.

2.3.9 Arbitrary Waveform Generator

The Arbitrary Waveform Generator (ARBWVFRMGEN) supports two channels with

Amplitude: +5V, Maximum amplitude: 10 Vpp, 0 to 25 MHz sine, pulse, ramp, 48

Hz to 200 MHz arbitrary point generation, 48 Hz to 100 MHz digital patterns (11

bit). Rise/fall times are, Channel A - 10 ns to 100 sec, Channel B - 30 ns to 100

sec, Minimum pulse width: 10 ns, Sweep Time: 1.4 us to 40 sec with Communication

Buses as follows: MIL-STD 1553 A/B, MIL-STD-1773, IEEE-488, RS-232, RS-422,

IEEE-802.3, ARINC-429, and MIL-STD-1397.

ARBWVFRMGENs are used by TPS developers to create their own kind of wave

forms; square waves, triangular waves, saw tooth waves, and different types of A/C

signals, of different frequencies and different amplitudes. The ARBWVFRMGEN

is very good for mimicking stimulus from a communication system. It can mimic

the tone of a voice down to a single Hz tone that could be routed through an au-

dio switcher. The percentage of TPS that utilize the ARBWVFRMGEN asset is

estimated at around 25 to 30%.

2.3.10 Ancillary Equipment

Finally, the ancillary equipment includes RS-485/MH switch Assemblies with Power

switch (D/C to 1000 Hz), (5) 1 X 4 ganged high current (18.75 A), (2) 1 X 2 ganged

high current (18.75 A), (6) 1X 2 ganged low current (9 A), (1) 1X 2 high current

13



(18.75 A), low frequency switch (D/C to 1 MHz), (21) 1 X 4 low frequency, (35) 1 X

2 low frequency, coaxial switch (D/C to 1 GHz), (11) 1 X 4 coax and (3) 1X2 coax.

Ancillary Equipment (AE) is coupled to the General Purpose interface and is used

in one form or another by nearly every TPS. This equipment has changed through the

years so much that there is no one set of equipment generic enough for all UUTs. As

new UUTs are developed, they have their own set of AE unique to their connectivity

requirements (i.e.; cabling, interface cards, etc.) All UUTs require some form of AE

to allow connectivity to the General Purpose Interface.
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Chapter 3

Overview of ATLAS

The ATLAS for Windows transpiler (WATLAS) developed for this thesis is designed

to support legacy ATLAS syntax available in the OpenVMS-compliant ATLAS com-

piler. The first ATLAS specification was published in 1968. ATLAS resembles

other procedural legacy languages of the 1970s, in particular COBOL. This is a brief

overview of ATLAS syntax.

3.1 Legacy Similarities

Referring to the sample code in Figure 3.1, one can note several similarities to COBOL

such as:

1. There is a 80 character line limit.

2. There is a 6-digit leading line number in columns 2 through 7.

3. Column 1 may be used for commenting code and other special purpose features.

4. The source code must be provided in upper-case letters.

5. Similar reserved words (i.e.; IF-THEN-ELSE, OPEN, CLOSE, PERFORM,

etc.) are used.



Figure 3.1: ATLAS Syntax Example

3.2 Types of Statements and Capabilities

The source code line for an ATLAS program is no more than 80 characters in length

and consists of four sections:

1. Offset 0, Length 1: This single character that starts the line can be either:

(a) The character C (upper case), indicating the start of a comment block.

(b) The character B, indicating a branch block.

(c) The character E, indicating an entry point (similar to ”main” in the ”C”

language).

(d) The ”space”character, which has no meaning.
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2. Offset 1, Length 6: These six numeric characters (if provided) indicate a logical

line number.

3. Offset 7, Length 1: Dead space. There is usually nothing in this position. None

of the source code reviewed for this project ever made use of it.

4. Offset 8, Length 72: Actual source code or comments.

3.3 Comment Blocks

ATLAS comments are free form text that can span multiple lines. The comment

area will commence with a ”C” in column 1 of the source code line and continue

until a dollar sign ($) character occurs which is considered the comment termination

character. Also, all ATLAS executable and declarative statements use the dollar sign

($) character to indicate termination of the statement.

3.4 Branch Blocks

ATLAS programs can be developed in two manners: modular or segmented. In

the modular implementation, the functionality that may be exposed is defined as

”GLOBAL” and any potential callers of the functionality in that module must refer-

ence the module in an INCLUDE statement and define the function reference as an

EXTERNAL implementation. Segmented implementations are similar to COPYLIBs

of the 1970’s and 1980’s. The source code of the caller performs a GOTO to the line

number just after the branch block in the called source code. The start of a branch

block must have a ”B” in column 1 of the source code line and it continues until a

dollar sign ($) character occurs which is considered the block termination character.

Branch blocks rarely span more than two lines of actual source since they are only
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pointer locations into the source code. There are typically some sort of free form

comments after the ”B” indicator, but before the branch terminating ($).

3.5 Entry Point Lines

There is only 1 entry point line, and that line starts with ”E” and indicates where

the actual program starts. Unlike Comment and Block lines, a six-character numeric

line number will follow the ”E” in positions 2 through 7 of the entry point line. Also,

procedural source code can follow the line number after character position 8. In the

opinion of this author the best structured ATLAS programs have the ”E” line near

the end of the source code file just before the END statement. Everything that follows

the entry point line is just calls to functions that have been previously defined above

the entry line.

3.6 Logical Line Numbers (LLNs)

LLNs have assorted rules that make these not quite as straightforward as they may

seem. These rules vary somewhat depending on the type of ATLAS statement. For

sake of clarity, ATLAS has only 9 statement types, three of which have been discussed

above (comments, branches and entry points), and a plurality of PROCEDURAL

statements which are typically embedded within a DEFINE block. The rules of

LLNs are described for these six statement types:

1. BEGIN: There is only one BEGIN statement in an ATLAS program. It is the

first line in the program and it starts with a full six-character LLN. It terminates

with the $ character.

2. INCLUDE: There may be several INCLUDE statements in an ATLAS program,

but each starts with a full six-character LLN. It terminates with the $ character.
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They rarely span more than one line.

3. REQUIRE: There may be several REQUIRE statements in an ATLAS pro-

gram, but each starts with a full six-character LLN. It terminates with the $

character. They usually span more than one line, but there is only one LLN for

the REQUIRE and it is on the first line of the statement.

4. DECLARE: There may be several DECLARE statements in an ATLAS pro-

gram, but each starts with an LLN. However, the LLN may be abbreviated (see

section 3.7). It terminates with the $ character. Also, several ATLAS variables

of the same data type can be concatenated into a single DECLARE statement

so they can and do span multiple lines. But, there is only one LLN for a single

DECLARE.

5. DEFINE: There may be several DEFINE statements in an ATLAS program,

but each starts with an LLN. However, the LLN may be abbreviated (see section

3.7). It terminates with the $ character. Also, and this is unique among all the

statement types, each line of a DEFINE must start with an LLN. By contrast,

a REQUIRE may span several lines, but only starts with one LLN on the first

line of the REQUIRE. Since a DEFINE spans several lines, then each line starts

with a LLN. The reason DEFINES must span at least two lines is because a

DEFINE starts on one line indicating the name of the procedure to be defined.

The definition terminates with an END statement indicating the end of the

DEFINE block. Every complete statement in a DEFINE will end with the $

character. DEFINES often have embedded local DECLAREs. DEFINES are

of three types:

(a) GLOBAL: Can be called by any other module ”bound” to this program.
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(b) EXTERNAL: References a GLOBAL that is defined in another module.

(c) Local: These will contain PROCEDURE statements and are only available

to be called by this program (i.e.; must have scope local to this source file).

6. END: Other then the DEFINE-END statement, there must be one END state-

ment in an ATLAS program. It is the last line in the program and it starts

with a full six-character LLN. It terminates with the $ character.

The other statement types that make use of LLNs are PROCEDURE statements.

These statements usually occur inside of a DEFINE section, although they can be

used inline in a free form manner for particularly small programs where no subroutine-

like grouping is implemented. DEFINES can be thought of as blocks of logic similar

to functions in block-structured languages or methods in object-oriented languages.

More information on sub-types of PROCEDURE statements is found in subsection

3.8.

3.7 Abbreviated LLN

Abbreviated LLNs are unique to ATLAS and this author knows of no other language

where this construct has been implemented. The only other language with a vaguely

similar construct is JOSS 1 which made use of meaning in line numbers. But, in

ATLAS abbreviated LLNs are merely for convenience and for visual affect. They

essentially let the programmer only provide the least significant character digits of an

LLN if the missing digits are the same as the line above it. For example, LLNs could

be written like the following in Figure 3.2. However, the abbreviated line numbers of

Figure 3.3 express the same LLN scheme.

1https://en.wikipedia.org/wiki/JOSS
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Figure 3.2: LLN with Fully Qualified Numbers

Figure 3.3: LLN with Abbreviated Numbers

3.8 PROCEDURE Statements

These statements are the actual executable statements that are performed in a DE-

FINE. This list is not exhaustive, but they specify these types of procedures: AP-

PLY, IF, CALCULATE, FILL, OUTPUT, PERFORM, READ, REMOVE, VERIFY,

WAIT, and WHILE.

While this project has limited the scope of PROCEDURE statements it will sup-

port due to time constraints, WATLAS is being developed as an extensible product.

Support for additional PROCEDURE types can be added as needed.

3.9 The LU File

ATLAS programs support portability between CASS stations by means of an LU file.

Test Program Set (TPS) developers coined the term ”LookUp” file and it has LU

as its file name extension. Given an ATLAS program named EXAMPLE.AS, there

may be an EXAMPLE.LU file in the same directory as the EXAMPLE.AS file. An

LU file is required if there exists one or more REQUIRE statements in the AS file,
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since LU files provide configuration mapping information about assets referred to in

REQUIRE statements in the AS file. The LU file must have the exact same file name

with the exception of the extension (i.e.; EXAMPLE.AS specifies its mappings in

EXAMPLE.LU).

The purpose of the LU file is to map logical hardware requirements to their physi-

cal hardware device name on a given CASS station. For example, suppose a program

makes use of a printer, and the device name of the printer hardware on a CASS station

is ”PRT”. The TPS developer may reference the logical device name as ”PRINTER”

without regard to the actual device name in their REQUIRE or OUTPUT statements

and the source code file will compile without errors provided there is a related entry

in the LU file. The compiler only checks the LU file to determine if a device mapping

exists. But it is the responsibility of the CASS station at run-time in response to ex-

ecution of the REQUIRE statement to create the connection. Thus, to complete the

mapping at compile time, the LU file must contain a one line entry like the following:

PRINTER PRT

In this way an ATLAS program may be ”ported” to a CASS station with a

different hardware configuration by simply updating the LU file entries. For standard

hardware assets that the majority CASS stations do support, this rarely occurs since

military software applications and hardware configurations are thoroughly reviewed

for compliance to standard naming conventions. But, the LU file provides additional

capabilities that are not well suited to stringent standards requirements. It also

provides for configuration of assets that are not widely used in TPS’s that are peculiar

to certain automated test equipment (ATE).

The LU file also may contain other optional configuration characteristics that are

pertinent to avionics software testing on CASS stations. Among these one might

find PIN configuration statements if the program utilizes wire connections to printed
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circuit boards (PCB) or other hard-wired components of a specific hardware asset.

For example, one pin configuration statement for a digital multi-meter in the LU file

might look like the following (and will span three lines):

DMMHIR1HI N1J9-14A

N1J9-32A

N1J9-32C

This brief explanation of an LU file has been included in this section because it

influences the translation of our ATLAS source program into its C# equivalent. It is

also the reason that the WATLAS Post Processor is necessary since it provides the

class name for the asset as we will see in the next chapter. Finally, this construction

necessitated the post processor steps since this feature of ATLAS could not easily be

accommodated by Rascal.

23



Chapter 4

Strategy and Technologies Used to Develop WATLAS

The author of this thesis chose to utilize Rascal MPL as much as possible in the

development of the ATLAS transpiler for Windows (WATLAS). That decision could

not be characterized as an ”informed decision”. Rather, the suggestion was made by

Dr. Mark Hills to look into using Rascal as he felt that the tool was up to the task.

He is also a contributor to the Rascal open source project and this provided a level of

confidence in acceptance of his recommendation since he is a subject matter expert.

It also made sense to pursue it in order to learn a new technology that will no doubt

prove useful in future projects. After a few weeks of working with Rascal to assemble

a preliminary grammar file, it appeared that Rascal did have most of the necessary

capabilities. For those that were lacking, the tool appeared to be flexible enough to

build a customized implementation; for example, the ability of Rascal to allow the

compiler developer to handle Atlas’s logical line numbers and comment structure as

specified by a positional comment character. Both of these anomalies are relics of

legacy languages that present parsing challenges.

This chapter will explain how Rascal was used to develop WATLAS, the develop-

ment of the C# output source, the WATLAS transpiler and its integrated framework,

the Pre and Post processing functionality, and the CASS Station emulator that is built

into the framework to allow the TPS developer to test the generated output. It should



be noted here that the WATLAS transpiler is not exhaustive of all the capabilities

of the ATLAS language. WATLAS is an extensible framework that electrical engi-

neers can build upon to continuously add new language features. Finally, this section

will provide ”next steps” for those interested in building upon this framework and

enhancing the tool for further use.

4.1 Step 1: Developing a RASCAL Grammar

Rascal is similar to many lexers and parsing tools with respect to the fact that the

basic building block of the tool is a grammar file. Rascal makes the task of developing

the grammar easier by providing a framework that integrates with Eclipse. Once the

Rascal plugin is downloaded and installed 1 into Eclipse, the developer can create an

RSC file in Eclipse’s text editor and use the integrated Rascal Console to test the

grammar in an iterative manner.

4.1.1 Lexical Rules

Both the lexical rules and parsing structures can be provided in a single RSC file. In

fact, the combined lexical rules and parsing syntax for WATLAS are in a single file in

this Eclipse project (atlassyntax.rsc). But it is helpful to think of these components

as separate entities. Lexical rules deal with identifying what the tokens are in a

grammar. The technical term for these components is either a lexeme, a token, or

a terminal. A token is a lexeme along with the type of the lexeme. So, the lexeme

is the recognized character sequence. The lexeme plus the type are the token which

become a ”terminal” in the parser.

For example; ATLAS variables have an unusual construction. They have the fol-

lowing composition; a single quote (‘), followed by one or more upper-case alphanu-

1https://www.rascal-mpl.org/start/
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meric characters including the ”period” character (.), the ”hyphen” character (-),

and the colon character (:), terminating with a single quote. The ”hyphen” character

must have a backslash (\) before it because it is a special character to Rascal. This

is very similar to the way I had to provide a special character sequence in Overleaf

to render the backslash. A valid ATLAS variable name might be:

‘.SNDSEQ:PHASE-1‘

This composition introduces many output problems in most modern languages;

hence the need for a data segment for variable storage. There is more discussion

about this in the section about the WATLAS integrated framework. The lexical

rule defined in the Rascal grammar to define a valid ATLAS variable is encircled in

red in Figure 4.1. The rule says an ATLAS variable can be either a string literal

which is defined elsewhere in the grammar, or another literal of the form displayed

in the regular expression. The regular expression syntax is standard ”regex” syntax.

Someone familiar with writing lexers would look at this and find it very familiar.

Notice also the pipe character (|) in the lexical rule. This character means ”OR”.

It must also be mentioned here that this construction is not ideal. It works for

the sake of this thesis, but the reader must remember that this author was learning

Rascal during this thesis and looking back, it would have been better to simply say

that an ATLAS variable is only of the form of the regular expression. To minimize

the development time of the grammar, shortcuts were taken that would be too hard

to undo given the time limitations. But, the thrust of this thesis is not to train the

reader in the best grammar construction rather than to explain what it is. Readers

with prior grammar construction experience may have noticed the inelegance of the

construction.
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Figure 4.1: ATLAS Variable Name Lexical Rules.

4.1.2 Parser Rules

Parsing rules can be thought of as the structure of a language’s statements. These are

often described in a language syntax manual to define the language and are tradition-

ally represented in Backus-Naur Format (BNF). They are usually represented in a

visual variation known as railroad diagrams. Therefore, ATLAS has it own language

specification that provides the syntax structure of ATLAS statements. ATLAS syntax

is represented in its language documentation specification in Extended Backus-Naur

Format (EBNF). [8] Some example parsing rules for procedural statements in ATLAS

are provided in Figure 4.2.
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Figure 4.2: ATLAS Parser rules for Procedural Statements.

This is only a small snippet of the PROCEDURE Statement syntax rule. But

one can see from the example that a PROCEDURE Statement may be either an ap-

plyStatement, or a calculateStatement, or a compareStatement, or a delayStatement,

and so on. The complete syntax for these rules is provided in atlassyntax.rsc in the

Github links provide in the Appendix. A closer examination of the calculateStatement

specifies the valid syntax for an ATLAS CALCULATE statement as follows:

1) A Logical Line Number (LLN) which is defined as a LINE NUMBER LEX

elsewhere in the grammar file.

2) The keyword CALCULATE followed by a comma (,).

3) An EXPRESSION which is defined elsewhere in the grammar file.

4) An equal sign (=).

5) An EXPRESSION which is defined elsewhere in the grammar file followed by

a dollar sign ($). It is an ATLAS convention to start procedural statements with an

LLN and terminate with a dollar sign.

As an example, here is a valid sample CALCULATE statement in ATLAS:

123456 CALCULATE, ‘SOME-VARIABLE-NAME‘ = 31 $

One can see that CALCULATE statements are essentially assignment statements.
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4.2 Step 2: Using Grammar and ATLAS to Generate C# Equivalence

Once the lexical rules have been specified, and the syntax is provided to define a valid

statement that can be parsed in the source language, the next step in the creation

of the transpiler is create the methods to generate target statements. Before we can

do that, we need to develop the abstractions of the statements from the input source

language so that we can specify them in the target language.

4.2.1 Defining Expected Output

To help us create an output syntax generation, it is helpful to define expected target

output from the source language input statements. For this thesis, the source lan-

guage is ATLAS and the target language is C#. However, since this thesis generates

C# statements that must be compliant within the WATLAS framework, the exact

representation of the formatting of WATLAS-framework compliant statements should

be defined. There are several considerations and we will discuss one of these.

As stated in subsection 4.1.1 above, ATLAS has an unusual allowable variable

name syntax. These lexical rules are so foreign to the target language that to preserve

the exact variable name, it is necessary to construct our own data segment to manage

variables including not only the variable values, but also the variable’s attributes. In

the WATLAS framework, a ”Variable” class that describes an ATLAS variable object

is provided as well as a static class called the ”DataSegment” that stores all variables

required during WATLAS run-time execution. Thus, the construction of a variable

is exemplified below in Figure 4.3.

This describes the process for only one type of translation construction for only one

statement type; namely, the DECLARE statement. Each statement type’s translation

should be defined so that an abstract representation of the statement and the rules
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Figure 4.3: ATLAS to C# Translation.

to build it from the source input can be specified. In order to facilitate this, there is a

small application called ”Translator” that was developed that has a syntax guide for

each ATLAS statement type. The user selects a statement type like CALCULATE,

and one or more example CALCULATE statements are displayed in ATLAS source

syntax. The user can then select one to see the target statement syntax that is

compliant with the WATLAS framework.

4.2.2 Abstract Syntax Tree

The Abstract Syntax Tree (AST) is represented as a data structure in Rascal and

in most compilers. It is used to represent the structure of source code. We make

use of it in Rascal to describe not only the source syntax structure, but also ”what

changes” given a particular statement type. This is best described by example and

we will refer to the CALCULATE statement again since it is easy to grasp how the

AST not only describes the source code input, but assists in the generation of target

language output.

Recall from section 4.1.2 that the syntactical structure of the ATLAS source lan-

guage’s CALCULATE statement is:
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Figure 4.4: CALCULATE Statement Tokens.

LLN CALCULATE, EXPRESSION = EXPRESSION $

Referring to Figure 4.4, the tokens of this statement are displayed. There are

seven tokens in the statement above and of those, only three of them will change

depending on the needs of the program.

1) The Logical Line Number (LLN) will change,

2) The first EXPRESSION will change, and

3) The Second EXPRESSION will change.

(For the time being, ignore that fact that a CALCULATE statement allows several

assignments within one statement, This is accomplished by means of the ”one-or-

more” operator ”()+” in Rascal which we have deliberately left out to minimize

confusion). In compiler design we call the tokens that will not change ”terminals”

and these are often thought of as things like ”reserved” words. The tokens that will

change are referred to as ”nonterminals”. The entire statement’s syntax and how it

is represented is referred to as a ”production”.

The ”CALCULATE” token, the comma (”,”) token, the equals (”=”) token, and

the dollar (”$”) token must be consistently present in any ATLAS CALCULATE

31



Figure 4.5: AST Data Structure for CALCULATE in Rascal

source code statement in order for the statement to transpile without error. These

are the terminals. The programmer decides what the LLN, EXPRESSION 1 and

EXPRESSION 2 will be. These are the nonterminals. The ATLAS syntax specifies

what tokens must be present and the order in which they are provided in relation to

the other tokens in order for the statement to make sense to the ATLAS transpiler

so that it can parse the programmer’s intended meaning.

Thus, Rascal makes use of the AST construct to describe ”what changes” (i.e.;

the programmers choice, or nonterminals) in the ATLAS CALCULATE statement

as shown in Figure 4.5. One can see that a CALCULATE statement is considered

to be one of many PROCEDURE statements that has three tokens that may change

and they are called in that Rascal statement ”lineNumber” for the LLN, ”left” for

the left-hand side EXPRESSION, and ”right” for the right-hand side EXPRESSION.

Again, referring to the fact that CALCULATE statements allows several assignments

within one statement, the Rascal code makes use of the ”list of tuples” to provide for

that syntax construction. Once the AST data structure has been defined it may be

used to generate the target language source code output.
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Figure 4.6: AST Production for CALCULATE in Rascal

4.2.3 Generating Output

Once the lexical rules, parsing syntax, translation representations and AST are de-

fined, it is possible to begin building code generation procedures. This is not to say

that the preceding steps must be completed in their entirety. Rascal allows iterative

development of these components, but it is a good idea to have the bulk of the lexical

rules specified and the large majority of the parsing syntax created. Changing an

elemental rule late in the process can break a lot of the building blocks upon which

a grammar is built.

To construct a code generation procedure, we start with an abstraction of the

statement we will be receiving as input. We have shown this abstraction as an AST

data structure in Figure 4.5. Then we create a procedure (method) to construct the

abstract syntax tree assuming that abstraction will be our input. This procedure

is displayed in Figure 4.6. Notice that this method calls other overloaded methods

to process input data according to its allowable types. Remember that allowable

types for Expressions to CALCULATE statement operands may be ATLAS variable

names (VARIABLE NAME LEX) or string literals (StringLiteral) or natural numbers

(NaturalNumber).
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Figure 4.7: Rascal Code to Generate Target Statement from AST

Finally, we will code up a generation method to receive the abstract syntax tree

and pull out the pieces meaningful to us in our target language output and format

the output statement. For example, we will once again consider the construction of

a CALCULATE statement and consider how its target syntax is generated. Recall

from 4.1.2 that CALCULATE statements are data assignment statements that allow

expressions for the right-hand side of the equivalence operator.

Here is an ATLAS source example:

123456 CALCULATE, ‘SOME-VARIABLE-NAME‘ = 31 + 4 $

In Figure 4.7, the Rascal code generation procedure that was used to construct

the target statement is displayed. Note that from the ”Build” method, the generate

method receives the ”lineNumber” arguments and the list of tuples containing the

operand on the left-hand side of the CALCULATE operator, and the right-hand side

of the CALCULATE operator. In our ATLAS source example, we are only setting

‘SOME-VARIABLE-NAME‘ to the sum of 31 + 4, but we could have included more

assignment statements since this is allowed in ATLAS CALCULATE statements.

But, here we just process an array with one tuple of values. From that we build that

output string which looks like the following C#:

DataSegment.Set(”’SOME-VARIABLE-NAME’”, 31 + 4);
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4.3 Step 3: Developing the WATLAS Integrated Framework

4.3.1 Framework Components

WATLAS is only designed to work within a discrete framework. While the code gen-

eration routines output standard C#, much of that C# code only makes sense within

the WATLAS framework. From our example in 4.2.3, one can see that the generated

code references a structure which is called the ”DataSegment”. The ”DataSegment”

is used to simulate a run time data structure to manage variables including their

creation and definition, setting values for those variables, and subsequently retriev-

ing values stored in those variables in the ”DataSegment”. This ”DataSegment” is

often, in definitions of languages, also called an ”environment”. This construction is

common in programming languages, and ”every programming language specifies an

execution model, and many implement at least part of that model in a run-time sys-

tem”. 2 For example, in the LISP language ”the compiler may assume that functions

that are defined and declared inline in the compile-time environment will retain the

same definitions at run time”. 3

Similarly, ATLAS REQUIRE statements make reference to an ”AssetManager”

which simulates the configuration and I-O interface to attached hardware which are

referred to as ”assets” in the CASS world. Also ATLAS INCLUDE statements refer

to framework objects like ”L2 CHAIN” and so on. These structures are not provided

”out-of-the-box” in a C# environment. They were built beforehand to allow our

transpiled code to interface correctly with the CASS Station Emulator. In this way,

we accomplish one of the goals of this thesis to assess the viability of this approach

to migrating ATLAS from OpenVMS to Windows. So, why did we follow this path?

2https://en.wikipedia.org/wiki/Runtime system
3https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node227.html
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The main reason for creating a discrete framework was the time limitation to

building this tool. A project of this scope could easily take a team of experienced

programmers several years to accomplish. As we will see in our next chapter on

competing technologies, we find that RTCASS which provides a similar capability,

although with an integrated hardware appliance, took the Boeing Corporation more

than a decade to field. A large team of developers and hardware engineers and several

million dollars were invested to develop RTCASS. And even their tool with all of its

capabilities only operates within the framework that they had previously built. The

RTCASS translater generates native C source code, but relies on custom components

that Boeing built to support RTCASS hardware functionality. Building a tool using

the technologies we employed would also incur a huge effort that would be well beyond

the scope of this thesis.

Our framework provides the structures that will be needed to support our simple

”Hello World” prototype and nothing else. This includes the libraries and classes

discussed above and an integration to a CASS Station emulator that will provide a

visual display as to how our tool will operate on the ATLAS source code that has been

transpiled into C#. The WATLAS emulator provides a look-and-feel very similar to

the CASS Station’s Human Interface.

4.3.2 Defining a Project Template

Given that WATLAS operates within a discrete framework, a review of how we expose

that framework is in order here. Since C# is typically developed in the Microsoft In-

tegrated Development Environment (IDE) known as Visual Studio, we constructed a

project template that incorporates our framework and developed routines within our

Pre/Post Processor to establish the project framework by instantiating the project

based on the WATLAS project template. After the processor prepares that ATLAS
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Figure 4.8: IMOM Interface

source code for translation and performs the translation, the processor detects the

name of the project (in our case: HELOWRLD) and builds a project from the WAT-

LAS project template and names the source code file within it as HELOWRLD.CS.

Any experienced C# developer can customize the project after its initial creation to

suit their needs. But all of the necessary components of the framework are included

in the initial project deployment. One of these is the CASS Station emulator.

4.3.3 The CASS Station Human Interface

In Figure 4.8 we see a depiction of the actual human interface on a CASS station for a

TPS developer. It is referred to as the ATE display, but is known as the Intermediate
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Maintenance Operations Management System (IMOM) in program code. One can

see from the graphic that it certainly has a very ”dated” look. Since it was initially

designed in the 1970’s, and later updated in the 1990’s, one can understand why it

does have this antiquated look. ATLAS programs can be written with a minimal

interface to the IMOM, but more complex interaction allows the TPS developer to

have greater control of the execution of the ATLAS instructions and interrogate values

and reset them. For this thesis, only minimal interface with components of the IMOM

is depicted.

For WATLAS, the Project Template includes a Windows Form that is referenced

as ”fMain” in the transpiled WATLAS statements for those statements that may need

to reference the ATE Display. These include statements directed to the CRT output,

and statements that reference ”assets” since the CASS station reports on the status

of any station asset. Further, there is an output window that reports on TPS program

status (start, stop, run-time errors, etc.). For this simulator, the effort was made to

give a visual representation for those statements with a similar affect as it occurs on

the actual CASS Station’s ATE display.

4.3.4 Pre and Post Processor

One more tool that was developed to support this thesis should be discussed here.

The PrePostProcessor is used to format ATLAS source code in a format that is easily

processed by the Rascal console. For example, consider the source code displayed in

Figure 3.1. One can see that ATLAS developers apply a standardized indentation

scheme that lends itself to easy interpretation by a human reader. There also exists a

coding standard that enforces this practice in all ATLAS source. The standard makes

no difference to the ATLAS transpiler since it is just processing tokens and knows

what characters to pay attention to, and which should be ignored. But, the line end-
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of-line characters, tabs and carriage returns make the task of submitting formatted

ATLAS source statements to our Rascal console a bit challenging. Also, the need to

ignore ATLAS comments needs to be performed by pre-processing since no effort to

handle the parsing necessary to ignore comments is included in this project’s Rascal

parser.

So, pre-processing would take a line of formatted ATLAS code structured like this:

011015 CALCULATE,

’REPEAT-ENABLED’ = TRUE,

’REPEAT-TEST’ = TRUE $

and transforms it into this as a single line:

parse(#PROCEDURE Statement, "011015 CALCULATE, ’REPEAT-ENABLED’ = TRUE,

’REPEAT-TEST’ = TRUE $");

This is the statement format that our Rascal console needs to work with.

The purpose of the post-processing is to make substitutions for intermediate tokens

that our Rascal code generator has created. Rascal has no awareness of the hardware

”asset” mapping requirements, so it simply writes out a structured intermediate token.

This is due to the substitutions that take place for CASS station ”assets” that have

been defined in the ”LU” file. Recall from subsection 3.9 that the LU file contains

the mapping between a logical asset name and its physical device. Post-processing

searches the Rascal-generated code and finds the structured intermediate tokens that

it must replace before finalizing the C# target source code. We see an example of this

in Figure 4.9. Note that the lines were originally output as three lines, but carriage

returns have been included here to enhance legibility. It is six lines in the graphic.
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Figure 4.9: Example PostProcessor Structured Intermediate Token Substitution

4.4 Next Steps - Enhancing WATLAS

In Chapter 6, there is a section on Viability Concerns and a final solution is offered in

Chapter 7 at Figure 7.1 that looks like the best option going forward for variable name

translation. Implementing that is the immediate next step to enhance WATLAS.

This will allow for the complete removal of the ”DataSegment” from the WATLAS

framework. This is good because it minimizes the need for C# structures that do not

come immediately ”out-of-the-box” with C# thereby minimizing the learning curve

of the WATLAS framework. It also resolves the entire ”casting” issue discussed in

Chapter 7 as well.

4.4.1 Rascal Project Enhancements

Assuming this enhancement is complete, here we discuss how individuals may con-

tribute to this effort and bring together a more comprehensive WATLAS. The Ap-

pendix provides the links to all of the source code that contributors should download

as a starting point. The next effort should involve completion of the parsing syn-

tax in atlassyntas.rsc in the GitHub project. Extensive effort was made during the

first semester of this thesis to provide most of the required syntax parsing, but it is

not comprehensive. The best path forward would involve lifting the transpile logic

from the PrePostProcessor and incorporating it into a global parser that would it-
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erate through a directory of ATLAS source code and report statements that fail to

parse correctly. The transpile logic is in a standalone class named ATLAS.cs in the

ATLAS Rascal project in the Azure DevOps solution. It would be fairly easy to

lift that class out of the transpiler for implementation in a different project. The

class constructor accepts as string parameters all the inputs it needs to run in any

C# process. This new process could scan directories looking for *.AS files, transpile

them, and provide report output for statements that fail to parse. This would provide

analysis of what syntax is not supported by the translator and one could add syntax

corrections and enhancements for what is missing.

Refer to Figure 4.10 which shows the flow of translation and specifically to the

green ”Abstraction” portion of the graphic. The abstraction definitions found in

abstract.rsc need to be completed. Only about seven statement types are supported

as of this writing. They are the statement types that were needed to perform the

initial evaluation of WATLAS functionality. But, the remaining statements that need

abstraction are all PROCEDURAL statements as one can see in the data structure

named:

public data ProcedureStatement

Once all of the remaining abstractions are added, the ”build” procedures for the

abstract syntax tree in BuildAST.rsc need to be included. One can copy one of

the existing buildPROCEDUREStatement functions and modify it to suit the needs

of the abstraction. Finally, for each build procedure, a ”generate” function in the

Generate.rsc module would need to be included. Referring again to Figure 4.10,

the green ”Code Generation” portion of the graphic shows the structural elements

that comprise generation of target C# code. As with the AST, one can copy one of

the existing ”generate” functions and modify it to suit the needs of the abstraction.

There is a TXT file in the Documentation folder in the ATLAS Rascal project in
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Figure 4.10: Example Flow of Translation

Azure DevOps that has a lot of test statements that work. The file is appropriately

named ”THIS WORKS.TXT” and they can be copied and pasted into the Rascal

console to see how they work. The ATLAS Rascal project can be used to test any

ATLAS source code file and should not need any enhancements to make it work

with any new PROCEDURAL statements that you might create, since they were

generalized in the PrePostProcessor. The contributor only needs to take care to

name their build procedure like the other examples. Any new build methods for

PROCEDURAL statements should be named ”buildPROCEDUREStatement” since

that method is overloaded and Rascal knows which method to use in response to a

call.
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4.4.2 C# Project Enhancements

The major enhancements to the C# code involves implementing the various assets in

the WATLAS template project in the folder named ”Assets”. This effort would require

the assistance of electrical engineers with subject matter expertise in how interfaces

are written to communicate with the various devices. This is not a trivial effort. The

specifics of the communication protocols differ depending on type of asset, the asset’s

vendor, and the differentiation between the vendor’s model offerings. The good news

is that most of the product offerings on the market are supported on Windows and

some of the products reviewed come with an API to assist in the development of

an interface with your application. As an example, CONTEC has a vast array of

hardware to support engineering applications and a link to their Digital Multimeter’s

(DMM) API is provided in the footnotes. 4

4.4.3 Tool Enhancements

Rascal is a powerful meta-programming tool. But, at this time the Rascal console

is the main interface to issuing Rascal commands and it has a limited set of visual

tools to assist the developer. Meta-programming is a hard concept to grasp and the

cumbersome nature of its interface adds effort to learning and coding, unless you are

a very good typist (which this author is not).

One tool that would be very useful in Rascal would be a Backus-Naur Format

(BNF) visualizer. In other words it would be nice if one could select a grammar

file and open it as a series of railroad diagrams. All the lexical structures could be

exposed in a property window, and all the syntax statements exposed in a property

window, and when the user clicks on a statement, it could show how it complies to a

4https://www.contec.com/products-services/daq-control/pc-helper/daq-software/api-
dmm(wdm)/specification/
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BNF visual. If that visual was editable, then the graphical interface could take care

of the Rascal syntax that the visual implies.
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Chapter 5

Competing Technologies and Similar Efforts

As stated in the last chapter, this thesis’ project employs a number of tools such as

Rascal, Java and Visual Studio to create a parsing engine for ATLAS source code

on Windows, create an abstract syntax tree and eventually source code output that

will compile on Windows. This chapter will examine a number of other solutions

that can create the same or similar deliverable. These approaches range from a

market-ready Windows-based ATLAS compiler, meta-programming languages sim-

ilar to Rascal, tools developed by Boeing specifically for the Department of Navy,

and a generic compilation strategy for any language but targeted mainly for legacy

mainframe applications. We will also examine one solution that does not satisfy the

requirements completely, but is worth mentioning since it provides the ability to gen-

erate executable code from an interim language. For this solution, Rascal or a tool

that provides similar capabilities of defining lexical rules, parsing, defining abstrac-

tions, and generating target code, could be tailored to create the interim language as

output. Finally, we will take a look at a translation of another legacy language that

enables modern support in military applications.



5.1 PAWS

PAWS Developer’s Studio gives you the power to compile, modify, debug, document,

and simulate the operation of ATLAS test programs in a Windows environment. [1]

The PAWS ATLAS compiler ”processes any of the available ATLAS subsets supported

by PAWS. This fast, comprehensive compiler performs source code parsing, syntax

verification, full signal flow analysis, and automatic resource allocation and code

generation”. 1 The company’s website provides a high-level glossy of information

on product features. An informal phone interview with Mike Rutledge of Astrionics

provided much of the material for this review of PAWS’ capabilities. These are the

answers to five specific questions:

5.1.1 Transfer-ability of OpenVMS-Compliant ATLAS Source Code

With the exception of legacy source code that does not adhere to strict syntax guid-

ance, PAWS will process legacy source in the same manner as an OpenVMS ATLAS

compiler. The OpenVMS compiler can be a bit more forgiving of syntax nuances,

particularly where the program’s development predates the ATLAS standard library.

PAWS is entirely compliant with the IEEE ATLAS standard and will provide errors

for erroneously constructed ATLAS syntax. PAWS provides a PreProcessor to assist

with migration of code that is not fully compliant to strict syntax adherence since

Astrionics has years of experience encountering these types of syntax errors.

5.1.2 Target Executable Implementation

PAWS compiles ATLAS to ”ATLAS Intermediate Language” (AIL) and does not

generate an x86 executable. AIL will only execute inside of the PAWS executive

1https://www.astronics.com/productinfo?productgroup=test
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which recognizes the intermediate representation of the ATLAS source. Mr. Rutledge

conveyed that this provides an extra layer of obfuscation that is valuable with regard

to Cyber Security concerns since the AIL is immediately disposed.

5.1.3 Asset Interfaces

Surprisingly, Astrionics does not market or recommend any hardware assets, but

claims to support all Windows-connectable devices. For calls to those assets that

may not exist at run-time, the PAWS executive provides a virtual simulation which is

very similar to the deployment of hardware assets scenarios envisioned for WATLAS

(see subsection 4.4.2). Astrionics does provide an online library of downloadable

virtual assets with simulation capabilities for free to registered PAWS users.

5.1.4 UUT Latching

PAWS makes no distinction between Automated Test Equipment (ATE) assets and

Unit Under Test (UUT) assets. While a CASS Station has embedded ATE and

the engineer latches the UUT to the UUT latching mechanism which is a general-

purpose interface, these types of hardware interfaces are not present for the Windows-

based developer. The developer needs to determine cabling and interface needs and

PAWS does not distinguish either as unique hardware (i.e. the avionics hardware

being used to test, and the avionics hardware being tested). It is the responsibility

of the electrical engineer to connect the correct device with the correct interface

connector(s). Thus, there is a no latching mechanism.

5.1.5 Industry Standard IDE Integration

PAWS is deployed with its own IDE that does not provide additional interface with

other IDEs. There are no future plan to provide any further integration.
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5.2 ANTLR

ANTLR (Another Tool for Language Recognition) is a powerful parser generator for

reading, processing, executing, or translating structured text or binary files. It’s

widely used to build languages, tools, and frameworks. From a grammar, ANTLR

generates a parser that can build and walk parse trees. [12]

Setting up ANTLR for this thesis was very intuitive. ”While the tool itself is

written in Java, it can also be used to generate a parser in several other languages,

for instance Python, C# or JavaScript (with more languages supported by the re-

cently released 4.6 version). ” [14] A comparative project for using ANTLR with a

parser/lexer that is written in C# is demonstrated below.

An example grammar file is provided in the ”Getting started with ANTLR in

CSharp” GitHub project. It is depicted in Figure 5.1. Notice that the grammar states

that valid SPEAK source code programs are comprised of two lines that terminate

with end-of-file. Further, a valid line is a ”name”, followed by the ”SAYS” keyword,

followed by an ”opinion” and terminated by a ”NEWLINE” character. The rules for

what a ”name” is are given in the lexer rules and those rules indicate it is comprised of

upper or lower case alpha characters. The rules about what an ”opinion” is indicate

that it is a quoted string expression, and so on.

An example program with a syntactically correct stream of text is depicted in

Figure 5.2. Also, an example of a syntactically incorrect stream of text follows in

Figure 5.3.

One can see that ANTLR relies on the development of a grammar file that is

similar in nature to Rascal’s RSC grammar file. Both technologies approach parsing

and lexing rules with Backus Naur Form (BNF) meta-syntax notation. Both also

utilize regular expression-like syntax for character encoding rules. With this in mind,
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Figure 5.1: ANTLR Grammar Example.

it is highly likely that the amount of effort expended to develop WATLAS using

Rascal would be very similar had ANTLR been employed.
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Figure 5.2: SPEAK Example with no errors.

Figure 5.3: SPEAK Example with errors detected.
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5.3 Haskell

Haskell is a polymorphic statically typed, lazy, purely functional language, quite

different from most other programming languages. The language is named for Haskell

Brooks Curry, whose work in mathematical logic serves as a foundation for functional

languages. Haskell is based on the lambda calculus. [7]

Haskell provides a parsing library that is capable of lexing and parsing in the

Text.ParserCombinators.Parsec import library. The Haskell Language Server also

provides a extension plug-in for Visual Studio code. 2 But there is no tool currently

available that tightly integrates with this thesis’ target language of C#. In spite of

these obstacles, there is ample literature on using Haskell with multiple parsers and

implementation of the Haskell ”map” function to create an Abstract Syntax Tree

(AST). 3

An example parsing Haskell program is provided in Figure 5.4. This algorithm

parses a comma-separated values (CSV) file and shows how a functional programs

does lexical analysis parsing. This example reveals the complexities of a rather sim-

ple parser/lexer. [11] Therefore a solution that would do this would be entirely

homegrown which would make this approach very difficult given the limited time

constraints.

2https://github.com/haskell/haskell-language-server
3https://stackoverflow.com/questions/12712149/haskell-parser-to-ast-data-type-assignment
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Figure 5.4: Example Haskell Parser using Parsec.

5.4 RTCASS

The Re-configurable Transportable Consolidated Automated Support System (RT-

CASS) is the Marine Corps specific test set within the CASS standard automatic test

equipment family. RTCASS provides intermediate and depot level avionics support

for the Marine Corps, Air Force Special Operations Command (AFSOC), Navy de-

pots and foreign allies. The RTCASS provides a portable CASS station configuration

using Commercial Off-The-Shelf (COTS) hardware and software to meet USMC V-22

and H-1 support requirements as well as to replace legacy CASS stations at USMC
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fixed wing aircraft (EA-6B, F/A-18 and AV-8B) support sites. [5] The first release

of RTCASS stations became widely available around 2012. While the RTCASS sta-

tion still has a large footprint (see Figure 5.5), it is much more manageable than

traditional CASS stations.

The first deployment of RTCASS stipulated that it had to run on the Windows

NT Server 4.0 operating system. There was a requirement in the contract with

the Department of Navy that code generated from the RTCASS station had to be

backwards compatible. The development team accomplished this through the use

of Test Program Markup Language (TPML) that was used to generate C-code on

the RTCASS station. The RTCASS compiler reads the ATLAS source input and

generates the TPML which is essentially an XML document. This is considered the

intermediate language from which executable code is ultimately generated. As a

result of this implementation it is possible to generate not only C code, but revert

back to ATLAS code. Hence, the TPML could be reverse-engineered back to the

original ATLAS source used to generate it.

A study by Cheng-Wei Chen and Jenq Kuen Lee at the Programming Language

Lab [4] details a PC-based ATLAS compiler development technology that very closely

resembles the approach that the Boeing Corporation followed in developing the RT-

CASS compiler. In this study, the authors created a compiler aimed at providing

control of PC-based automated test equipment in full compliance with the ATLAS

IEEE standard. The compiler was developed in an object-oriented language and

incorporates XML representations. The abstract syntax trees are treated as linked

objects and linguistic constructs are defined in a class hierarchy. The compiler uses

object serialization for storing and retrieving syntax trees and program graphs which

the authors state greatly reduced compiler development effort. They transformed

EBNF grammars into Yacc-format grammars, class hierarchies of program graphs,
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Figure 5.5: RTCASS Station

and object serializations of program graphs. The class definitions in this compiler

are for Module, Statement, Node, Symbol, and Type Classes from which the XML

representation is generated utilizing object serialization. This process yields the same

benefit as the TPML described above. While these classes were designed in C++,

the intermediate nature of the object store provides the same flexibility as the TPML

intermediate representation.

RTCASS competes with WATLAS since it provides a Windows-based compiler

that generates x86 instructions after compilation of the C code generated from the

TPML. But, the solution is neither lightweight due to its backwards-compatibility

requirement, nor due to its requirements that the generated output executable must

run under the slightly modified Windows NT Server and its associated ATLAS ex-

ecutive that runs on top of Windows NT Server. Finally, RTCASS‘s cost to develop

was very expensive.
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Figure 5.6: eCASS Station

5.5 ECASS

The electronic Consolidated Automated Support System (eCASS), is the Navy's most

recent addition to the CASS automatic test equipment family (see Figure 5.6). eCASS

provides shore-based and afloat intermediate and depot level maintenance and repair

capabilities for all naval aircraft, ship and submarine electronics systems. eCASS was

fielded and operational in 2018 and began replacing the existing aging legacy CASS

stations at Naval Air Systems Command and Naval Sea Systems Command activities.

[10]

eCASS stations come equipped with a translator that takes ATLAS source code

and translates it into an executable form that is compatible with Common Devel-

opment Environment for TPS’s (CDET). Under the covers, a CDET module is a

Windows OBJ file much like C or C++ object files. eCASS specifies an entry-point

standard to make the module callable from the Standard Test Operations and Run-
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time Manager (STORM). In this development environment, TPS developers continue

to provide ATLAS source code which the CDET translator processes into the CDET

executable object library. When the TPS developer executes their run-time module,

STORM evaluates the CDET object library, loads the correct module and executes

it on the eCASS station. In a brief discussion with an electrical engineer at Cherry

Point, he indicated that the eCASS station also provided processing enhancements for

hardware assets that eCASS has also incorporated beyond what the legacy CASS sta-

tions provided. Hence, eCASS ATLAS provides some additional syntax functionality

to accommodate the new capabilities.

5.6 LLVM

LLVM began as a research project at the University of Illinois, with the goal of pro-

viding a modern, SSA-based compilation strategy capable of supporting both static

and dynamic compilation of arbitrary programming languages. Since then, LLVM

has grown to be an umbrella project consisting of a number of sub-projects, many of

which are being used in production by a wide variety of commercial and open source

projects as well as being widely used in academic research. Code in the LLVM project

is licensed under the ”UIUC” BSD-Style license. [9]

While LLVM is a compiler, it also a toolkit used to develop the other compilers.

The authors of LLVM have divided the main components of compiler generation into

phases and LLVM is injected into the process after the interim code language is created

from lexing, parsing and analysis of the original source code. LLVM is not concerned

with the original programming language since it only operates on the interim code

referred to as ”LLVM bytecode”. LLVM has multiple language-specific front-ends

that target LLVM bytecode, and then a shared LLVM backend for code analysis and
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Figure 5.7: LLVM Bird’s Eye View.

executable code generation. From that, LLVM optimizes the code and generates the

executable file. LLVM is also platform independent. It can take the interim code and

make it compliant in an executable format for many target processors as depicted in

Figure 5.7. The beauty of this approach is that the compiler developer needs only

to perform lexical analysis of the source code, parse it and output the semantically

correct interim code and LLVM handles the rest of the hardware details.

LLVM also provides tight integration in a number of different integrated devel-

opment environments (IDEs). One of the supported IDEs is Visual Studio through

installation of the LLVM Toolchain Extension. 4. With the LLVM Extension, com-

piler developers can target either 32-bit or 64-bit Windows compilers. In light of all

of these capabilities, it is possible to use a tool like Rascal or ANTLR to develop the

lexical analyser and parser, and then output the semantically correct interim code

from the AST and utilize LLVM to generate the executable.

5.7 Translating JOVIAL

JOVIAL is a MIL-STD legacy language that has been prevalent in military appli-

cations and was specifically developed for embedded military avionics systems. The

4https://marketplace.visualstudio.com/items?itemName=LLVMExtensions.llvm-toolchain/
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JOVIAL Integrated Tool Set (ITS) is a set of software support tools used for devel-

opment and maintenance of MIL-STD-1750A targeted applications.5 JOVIAL is also

used to support older military vehicles. It was originally developed in 1959 based on

ALGOL58 and shares many of the features of legacy languages including uppercase-

only tokens and a syntax very similar to block-structured languages like Pascal. It

was also among the group of languages that ran on OpenVMS and was licensed by

DEC.

The list of military applications that still use JOVIAL-based embedded software

is impressive and includes aircraft such as:

1) The B52 Stratofortress which is not slated to go End-of-Service-Life (EOSL)

until the 2050’s.

2) The C-130 Hercules which is still in production today with no slated EOSL.

3) The UH-60 Black Hawk helicopter which is also still in production today with

no slated EOSL.

In 1983, the U.S. Air Force (USAF) Command at Wright Patterson Air Force

Base in Dayton, Ohio began a feasibility study [15] to create a translator to migrate

JOVIAL programs to a different language. The goal of the study was to translate

JOVIAL to Ada and eventually this led to an effort to translate JOVIAL to the C

language.6 In Figure 5.8, an example translation from JOVIAL to the equivalent

functionality in Ada and C shows that JOVIAL is a very concise language and can

express functionality in approximately the same number of lines of code as C, but

Ada is a bit more verbose. This JOVIAL snippet does not show library includes

because none are needed to perform this small unit of functionality. Some other

JOVIAL programs found online 7 reveal that the sparse source code example here

5https://web.archive.org/web/20090423065636/http://www.jovial.hill.af.mil/
6http://www.semdesigns.com/Products/MigrationTools/JOVIAL2C.html
7http://bitsavers.trailing-edge.com/pdf/cdc/cyber/lang/jovial/60252100A JOVIALgenIf Mar69.pdf
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Figure 5.8: Example JOVIAL to Ada and C Translation

is anomalous with other JOVIAL examples in general. It appears this language is

rather elegant, simple, and easy to learn. So, why did the USAF want to replace this

language?

Before an attempt to answer that question is provided, a review of the feasibility
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study is in order. In the feasibility study, the author begins with a section on the criti-

cal need for ”execution equivalence”. JOVIAL is used in mission critical applications,

so this concern is paramount. The next concern is for efficiency as it pertains to CPU

execution cycles largely due to timing requirements. The resulting machine instruc-

tions generated from the translated Ada source code should be the same, smaller,

or even more efficient than what was produced from the original JOVIAL source

code. Finally, the resultant source code quality should promote maintainability and

other non-functional requirements like readability, robust implementation of language

features, supportive of debugging automation, reliability, and free of underlying de-

pendencies and ambiguities. The study goes on to state how Ada best meets the

requirements as the target language for the translator.

In the next section of the study, some of the major differences between JOVIAL

and Ada are introduced. It discusses Compool modules, scope of names, imple-

mentation parameters, data declarations by data type including integer, float, fixed,

bit, character, enumerations, pointers, tables–that is arrays, constants, blocks–not

supported in Ada, and data objects. Further specifications concerning declarations

of types, statement names, defines, external references, overlays, procedures and

functions were defined along with ramifications and anomalies for each. The au-

thor goes on to state how certain procedural statement translations would be trivial

(WHILE, FOR, IF, and CASE) while others would require more evaluation (ELSEIF,

FALLTHRU, RETURN, GOTO, EXIT, STOP, ABORT and Procedure Call syntax).

Finally, the study indicates numeric formulas (a.k.a.; expressions) carry certain nu-

ances depending on the data type, exposes the full list of Ada reserved words that

should be excluded, and a brief discussion of variable name conflicts that might occur

during translation due to different lexical rules for variable names is provided. My

review reveals that the document is quite comprehensive and offers some insights on
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the path forward. The author was a subject matter expert and wanted to bring this

project to completion using Ada.

An effort was made to reach out to the author of this study. Daniel H. Ehrenfried

served as an officer 8 in the USAF. And starting in 1982, he was the project engineer,

in-house Ada expert, compiler evaluator, and Ada tutorial instructor. This translator

was his ”project conception” and it appears he shepherded this project along until

1985. In the end, it turned out to be ”a $2.5M research effort to investigate the

application of Ada to real-time embedded systems and related support tools”. Since

he has not returned emails, the following is only conjecture. Even in 1983 dollars,

$2.5M is a meager price tag and it is doubtful that this project was completed as he

envisioned it - an Ada-only shop. According to the study, ”with the translation of all

J73 software into Ada, J73 software development systems could be phased out of use,

the cost of maintaining the J73 system could be recovered, and programmers would

be freed earlier for their eventual transition to Ada”. This was an ambitious effort

and cost concerns may have legitimately been a driving factor, but one does not need

to work around the DoD world long to know that cost concerns are usually cover for

ulterior motives.

At this point in this research, it is conceivable that there were many pulling on

the rope in this technological tug-of-war. The DEC Ada toolbox 9 was developed

and in all likelihood, some of the existing JOVIAL-based avionics software may have

been re-written in Ada, and some may have been re-written in C. It is also likely

that many DoD contractors were involved in the decision-making process. What is

known for sure is that ”as of 2010, JOVIAL is no longer maintained and distributed

by the USAF JOVIAL Program Office (JPO). Software formerly distributed by the

8http://www.littletree.com/resume.html
9https://sw-eng.falls-church.va.us/ajpo databases/products tools2.html
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JPO is still available through commercial resources”. 10 This does not confirm that

JOVIAL is no longer in use. It is just not supported by the JPO. ATLAS still remains

in active use today despite limited vendor and Joint Program Office support. This

shows that there is no winner-take-all in the software and technology realm of defense

acquisitions.

In 2009, USAF at Wright Patterson AFB approved the following for release into

the public domain. ”As the Air Force’s B-2 prime contractor, Northrop Grumman

contracted Semantic Designs to construct cost-effective, automated tools and transla-

tion methods to modernize the flight management computer system software applica-

tions, beginning with the (Operational Flight Program) OFP, by converting the legacy

JOVIAL code to C. Northrop Grumman applied its system engineering methodologies

to integrate new hardware and used the JOVIAL2C translator to convert the flight

software to operate in the new processing environment”. 11 So, according to this re-

lease, it appears the JOVIAL to Ada program was not successful. Instead, Northrop

Grumman was able to persuade the USAF that the Semantic Designs translator was

the best solution.

As a final note on language usage, it is worth mentioning the relationship between

the languages referenced in this section and the prevalence of their current usage.

According to the Statistics and Data Organization’s report on the ”The Importance

of Being Earnest” (TIOBE) Index 12, the C language is the most popular language

of all programming language coming in with a 13.38% rating, which is higher than

Java, C++ and C#. Ada has a rating of 0.57% while JOVIAL and ATLAS did not

even make it onto the list. Interestingly though, Ada is below Assembly Language at

2.43%. This report is as of May of 2021.

10https://en.wikipedia.org/wiki/JOVIAL
11http://www.semdesigns.com/Products/Services/NorthropGrummanB2.html
12https://statisticsanddata.org/data/the-most-popular-programming-languages-1965-2021/
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Chapter 6

Evaluation

Here we take a look at some of the results of our effort in developing WATLAS.

Specifically we want to address issues that could be improved in our implementation.

Further, we will examine some areas of the WATLAS prototype that affect its viability

and deserve further investigation.

6.1 Semantics Analysis

Semantic analysis is the task of ensuring that the declarations and statements of

a program are semantically correct, i.e, that their meaning is clear and consistent

with the way in which control structures and data types are supposed to be used. 1

Examples relevant to our transpiler would include:

1) Utilizing variables prior to their creation is semantically incorrect. This would

mean that the placement of DataSegment.Set or DataSegment.Get statements for

any variable can only occur after one, and only one DataSegment.Add statement for

that variable name.

2) Implementing procedural statements that operate on assets (like OUTPUT,

APPLY, etc.) can only occur after one, and only one REQUIRE statement for that

asset.

1https://home.adelphi.edu/ siegfried/cs372/372l8.pdf



3) More subtle semantic violations might involve assigning a value of an improper

data type in a DataSegment.Set statement, or assuming an improper data type return

results from a DataSegment.Get statement.

For this iteration of WATLAS, there was no implementation of any semantics pro-

cessing to ensure that any of these example semantic errors will not occur. WATLAS

is offered as a transpiler for valid ATLAS programs. That is to say that the only AT-

LAS input source that WATLAS should be used to transpile is source that is known

to be semantically correct. The main reason for this is the limited time constraints

to develop this prototype. There exist scoping capabilities in Rascal to assist with

#3 above, but other semantic violations would need to occur in either the Pre or

Post Processor. It is interesting to note that the first several releases of RTCASS (see

subsection 5.4) had a similar limitation on its use for translation of existing ATLAS

source. Had the inventors of RTCASS included all semantic processing in the first

release of their translater, the deliverable would have been pushed considerably be-

hind schedule. So, they suggested that RTCASS only be used to translate ”known

and working” ATLAS source code.

6.2 Correctness

Correctness from a software engineering perspective can be defined as the adherence

to the specifications that determine how users can interact with the software and

how the software should behave when it is used correctly. 2 At this time, the only

proof of the correctness of the WATLAS transpiler is to observe the ATE Display

to see if it behaves the same way as it does when the original program executes

on the CASS Station. As with Semantic Analysis, WATLAS does implement any

”Correctness” processing features to ensure that the program behaves correctly and

2https://www.tutorialspoint.com/software testing dictionary/correctness.htm
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as stated above, WATLAS is only offered as a transpiler for valid ATLAS programs.

6.3 Viability Concerns

An honest review of the quality of the generated code and the translation design

reveals some shortcomings. There is ample room for improvement and it is not

realistic to believe this design is optimal. The majority of the viability concerns

involve the ”DataSegment” framework. First we will look at why the existing design

was implemented in this iteration of WATLAS. Then we will explain why this design

is deficient.

6.3.1 DataSegment Design

Recall from subsection 4.1.1 that a valid ATLAS variable name might be:

‘.SNDSEQ:PHASE-1‘

For C#, the lexical rules for a valid variable name are that variable names can

contain letters, digits, and the underscore ( ) only, must start with a letter, and are

case-sensitive. Right away we can see that there are four unique characters in the

ATLAS variable name that violate the lexical rules for a variable name in C# and

these are highlighted in red below.

’.SNDSEQ:PHASE-1’

Since the variable name cannot directly transpiled using characters that violate the

lexical rules for a variable name in C#, a scheme that is flexible enough to uniquely

represent any ATLAS variable name in C# needs to be devised. In the variable name

above, there are multiple characters that are valid for ATLAS variables that are not

valid for C#, so a simple replacement could be considered. But, if one thinks that we

could just substitute an underscore for an invalid character (i.e.; quote, period, colon,
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hyphen, etc.), what would happen if we had these three unique variables in ATLAS?

‘.SNDSEQ:PHASE-1‘

‘.SNDSEQ-PHASE-1‘

‘.SNDSEQ.PHASE-1‘

They would all be transpiled as:

SNDSEQ PHASE 1

Three unique variables would transpile into one variable name, which would not

be functionally correct. Therefore, a more robust solution needs to be devised.

For this iteration of WATLAS, the ”DataSegment” class was provided in the

WATLAS framework which allows us to preserve the original ATLAS variable name.

For the three similarly named variables above, three unique entries will be added to

the ”DataSegment”. As a consequence of this solution, the target C# code never

references a variable name inline. Rather, it transpiles a variable name into a C#

function to represent variables in operations. But this introduces a different problem

that threatens the desirability of this approach.

6.3.2 DataSegment Concerns

Consider a simple assignment statement that utilizes an expression involving the

three variables PRODUCT, VAR1 and VAR2. An example C# implementation of

this is depicted in Figure 6.1. In ATLAS, this would be accomplished through a

CALCULATE statement. Suppose the ATLAS source code specifies computing the

product of VAR1 and VAR2 and storing the result in the PRODUCT variable. Here

is an example that shows the ATLAS code and how it will be represented in WATLAS

C#. After the three variables have been added to the ”DataSegment” as a result of

encountering the three ATLAS DECLARE statements. the initial values of VAR1

and VAR2 are set to 5 and 10 respectively.
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Figure 6.1: Using CALCULATE with variables in expression.

One can easily see that the generated C# code is far more complicated than

the ATLAS source code. Even though the code was cut off halfway with a carriage

return for legibility in this paper, it is still overly complex given what it is actually

doing. So while the ATLAS source code is correctly interpreted into the WATLAS

target source code, and is functionally correct and produces the correct results at run

time, it is cumbersome in its representation. This obfuscation of the purpose of the

instructions lends credence to the feeling that this is a viability concern. Additionally,

this implementation requires type casting for the values of variables when they are

returned from the ”DataSegment”. There is more discussion on the ramifications of

casting and return types in section 6.3.3.

A better solution to this problem might probably involve something akin to name

mangling, name decorating, or display name attributes. But the research did not

reveal any other more accommodating solution in this regard for the target language
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Figure 6.2: Another Naming Convention for ATLAS to C# Variable Naming.

of C#. After some time spent trying to come up with a more viable alternative, two

additional approaches came to light. Option one would be variable name encoding

seen in Figure 6.2 or a simple dictionary entry as seen in Figure 6.3 for option two.

After consideration of option one, a refinement of that option yields what is probably

the best implementation.

For the variable name encoding (Option 1), a naming rule convention that imple-

ments these two rules would work:

1) Use the variable’s characters in the ATLAS variable name where they do not

violate C# variable lexical rules, and

2) Replace invalid ATLAS variable characters with their type prefixed by an under-

score, suffixed by an underscore and displayed as lower case. Since ATLAS variables

must use upper case alphanumeric characters, creating a substitute name would not

violate C# lexical rules, and it would be feasible to map the C# variable name back

to the ATLAS variable name.

The main concern with this option was that the resultant C# variable name might

be too long; however, C# allows variable names up to 511 characters in length. As a

side note, a test was made with a variable name up to 1024 characters in length, and

it compiled and worked. But, this still seems like an ugly implementation.

The simplified Dot NET Framework’s Dictionary class (Option 2) is similar to
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Figure 6.3: Simplified Dictionary-Based Implementation for ATLAS to C# Variable
Naming.

the current ”DataSegment” implementation in this iteration of WATLAS, but it is a

bit more readable. However, like the current ”DataSegment” implementation, it re-

quires type casting when retrieving the value from the Dictionary. Unlike the current

implementation it does not store additional data originally exposed in the ATLAS

DECLARE statement. In the graphic, note that the ”Decimal” cast is required. In

Chapter 7, we discuss an implementation that has the potential to solve this problem.
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Chapter 7

Conclusions and Future Work

There is much work yet to be done to WATLAS, but it has a solid foundation from

which to build. This chapter will expose some strategies on how move forward. This is

not a comprehensive list, but it is a starting point. If the TPS world began to embrace

this product, this list would doubtless grow to a much larger size. In conclusion,

thoughts on how well we addressed our research questions will be provided.

7.1 Improving the DataSegment Design

We have delivered a solution that we anticipate will need improving as all software

projects do. After describing some possible resolutions to the DataSegment Design,

we will now consider a solution than seems to resolve all the issues introduced in its

implementation.

A character-for-character substitution for the offending characters with lower-case

symbols solves the problem and is guaranteed to not cause name clashes because

ATLAS does not support lower-case characters. This is the easiest substitution and

results in the most ”readable” C# source code output. It is similar to the approach

displayed in Figure 6.2, but it is far more abbreviated. In Figure 7.1, there is a

simple character-for-character substitution. This modification was easy enough to

implement, that it has been included in the source code generation routines. It solves



Figure 7.1: Fully Abbreviated Variable Name Translation Approach

all three problems; the ”DataSegment” complexity goes away, the lengthy C# variable

name is shortened to the same length as the ATLAS variable name, and the need to

”cast” return types is no longer necessary for simple data retrieval.

7.1.1 Overloading Return Types

In this section, the author is only going to summarize an observation that was made

as a result of delving into compiler development. Prior to this thesis, I had wondered

why overloaded methods never allow overloading of the return type of the method. A

quick search on this revealed that there are some languages that support return type

overloading (Swift and Ada). 1 But the majority of object-oriented languages do not

provide this capability. In the cited article, a number of reasons are provided. But

the development of the transpiler provided the most illumination for me as to why

this is the case.

Referring again to Figures 6.1 and 6.3 one can see that casting is required to

obtain the value of a variable from the ”DataSegment” and the Dictionary. The

Rascal code generation routines would not have generated this code in this manner.

1https://softwareengineering.stackexchange.com/questions/317082/why-isnt-the-overloading-
with-return-types-allowed-at-least-in-usually-used-l
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In fact, an issue with a JAR file upgrade in the middle of this project broke the Pre

and Post Processor, and for this reason, CALCULATE statements were not included

in the the ATLAS sample input. But, had they been, the Post-Processor would

have had to insert the cast expression similar to the [AssetType] post-processing

that occurs for the OUTPUT statements. And the post-processor would have had

the additional responsibility to keep track of the data type so that it could insert

the proper cast clause. The reason is because the Rascal code generator does not

keep track of the data type, at least not in the current WATLAS implementation.

Therefore, unless the ”DataSegment.Get()” supported overloaded return types, then

the code generator would have to cast the returned value. Since overloaded return

types are not supported in C#, the responsibility would have been either in the code

generation routines or the post processor. While that is not impossible to accomplish,

it is a heavy lift for this project given the time constraints.

What this means is that overloaded method signatures are relatively easy for a

code generator to support because they state the variable type in the declaration. The

compiler just needs to ensure that the overloaded signature exists and the decision of

which method to call can be made at compile time. But in contrast, for an overloaded

return type to be supported, the decision is made at run time as to how and with

which specific ”type” the variable’s memory location will be populated. The only

thing the compiler knows is that it is an object. Only the run-time knows the type of

the variable it is returning. For the compiler to support this, the language must have

strong static type implementations. At compile time, the return type is ambiguous

without strongly typed languages. And while C# is a strongly typed language, it

does support overriding through the implementation of casts. Nevertheless, the cast

must be valid or a run-time exception will be thrown.
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7.1.2 Constraint Solver Solution

After further investigation, it became clear that this is an instance of a known result

for prior work on type systems for programming languages. [3] ”In mathematics as

in programming, types impose constraints that help to enforce correctness. Typed

versions of set theory, just like typed programming languages, impose constraints on

object interaction that prevent objects from inconsistent interaction with other ob-

jects”. [3] Overloaded return types complicate type checking. Overloading argument

types which provide deduction of variable types from method signatures (i.e. their ini-

tialization declaration) causes all of the ”type” information to flow up the syntax tree.

But allowing ”type” information to travel up and down the syntax tree by allowing a

variable’s type to be determined from its usage requires a constraint solver in order

to determine the type. Grabmuller has created just such a constraint solver using the

Hindley-Milner type system, but his implementation was created for Haskill. [6] The

practical implications of this for WATLAS would mean that our transpiler would need

to implement type-checking at translation time and cast ”DataSegment.Gets” return

values. So, for this reason and other non-functional requirements like readability and

maintainability, we believe the new implementation explained in subsection 7.1 is the

best path forward to support these requirements.

7.2 Benchmark Analysis of WATLAS

One of the most important things that a business who relies on software development

can do is to establish a software performance benchmarking system. This is used to

determine how a system performs when tested under a particular workload. 2 Sparr,

Fox and Song have noted that ”the use of Commercial-Off-The-Shelf (COTS) operat-

2https://www.castsoftware.com/glossary/software-performance-benchmarking-modeling
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ing systems in newer generations of Automatic Test Equipment (ATE) has introduced

challenges that did not exist with legacy ATE. Unfortunately, COTS instruments and

ATE operating systems do not have well documented test sequence execution time.”

[13] For mission-critical systems like avionics testing systems, the performance of the

software is very important. As Colonel Jessup said in ”A Few Good Men”, ”we follow

orders, or people die”. If avionics systems do not perform as they should, human life

can be put in jeopardy.

In the cited work, the authors state that their integration and regression team

targeted critical avionics systems, RTCASS Self Maintenance and Test (SMAT), RT-

CASS Calibration (CAL) software, and a selection of other TPSs representative of

test programs that had a high likelihood of being effected by an Engineering Change

Proposal (ECP). This kind of analysis is not new in the TPS world, and TPS de-

velopers have at their disposal some tools developed in-house to aid their analysis.

”Prior regression testing had focused on the measured values and whether the test

passed or failed. While this method suffices for end-to-end go chain runs in the case

where one hundred percent of the population is tested, it may not expose problems

when limited samples are tested and ignores diagnostic testing completely. During

the initial integration of RTCASS on Windows 2000, the software developers embed-

ded code in the run-time that logs instrument execution times to a file that is stored

on disk and can be accessed at a later time”. An example of that run time analysis

is provided in Figure 7.2.

WATLAS is designed in such a way that providing this level of support is a triv-

ial matter. Run time logs that write timing events to a disk file are very easy to

implement. Due to the fact that WATLAS runs under its own discrete framework,

an enhancement to that framework could be quickly implemented that would ”log

instrument execution times to a file that is stored on disk and can be accessed at a
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Figure 7.2: Run-time Diagnostics Example.
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later time”. Assembling that logging data in the exact same format would not be dif-

ficult. Note how the analysis provides results by hardware asset, by PROCEDURAL

statement, and by elapsed time with average results. WATLAS’s AssetManager class

enforces every asset’s adherence to a standard implementation by ensuring all assets

inherit from the ”Asset” interface. That interface could be enhanced to include a

”Log();” method that could ”log instrument execution times to a file that is stored

on disk and can be accessed at a later time”. That logging mechanism could either be

called by the TPS developer at their discretion by adding a single line of C# code, or

the Rascal routines could guarantee that it is called by implementing that single line

of C# code in the Rascal code generation routine. Either way, the time to implement

this modification in WATLAS is not significant at all.

7.3 Conclusions

In our introduction in Chapter 1, we asked in RQ1, ”what existing work has been done

on providing modern support for legacy languages, including ATLAS?” For RQ2, we

asked ”what are the challenges to providing support for ATLAS on Windows and

how well do existing solutions handle these challenges?” Finally, in RQ3, we wanted

to know ”how well does WATLAS address these challenges?”

To address existing work to provide modern support for legacy languages including

ATLAS, we identified significant product offerings from the industrial military com-

plex like Boeing, Lockheed Martin, and Northrop Grumman that provide a robust

level of support for ATLAS on Windows, but at a very high cost. There is a private

sector offering from Astronics that provides support very similar to WATLAS’s CASS

Station Emulator. We also showed that there have been previous efforts to migrate

legacy languages for military applications that were successful (JOVIAL2C) and some
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that were not (JOVIAL to Ada).

To uncover the challenges to providing support for ATLAS on Windows, we found

that one of the most significant challenges is not technical, but it is a challenge of find-

ing talent willing to work on legacy systems in general. The nature of avionics testing

and the requirement to connect multiple automated test equipment assets presents a

hardware challenge that make comprehensive testing difficult. ATLAS further com-

plicates translation of the language due to its lexical and syntactical constructions.

We answered the question of how well WATLAS addresses these challenges by

demonstrating that WATLAS is a viable alternative worthy of further investigation

and development. The choice to utilize Rascal for its parsing and trans-formative

capabilities was the correct choice. It provides the level of flexibility in the evaluation

of legacy languages that they require while providing the ability to transpile them

into constructions that modern day languages share. Finally, the tight integration of

the entire WATLAS framework makes these tools easy to use, easy to modify, and

ultimately very reasonable to support.
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Appendix A

Appendix A - Online Links and Parsing Rules by ATLAS Statement

Type

A.1 Links to the Online Repositories

The following tools and repositories are enumerated below for those who might be

interested in further research into this subject matter.

1) All of the Rascal files can be found on Github 1 at the link in the footnotes.

2) This thesis used Eclipse version 2020 06 RCP which can be downloaded at the

link 2 in the footnotes.

3) This thesis used the latest stable release of Rascal which can be downloaded at

the link 3 in the footnotes.

4) This thesis used Microsoft Visual Studio 2017 for all C#-related programming

tasks which can be downloaded at the link 4 in the footnotes.

5) The C# framework, Pre and Post Processor, WATLAS project template, and

many useful projects that were used to assess the competing technologies can be found

in Azure 5 at the link in the footnotes. In addition to the C#-related projects there

is a folder at this link where the video presentation has been stored as well as the

1https://github.com/ecu-pase-lab/ATLAS
2https://www.eclipse.org/downloads/packages/release/2020-06/r/
3https://www.rascal-mpl.org/start/
4https://my.visualstudio.com/Downloads
5https://dev.azure.com/stuartrivenbark/ATLAS Rascal/



PowerPoint presentation.

A.2 Parsing Rules Examples by ATLAS Statement Type

During the first phase of this thesis in the Fall of 2018, the author compiled a list

of parse commands that exemplified all of the statements from an existing ATLAS

program. This was performed to test the robustness and utility of the lexical rules and

parsing grammar structures that might be encountered in a typical ATLAS program.

From this sample, the PrePostProcessor discussed in Chapter 4 could be used to

automate translation of an existing ATLAS program without the need for parsing

statements by hand. A small sample of each ”Statement Type” is included here so

that the reader can appreciate some of the effort involved in developing and testing

a grammar in Rascal as it pertains to native ATLAS syntax.

import lang::atlas::modules::atlassyntax;

import ParseTree;

parse(#BEGIN Statement, "000000 BEGIN, ATLAS PROGRAM ’18D4305-2’ $");

parse(#INCLUDE Statement, "000100 INCLUDE, NON-ATLAS MODULE ’L2 CHAIN’ $");

parse(#REQUIRE Statement, "000315 REQUIRE, ’DMM-RES’, SENSOR (RES), IMPEDANCE, CAPABILITY, RES RANGE

0 OHM TO 300 KOHM, CNX HI LO VIA $");

parse(#DECLARE Statement, "000600 DECLARE, GLOBAL, BOOLEAN, STORE, ’TEST-FAILED’, ’ASYNCHRONOUS-FLAG’,

’DISCARD-DATA’, ’COMPLETION-FLAG’, ’L200-ALREADY-INITIALIZED’ $");

parse(#DECLARE Statement, "000600 DECLARE, GLOBAL, BOOLEAN, STORE, ’TEST-FAILED’, ’ASYNCHRONOUS-FLAG’,

’DISCARD-DATA’, ’COMPLETION-FLAG’, ’L200-ALREADY-INITIALIZED’ $");

parse(#DEFINE Statement , "001200 DEFINE, ’CLEAR SCREEN’, EXTERNAL, PROCEDURE $");

parse(#END DEFINE Statement, "011205 END, ’CLEAR SCREEN’ $");

parse(#DEFINE Section , "001260 DEFINE, ’DISPLAY GRAPHICS’, EXTERNAL, PROCEDURE (’SID-GRAPH’) $ 001265

DECLARE, MSGCHAR, STORE, ’SID-GRAPH’, 12 CHAR $ 001270 END, ’DISPLAY GRAPHICS’ $");

parse(#DEFINE Section, "001500 DEFINE, ’RUN COM FILE G’, GLOBAL, PROCEDURE (’COM FILE NAME’,’ASYNCHRONOUS-FLAG’)

$ 001505 DECLARE, MSGCHAR, STORE, ’COM FILE NAME’, 80 CHAR $ 001510 DECLARE, BOOLEAN, STORE, ’ASYNCHRONOUS-FLAG’

$ 001515 PERFORM, ’RUN COM FILE’, ’COM FILE NAME’, ’ASYNCHRONOUS-FLAG’ $ 001520 END, ’RUN COM FILE G’ $");

parse(#DEFINE Section, "002100 DEFINE, ’END ENTRY MSG’, GLOBAL, PROCEDURE $ 002105 PERFORM, ’CLEAR SCREEN’

$ 002110 IF, ’.OVERRIDES’ NE 0, THEN $ 002115 CALCULATE, ’.RETSTAT’ = -1 $ 002215 END, IF $ 002220 PERFORM,

’CLEAR SCREEN’ $ 002225 END, ’END ENTRY MSG’ $");
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parse(#DEFINE Section, "011200 DEFINE, ’CLEAR SCREEN’, EXTERNAL, PROCEDURE $ 011202 REMOVE, ALL $ 011204

REMOVE, ALL $ 011205 END, ’CLEAR SCREEN’ $"); parse(#PROCEDURE Statement, "011005 PERFORM, ’STATNO TESTNO’,

’.STEP’, ’EP’ $");

parse(#PROCEDURE Statement, "011015 CALCULATE, ’REPEAT-ENABLED’ = TRUE, ’REPEAT-TEST’ = TRUE $");

parse(#PROCEDURE Statement, "011025 VERIFY, (RES INTO ’.MEASUREMENT’), IMPEDANCE USING ’DMM-RES’, NOM

8.56 KOHM UL 8.646 KOHM LL 8.474 KOHM, RES MAX 10 KOHM, CNX HI R1HI LO R1LO $");

parse(#PROCEDURE Statement, "023010 REMOVE, DC SIGNAL USING ’DCPSLVA2’, VOLTAGE 12.0 V, CURRENT MAX

12.5 MA, CNX HI J1-A59 LO J1-A57 $");

parse(#PROCEDURE Statement, "024010 APPLY, DC SIGNAL USING ’DCPSLVA2’, VOLTAGE 12.0 V, CURRENT MAX 12.5

MA, CNX HI J1-A1 LO J1-C1 $");

parse(#PROCEDURE Statement, "041012 FOR, ’J’ = 1 THRU 2, THEN $ 041014 PERFORM, ’CLEAR SCREEN’ $ 041078

END, FOR $");

parse(#PROCEDURE Statement, "041018 MONITOR, (VOLTAGE INTO ’.MEASUREMENT’), DC SIGNAL USING ’DMM-VDC’,

VOLTAGE MAX 34 V, CNX HI PROBE-HI LO PROBE-LO $");

parse(#PROCEDURE Statement, "041058 LEAVE, FOR $");

parse(#PROCEDURE Statement, "996040 COMPARE, ’.MEASUREMENT’, GT 0.0 $");

parse(#ENTRY Statement, "E049990 ’BEGIN TESTING’ $");

parse(#EXIT Statement, "E ’TERMINATE TPS’ $");

parse(#PROCEDURE Statement, "050000 OUTPUT, USING ’CRT’, DEPOSIT/WINDOW=TE TXT/CLEAR $");

parse(#PROCEDURE Statement, "050005 REMOVE, ALL $");

parse(#PROCEDURE Statement, "050010 OUTPUT, USING ’CRT’, ((T9,’HELLO WORLD...’)) ((T9,’ ’)) $");

parse(#PROCEDURE Statement, "050015 WAIT FOR, MANUAL INTERVENTION $");

parse(#PROCEDURE Statement, "050020 FINISH $");

parse(#TERMINATE Statement, "999999 TERMINATE, ATLAS PROGRAM ’18D4305-2’ $");
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