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Compound Coastal Water Events (CCWE) are a type of multi-hazard climate event

characterized by three different types of flooding: Tidal, Fluvial, and Pluvial. To differentiate

between these types, tidal is caused by extreme tide conditions, fluvial is caused by rivers or

streams overflowing their banks, and pluvial is caused by extreme precipitation. Through an

in-depth analysis of the current literature, it does not appear that research has been taken

to analyze the relationship between all these drivers.

Eastern North Carolina is a suitable location to research CCWE given its climatologic

and research setting. Estuary environments are particularly at risk of compound flooding due

to the exposure posed by the geography of river systems meeting the open ocean. Eastern

North Carolina is known for having the second largest estuary systems in the United States.

Tropical cyclones are often a cause of all three of these CCWE drivers occurring at the same

time and location. North Carolina, on average, has a hurricane landfall every 5 to 7 years,

and is often impacted by hurricane remnants that make landfall in another state.

When stakeholders prepare for these events the current hazard assessment tools are uni-

variate or bivariate. Examples being floodplain maps primarily considering fluvial flooding

and tidal inundation maps predominantly considering tidal flooding. Furthermore, there

is little integration of precipitation which represents the pluvial aspects and is actively re-

quested by stakeholders. A more effective approach would be to consider all three compo-

nents.

This study seeks to further understand the relationship between drivers of CCWE that



occur in Eastern North Carolina. Analyses of three different locations were conducted to

determine if there is a regionality of these relationships. The proposed methodology includes

two processes. The first is a trivariate copula-based approach using the proxies of precipi-

tation, stream discharge and tidal gauge data for CCWE drivers. The second process is to

compare data sourced from a focus group with practitioners who respond and prepare for

CCWE.

Through utilization of copula models, simulated CCWE were created to create return

periods from an initially limited data set. Trivariate “AND”-based return periods are studied

specifically as they quantify the chance that all drivers occur and meet or exceed a certain

measurement. All three case studies have statistically similar distributions of trivariate

return periods of CCWE though the southern location has a greater amount of lower return

period values. Lower return period values indicate a higher probability of occurrence further

denoting a higher risk environment.

In interpreting the qualitative data sourced from a focus group consisting of decision mak-

ers within Eastern North Carolina, further information about CCWE was revealed building

upon the statistical analysis. In the investigation of survey results and transcribed discus-

sions, the decision makers perceptions of the CCWE drivers coincided with the research

motivations and copula simulated results, emphasizing the importance of precipitation as

an important driver of CCWE. Participants noted how they see the compounding nature of

these events within their constituency, and they view that they are at a high level of risk to

these events. Combining the physical and social science data provided a better understand-

ing of CCWE from a risk perspective and a decision-making context. Future work could

delve into further temporal and spatial scales considering more study locations as well as

the seasonality of events. CCWE are a phenomenon that is extremely relevant to vulnerable

coastal communities and further understanding of it will be able to benefit those who reside

in these regions.





Analyzing Drivers of Compound Coastal Water Events (CCWE) with Copulas:

A Case Study in Eastern North Carolina

A Thesis Presented to

the Faculty of the Department of Geography, Planning & Environment

East Carolina University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Geography

By

Kelley De Polt

December, 2021



© Kelley De Polt, 2021



Analyzing Drivers of Compound Coastal Water Events (CCWE) with Copulas:

A Case Study in Eastern North Carolina

By

Kelley De Polt

APPROVED BY:

Director of Thesis

Scott Curtis, PhD

Committee Member

Burrell Montz, PhD

Committee Member

Anuradha Mukherji, PhD

Committee Member

Rosasa Ferreira, PhD

Chair of the Department of

Geography, Planning, and Environment

Jeff Popke, PhD

Dean of the Graduate School

Paul J. Gemperline, PhD



Acknowledgements

I would like to first acknowledge and give thanks to my advisor Dr. Scott Curtis for

all the advice and leadership throughout the creation of this thesis project. I am greatly

appreciative of the opportunity to continue my studies and work on this impactful project.

This project introduced me into the world of multi-hazard research and the importance it has.

I hope to participate in this type of research further throughout my career, and I am excited

to see where it goes. I would also like to thank Dr. Burrell Montz, Dr. Rosana Ferreira,

and Dr. Anuradha Mukherji for their guidance on my thesis committee and providing vital

comments and edits.

I would not have been able to accomplish this work without the encouragement by all

of my family, friends, and colleagues within the Department of Geography, Planning, and

Environment, so I would like to sincerely thank them as well. During the COVID-19 pan-

demic, which I completed my entire program within, there were many unknowns and changes.

Support by all previously mentioned eased many difficulties that may have occurred.

This study was funded by NOAA Coastal and Ocean Climate Applications (COCA)/

Sectoral Applications Research Program (SARP) “Assessing and Communicating Economic

Impacts and Risks Associated with Water Resource Management Challenges Along the Coast

(joint competition).



Table of Contents

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Hazards and Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Multi-Hazard Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Floods in Coastal Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Fluvial Floods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Pluvial Floods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.3 Tidal Floods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.4 Compound Coastal Water Events . . . . . . . . . . . . . . . . . . . . 7

2.3.5 Historical Flood Events in Eastern North Carolina . . . . . . . . . . . 8

2.4 Approaches to Flood Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Hazard Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Stakeholder Flood Response . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 DATA AND METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Study Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Stream Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 Tide Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.4 Selection of Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



3.3.1 Designing Compound Coastal Water Events . . . . . . . . . . . . . . 22

3.3.2 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Univariate Analysis: Fitting Marginal Distributions . . . . . . . . . . 29

3.3.4 Assessing Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.5 Return Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.6 Focus Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Marginal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Northern Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Central Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Southern Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Trivariate Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Northern Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Central Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Southern Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Return Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Univariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Trivariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.3 Regional Trivariate Comparison . . . . . . . . . . . . . . . . . . . . . 61

4.5 Focus Group Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.1 Relationships Between CCWE Drivers Perceptions . . . . . . . . . . 65

4.5.2 Flood Hazard Perceptions . . . . . . . . . . . . . . . . . . . . . . . . 65

5 DISCUSSION AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Implications of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



5.3 Limitations of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Contributions to Knowledge and Future Work . . . . . . . . . . . . . . . . . 72

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

APPENDIX A: COMPOUND COASTAL WATER EVENT DATA . . . . . 82

APPENDIX B: PRE-FOCUS GROUP SURVEY . . . . . . . . . . . . . . . . 85

APPENXID C: EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

APPENDIX D: UNIVARIATE DISTRIBUTIONS GOODNESS-OF-FIT . 94



LIST OF TABLES

Table 3.1 Northern Case Study: Station Descriptors . . . . . . . . . . . . . . . . 18

Table 3.2 Northern Case Study: Station variable characteristics . . . . . . . . . . 19

Table 3.3 Central Case Study: Station descriptors . . . . . . . . . . . . . . . . . 20

Table 3.4 Central Case Study: Station variable characteristics . . . . . . . . . . . 21

Table 3.5 Southern Case Study: Station descriptors . . . . . . . . . . . . . . . . . 21

Table 3.6 Southern Case Study: Station variable characteristics . . . . . . . . . . 22

Table 4.1 Best Fit Marginal Distributions. . . . . . . . . . . . . . . . . . . . . . . 38

Table 4.2 Best Fit Marginal Distributions. . . . . . . . . . . . . . . . . . . . . . . 41

Table 4.3 Best Fit Marginal Distributions. . . . . . . . . . . . . . . . . . . . . . . 44

Table 4.4 Northern Study Area: Station variable-pair correlations . . . . . . . . 46

Table 4.5 Central Study Area: Station variable-pair correlations . . . . . . . . . 46

Table 4.6 Southern Study Area: Station variable-pair correlations . . . . . . . . 46

Table 4.7 Three-dimensional copula goodness-of-fit measures and copula param-

eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 4.8 Three-dimensional copula goodness-of-fit measures and copula param-

eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 4.9 Three-dimensional copula goodness-of-fit measures and copula param-

eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 4.10 Three-dimensional copula goodness-of-fit measures and copula param-

eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 4.11 Univariate return period (T ; years) derived from best-fit distributions

for CCWE flood drivers in the northern case study. . . . . . . . . . . . 54

Table 4.12 Univariate return period (T ; years) derived from best-fit distributions

for CCWE flood drivers in the central case study. . . . . . . . . . . . . 55

Table 4.13 Univariate return period (T ; years) derived from best-fit distributions

for CCWE flood drivers in the southern case study. . . . . . . . . . . . 56



Table 4.14 Trivariate return period (years) for CCWE flood drivers in the northern

case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 4.15 Trivariate return period (years) for CCWE flood drivers in the central

case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 4.16 Trivariate return period (years) for CCWE flood drivers in the southern

case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 4.17 Trivariate return period quantiles for distributions of trivariate return

periods for all case study areas. . . . . . . . . . . . . . . . . . . . . . . 62

Table 4.18 Two-sample kolmogorov-smirnov test for distributions of trivariate re-

turn periods for all case study areas. . . . . . . . . . . . . . . . . . . . 63



LIST OF FIGURES

Figure 3.1 Location of case study areas in Eastern North Carolina. . . . . . . . . . 14

Figure 3.2 Diagram of stream channel cross section with subsections and equations.

From USGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.3 Example of tidal gauge station at Duck, North Carolina. From NOAA

Tides and Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.4 Visualization of Tidal Datums. From COMET MetEd. . . . . . . . . . 17

Figure 3.5 Selected Stations within the Northern Case Study. . . . . . . . . . . . . 18

Figure 3.6 Scatterplot of in-situ station measurements for each annual CCWE in

the Northern Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.7 Selected Stations within the Central Case Study. . . . . . . . . . . . . . 20

Figure 3.8 Scatterplot of in-situ station measurements for each annual CCWE in

the Central Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.9 Selected Stations within the Southern Case Study. . . . . . . . . . . . 21

Figure 3.10 Scatterplot of in-situ station measurements for each annual CCWE in

the Southern Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.11 Procedure for multivariate frequency analysis via copulas. From Zhang

and Singh (2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.12 Representation of a copula. From Favre et al. (2004). . . . . . . . . . 27

Figure 3.13 Photo of focus group table during workshop held February 26, 2020. . 32

Figure 3.14 Photo of poster hung on wall during workshop held February 26, 2020. 34

Figure 4.1 Inverse gaussian distribution visual goodness-of-fit measures for precip-

itation in the northern case study. . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.2 Generalized extreme value distribution visual goodness-of-fit measures

for tide level in the northern case study. . . . . . . . . . . . . . . . . . 39

Figure 4.3 Gamma distribution visual goodness-of-fit measures for stream discharge

in the northern case study. . . . . . . . . . . . . . . . . . . . . . . . . . 39



Figure 4.4 Inverse gaussian distribution visual goodness-of-fit measures for precip-

itation in the central case study. . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.5 Generalized extreme value distribution visual goodness-of-fit measures

for tide level in the central case study. . . . . . . . . . . . . . . . . . . 42

Figure 4.6 Weibull distribution visual goodness-of-fit measures for stream discharge

in the central case study. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.7 LogLogistic distribution visual goodness-of-fit measures for precipitation

in the southern case study. . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 4.8 Inverse Gaussian distribution visual goodness-of-fit measures for tide

level in the southern case study. . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.9 Birnbaum Saunders distribution visual goodness-of-fit measures for stream

discharge in the southern case study. . . . . . . . . . . . . . . . . . . . 45

Figure 4.10 Scatterplot of simulated CCWE events created from the 3-dimensional

frank copula within the northern case study. . . . . . . . . . . . . . . . 48

Figure 4.11 Scatterplot of simulated CCWE events created from the 3-dimensional

frank copula (grey asterisks) and actual CCWE events (black circles)

within the northern case study. . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.12 Scatterplot of simulated CCWE events created from the 3-dimensional

frank copula within the central case study. . . . . . . . . . . . . . . . . 50

Figure 4.13 Scatterplot of simulated CCWE events created from the 3-dimensional

frank copula (grey asterisks) and actual CCWE events (black circles)

within the central case study. . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.14 Scatterplot of simulated CCWE events created from the 3-dimensional

Frank Copula within the southern case study. . . . . . . . . . . . . . . 52

Figure 4.15 Scatterplot of simulated CCWE events created from the 3-dimensional

Frank Copula (grey asterisks) and actual CCWE events (black circles)

within the southern case study. . . . . . . . . . . . . . . . . . . . . . . 53



Figure 4.16 Comparing empirical cumulative distribution functions of trivariate re-

turn periods for all case study areas. . . . . . . . . . . . . . . . . . . . 64

Figure 4.17 Pre-focus group question: In the past 10 years, have these floods become

more or less frequent? . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.18 Pre-focus group question: In the past 10 years have these floods become

more or less damaging? . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



1 INTRODUCTION

Most major weather and climatic events are composed of multiple drivers with compound-

ing effects (Zscheischler et al., 2018). These events can be broadly defined as compound

events. One form of compound events that impacts Eastern North Carolina is Compound

Coastal Water Events (CCWE). Flooding in coastal regions typically includes three forms:

tidal, fluvial, and pluvial. To differentiate between these types: tidal floods occur during

exceptionally high tide events. Fluvial flooding occurs when the water levels in a body of

water overflow onto the surrounding land. Lastly, pluvial floods occur when extreme rainfall

creates a flood independent of an overflowing water body. When all of these flood types occur

in the same spatial and/or temporal location, it is defined as a CCWE. Tropical cyclones,

such as Hurricane Florence or Hurricane Matthew, are examples of events where all flood

types occurred concurrently to result in a CCWE.

In preparation for tropical systems, and their resulting flood impacts, common hazard

assessments only account for one driver at a time. For example, flood plain maps used in

estimation of flood insurance only account for the fluvial (i.e., river-based) flooding extent.

Another hazard assessment approach, maps to assess possible storm surge inundation based

upon tropical cyclone intensity, will only assess tidal flooding. There is often little integration

between these maps and the additional hazards posed by extreme rainfall. Hazard risk

maps of pluvial (i.e., precipitation-based) flooding are actively requested by planners and

emergency managers. To prepare and understand compound events, including CCWE, it is

important for researchers and practitioners to note drivers do not occur in isolation but are

strongly coupled (AghaKouchak et al., 2018) more effectively.

This thesis investigates the relationships between drivers of CCWE using the proxies

of extreme precipitation, stream discharge, and tidal height above mean lower low water

(MLLW) for three locations in Eastern North Carolina. A methodology which allows trivari-

ate analysis is through the use of copulas which are multivariate distribution functions used

1



for associating dependence between random variables. Furthermore, content from a focus

group will be investigated to determine instances where decision makers referenced aspects

of CCWE. The results from the statistical analyses are the compared with the focus group

data to determine the extent to which emergency managers and planners in the study region

expect and understand the compounding of flood risk in their communities. It is important

to determine which variables are particularly worrisome for decision makers. Results will

then be conveyed to the focus group participants following the completion of the project.

Through being more spatially comprehensive and incorporating meteorological information

and social science information to create a mixed methods approach, advancements are made

in the scope of risk assessments. Through these analyses a better understanding of CCWE

will be revealed, and the following research questions are explored:

1. What is the relationship between tidal, fluvial, and pluvial based flood risk within

Eastern North Carolina compound coastal water events?

2. Is there a regionality to the effects of compound coastal water events within Eastern

North Carolina?

3. How are perceptions held by decision makers in Eastern North Carolina related to

compound coastal water events?

2



2 LITERATURE REVIEW

This section introduces an overview of previous literature on various topics relating to

CCWEs. First, this literature review defines the concepts of hazards, risk, and multi-hazard

events. Additionally, the concept of CCWEs is introduced and then related to the study

region of Eastern North Carolina. Finally, the last section covers stakeholder approaches

currently used in anticipation and response to flood hazards.

2.1 Hazards and Risk

Here some terms used within the risk communication sphere are defined which are refer-

enced throughout this study. First, risk is the likelihood of harm or loss occurring, which is

influenced by the environment’s exposure and level of vulnerability. Jaeger et al. (2001) also

defines risk as a situation or event in which something of human value is put in a vulnerable

position and the outcome is uncertain. Risk is related to the concept of uncertainty, as a

focus of the quantification of risk is within return periods or probabilities of occurrence. The

study and analysis of risk looks at the frequency or chances at which things can go wrong and

the expected impacts. The impacts which occur are influenced by hazards and vulnerability

of the area and people affected. Hazards are the potential in events occurring and events are

the cause of or means by which harm and loss may occur (Tierney, 2014). Another term,

resilience is something which needs to be considered together with the concept of risk, as

both risk and resilience arise from social orders and structures. Resilience is the ability for

social entities to manage the impacts of events and recover quickly. This includes coping,

adapting, and recovering from events (Tierney, 2014). In summary, risk is the likelihood of

harm or loss from a hazard. Areas at risk may feel a greater impact depending on their level

of vulnerability and resilience.



2.2 Multi-Hazard Events

When adverse events take place, it is not common that only one hazard or driver occurs.

It is important in the consideration of mitigating impacts of these events to realize the

multivariate aspects as several non-independent variables may be of interest (Salvadori et al.,

2016). Multi-hazard events can include compounding, cascading, and consecutive hazards.

Each of these requires a different approach to research methods.

Compound events can be defined as (1) two or more extreme events occurring simulta-

neously or successively; (2) the combination of extreme events with underlying conditions

that amplify the impact; or (3) a combination of events that are not themselves extreme

but lead to an extreme event when combined (Sadegh et al., 2018). Compound weather

and climate events have four themes: preconditioned, multivariate, temporally compound-

ing, and spatially compounding (Zscheischler and Fischer, 2020). Impacts from a compound

event depend on the nature and number of hazards, the spatial and temporal locations, the

relationships between the hazards, and perspectives of stakeholders involved (Leonard et al.,

2014).

In the scope of multi-hazard climate events, they are composed of climatic and weather

phenomenon-based drivers that may span similar spatial and temporal scales. It has been

recognized within the literature that most major weather and climate-based events are caused

by compounding effects of multiple hazards (Zscheischler et al., 2018). The combination

of multiple climatic drivers contributes to both societal and environmental impacts. The

impacts of these events can be mainly due to one of the drivers being in an extreme state,

though it is more common that the combination of the drivers which may not be in an

extreme state led to an extreme impact.

A challenge with understanding and anticipating compound events is that the relation-

ships between hazards or drivers can make the estimation of event probability and intensity

more difficult as opposed to considering all separately. Though if the drivers are not con-
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sidered together, that may lead to an underestimation of risk. In accounting for all drivers

and their dependencies a better understanding of their nature and predictability will arise.

Identifying the dependencies between the different hazards is an important aspect in the

study of these events (Zuccaro et al., 2018).

There are numerous reasons why compound events have come to the attention of the hy-

drologic and climatic communities. One reason is the rising awareness of the non-stationarity

of the climate system, which also means the need to better understand interactions between

drivers of events (Leonard et al., 2014). Another reason is the argument for a paradigm shift

to incorporate compound events into climate impact analysis. This can be done by embed-

ding these events into the general risk framework: the linkage between hazards, vulnerability,

and exposure. Using an impact-centric perspective in a risk framework allows guidance for

identifying the most relevant hazards. A risk framework is not the only framework which

will need adoption. This consideration of compound events will also lead to a new climate

research analysis framework where hazards will need to be considered with all drivers consid-

ered together (Zscheischler et al., 2018). By knowing the relationships of processes driving

compound events and the probabilities of occurrence, mitigation of these high-impact events

can be improved (Wahl et al., 2015).

2.3 Floods in Coastal Settings

A flood is the overflowing of the normal confines of a stream or other body of water, or

the accumulation of water over areas that are not normally submerged. Floods include river

(fluvial) floods, flash floods, urban floods, pluvial floods, sewer floods, coastal floods, and

glacial lake outburst floods. In coastal regions, flooding is a compound event primary caused

by sea sources, inland sources, and if close to a river there could be river sources (Archetti

et al., 2011).
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2.3.1 Fluvial Floods

Fluvial floods, also known as flood plain flooding, riverine flooding, or over-topping banks,

occur when the capacity of a river or stream is exceeded. There are seasonal and intra-annual

variations in river flow resulting in extremely high flow periods, though fluvial floods are

mainly influenced by excess rainfall within the river’s basin (Karamouz et al., 2013). This

rainfall can result in rivers rising, even if the rains are farther up the watershed. A river’s

response to rainfall is dependent on characteristics of the rainfall and the river itself, an

example being the rise and fall rate in larger rivers is much slower than in smaller rivers

(Karamouz et al., 2013).

2.3.2 Pluvial Floods

Pluvial flooding is a type of flooding caused by precipitation. It can also be known

as storm water, flash flooding, or ponding. Pluvial flooding is common within flat areas

where the runoff produced exceeds the storage capacity of the ground, canals, lakes, or

other infrastructure. In this type of pluvial flooding puddles or ponding on land. Sources

of precipitation include smaller-scale precipitation systems such as storm scale or mesoscale

systems (Teegavarapu, 2012). A type of storm scale system is an isolated thunderstorm

which can cause local flash flooding from heavy localized rainfall. Mesoscale systems are

not as isolated as storm scale systems. They are more organized into lines or bands or into

clusters of individual storms causing broader flash flooding. Tropical systems can be seen as

a mesoscale system (Hirschboeck et al., 2000).

2.3.3 Tidal Floods

Tidal flooding may also be known as king tide, storm surge, high tide, or coastal flood-

ing. Extreme high tide alone is able to cause widespread coastal flooding (Castrucci and

Tahvildari, 2018). Sea surge is defined within the meteorologic sphere as the difference in
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water level between the observed sea level and the predicted astronomical tide. Storm surge

is typically caused by water carried by storm winds toward the coast. These storm winds

are accompanied with tropical cyclones causing both long and short-wave surges that affect

the open ocean, bays, rivers, streams, inlets, and low-lying land near the sea (Karamouz

et al., 2013). Storm surges are the main cause of coastal flooding which can lead to multiple

adverse impacts such as loss of human lives, damage to infrastructure, and disruption of

industry (Resio and Westerink, 2008).

2.3.4 Compound Coastal Water Events

Within coastal environments flooding drivers are strongly interconnected. These drivers

may include river flow, precipitation, coastal water level, surge, and wind speed. Considering

precipitation and tidal conditions together, when high tidal levels and heavy precipitation

co-occur, the potential for flooding in low-lying areas is greater than in isolation. Research

has shown that sea level rise has caused the increase in minor flooding events composed of

the drivers of high tides and precipitation (Ezer and Atkinson, 2014). Precipitation also

increases the flood risk at river confluences (Zscheischler et al., 2018). Its contribution can

be especially seen in the river tributaries that then amplify the mainstream flow (Chen

et al., 2012). Other factors which can play a role in creating impactful flood events include

topography and land cover types. In other portions of river basins, such as the tidal regions

also known as estuarine environments, flooding can occur because of high river flow, high sea

levels, or the combination of the two (Buschman et al., 2019). Compound flooding hazards

might be exacerbated in the future due to the effects of climate variability on sea level rise

(Wahl et al., 2015; Bevacqua et al., 2019).

The combination of all these drivers makes coastal areas especially vulnerable to flooding.

The combination of all these drivers also makes this event a CCWE. Tropical cyclones

are prime examples of all these flood sources being produced concurrently. Precipitation

associated with the cyclone may subsequently result in river runoff, while the low pressure
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at the center may act to raise the tidal level.

Recent approaches to study aspects of compound flooding include the analysis of com-

pound flooding in estuaries from river discharge and storm surge with multiscale modeling

approach (Olbert et al., 2017; Kumbier et al., 2018), the drivers of precipitation and river

discharge using a 2-dimensional copula approach (Apel et al., 2016), using an analysis of

levee performance under fluvial (i.e., stream) and pluvial (i.e., precipitation) floods using

bivariate scenarios and stress-flow models (Jasim et al., 2020), storm surge and precipitation

on a continental and global scale (Wahl et al., 2015; Bevacqua et al., 2019), and lastly the

hazards from river discharge and storm surge drivers at a global scale (Couasnon et al.,

2020). Though to our knowledge there has not been a study involving the drivers pluvial,

fluvial, and tidal within the same analysis.

There is no set mathematical approach to defining CCWEs through multiple statistical

approaches have been performed. The common methodology includes examining the depen-

dence between proxy variables of flood hazard types (Bevacqua et al., 2019; Hendry et al.,

2019; Kew et al., 2013; Sadegh et al., 2018; Svensson and Jones, 2002, 2004; Wahl et al.,

2015; Ward et al., 2018; Wu et al., 2018; Zheng et al., 2013). Similar to this study recent

studies have used copulas to characterize the bivariate joint distribution and dependence

(Bevacqua et al., 2019; Ward et al., 2018).

2.3.5 Historical Flood Events in Eastern North Carolina

Within a span of twenty years, Eastern North Carolina has been impacted by three

devastating tropical cyclone-driven floods: Hurricanes Floyd, Matthew, and Florence, which

caused major impacts to water quality, biogeochemistry, and ecological conditions (Paerl

et al., 2019). October 8th, 2016, Hurricane Matthew made landfall in South Carolina as a

category 1 after a gradual decline from a category 5 classification (Stewart, 2017). Extreme

rainfall and flash flooding ensued within this storm given the occurrence of an extratropical

transition and pre-existing frontal boundary which amplified precipitation totals north of
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the center of the system. Matthew broke many precipitation records set in Eastern North

Carolina during Hurricane Floyd, which made landfall in North Carolina on September

16th, 1999 (Pasch et al., 1999). Nearly two years later, on September 14th, 2018, Hurricane

Florence made landfall in North Carolina as an upper-level category 1 storm (Stewart and

Berg, 2019). Freshwater flooding and storm surge were the primary hazards during this

storm, these being amplified by large precipitation totals. Florence exceeded Matthew’s

precipitation totals, specifically within a narrow swath of rainfall amounts exceeding 30

inches. Given these most recent extreme occurrences, there has been a focus of research on

impacted communities and how they should mitigate and respond to extreme flood events.

In an analysis of rainfall records for Coastal North Carolina since 1898, there was a period of

unprecedentedly high precipitation since the late-1990’s coinciding with these three events.

In the same study over the past 120 years there has been a trend toward increasingly high

precipitation associated with tropical cyclones (Paerl et al., 2019). This regime shift could

have major ramifications for hydrology, water quality, and flooding impacts.

2.4 Approaches to Flood Risk

2.4.1 Hazard Maps

Flood hazard or risk maps are important as precautionary measures as they serve as

a basis for spatial planning, local hazard assessment, emergency planning, and technical

protection measures (CITATION). There are different requirements and needs from various

user groups to be achieved by flood maps and web mapping services. One source of these

maps includes web services, which convey flood information which allows users to examine

flood extents and corresponding water depths along with real time gauge levels. In the

United States, common flood hazard assessment practices typically account for one driver

at a time, an example being either fluvial flooding (Alfieri et al., 2014; Dottori et al., 2016;

Hirabayashi et al., 2013; Ward et al., 2013, 2017; Winsemius et al., 2013, 2016) only or ocean
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flooding only (Brown et al., 2016; Hinkel et al., 2014; Muis et al., 2016; Vousdoukas et al.,

2018). Similarly, flood hazard mapping procedures for coastal water levels do not account

for factors such as river discharge or localized precipitation (Moftakhari et al., 2017). One

hazard assessment, regulatory flood hazard maps only model flooding with one of these

drivers (Federal Emergency Management Agency, 2020; Moftakhari et al., 2019) which causes

an inaccurate representation of flood hazard.

2.4.2 Stakeholder Flood Response

Emergency management can be defined as an effort to plan how to deal with disas-

ters in the most effective manner. Traditionally, emergency managers have confined their

activities to developing emergency response plans and coordinating the initial response to

disasters (National Research Council, 2011). This suggests that the profession is in charge

of administrative decisions and actions that anticipate events, reduce vulnerability, and ad-

dress the impacts of disasters. Emergency management is therefore related to many other

professions and areas of employment including but not limited to risk management, busi-

ness continuity planning, land-use planning, flood plain management, emergency services,

homeland security, and humanitarian assistance. Emergency management directors will be

needed to develop response plans to protect more people and property, and to limit the dam-

age from emergencies and disasters (McEntire, 2018). As the role of the emergency manager

evolves to address risk in all emergency management phases, emergency managers need tools

to understand how to assess hazards and reduce vulnerability (National Research Council,

2012).

Emergency planning is defined as a cycle of planning, training, exercising, and revision

that continues throughout the five phases of the emergency management cycle which include

preparedness, prevention, response, recovery, and mitigation (Blanchard, 2018). One purpose

of the planning process is to develop and maintain an up-to-date Emergency Operation Plan

(EOP). The key parts of an EOP assign responsibility to organizations and individuals for
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carrying out specific actions at projected times and places in an emergency that exceeds the

capability or routine responsibility of any one agency. Emergency planning is a team effort

and requires collaboration with personnel from other agencies and organizations. Building

an effective team takes time and effort as members go through several stages (Blanchard,

2018).

There has been a massive paradigm shift in flood risk management regarding the re-

sponsibility of the governing structure to both the governance and the public. The public

has historically placed their trust in public protection measures. This perception can lead

to the individual not taking actions for preparedness. Risk communication has broadened

focus to include not just information but also awareness. Flood risk communication is an

important aspect of flood protection for at-risk communities. The way flood risk is conveyed

to these communities has many forms, encompassing both one-way and two-way systems of

communication. Sharing accurate information regarding floods is incredibly important. If

risk is underestimated, then there may not be as much preparedness prior to an event or for

recovery.

2.5 Summary

Compound climate events are multi-hazard events where multiple climatic events occur

simultaneously, amplify each other’s underlying conditions, or combine to create an extreme

impact. The study of compound events is important because ignoring one of the hazards

could lead to a misunderstanding or underestimation of impacts that could occur. One exam-

ple of a compound event is a CCWE, which is the co-occurrence temporally and/or spatially

of pluvial-based, fluvial-based, and tidal flooding. Understanding CCWE is extremely im-

portant within Eastern NC given historical flooding impacts caused by Hurricanes Floyd,

Florence, and Matthew. Hurricanes are an example of a source of all three CCWE flooding

drivers occurring. In preparation of Hurricanes, decision makers analyze and share with their

constituent’s flood hazard or risk maps. These maps typically consider at most two of the
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drivers which compose CCWE. In the examples of Hurricanes Florence and Matthew, which

occurred 2 years to each other, communities in central and eastern NC experienced flooding

26% larger than their 100-year floodplains (i.e., 10% chance of being exceeded in any one

year) (Schaffer-Smith et al., 2020). Not predominantly featured within these hazard assess-

ments is the aspect of precipitation which was important in both of these tropical systems.

Another contributing factor to CCWE occurring within Eastern NC is the geographic set-

ting. The combination of occurrence of Hurricanes as well as geographic setting establishes

Eastern NC as a prime location to analyze CCWE.
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3 DATA AND METHODOLOGY

This chapter presents the study region, data sets utilized, and methods for both statistical

analysis and qualitative data analysis The study region encompasses three regions within

Eastern North Carolina (i.e., northeastern, central eastern, and southeastern). The section

on data acquisition and description details the proxies for drivers of CCWE and where to

obtain them. The section on statistical analysis details the copula model methodology and

arrangement of a stakeholder focus group.

3.1 Study Region

The proposed methodology for studying CCWE is utilized for the study region of Eastern

North Carolina (NC), United States. Eastern NC has a humid subtropical climate. NC

encounters the hazards of tropical cyclones, droughts, heat waves, severe storms, and winter

weather. One of the hazards which most directly impacts Eastern NC and is one of the

motivating factors of this research, is tropical cyclones also known as hurricanes or tropical

storms. On average the state encounters a hurricane landfall every 5 to 7 years (NOAA

National Hurricane Center, 2021).

The hydrologic and geographic setting of Eastern NC is characterized by relatively flat

terrain, which makes it vulnerable to many natural hazards, especially that of flooding.

Eastern NC is also known for having the second largest estuary system within the United

States composing of 5,432 kilometers of non-oceanfront shoreline (Bulla et al., 2017). These

estuarine environments are at particular risk to CCWE given the intersection of riverine flow

and ocean tides (Olbert et al., 2017).

Within the study region, three case study locations (i.e., northern, central, and southern)

are selected based upon station availability. The limiting factor to selection of case study

locations was the availability of tidal gauges that encompassed the desired period of record.

The northern case study area encompasses two river basins: the Roanoke River basin and



Pasquotank River Basin (Figure 3.1a). These two basins encompass an area of 4,389,964

acres (Pasquotank: 2,154,534 acres; Roanoke: 2,235,430 acres) with 4,213 miles of streams

and rivers within. Next, the central case study also comprised two river basins: Neuse River

Basin and White Oak River Basin (Figure 3.1b). Together these basins cover an area of

4,763,929 acres (Neuse River: 3,879,756 acres; White Oak River: 884,173 acres) along with

containing 3,729 miles of streams and rivers. Lastly, the southern case study is entirely

within the Cape Fear River Basin (Figure 3.1c). This basin has a size of 5,864,701 acres

with 6,584 miles of streams and rivers.

Figure 3.1: Location of case study areas in Eastern North Carolina.

3.2 Data

Compound Coastal Water Event (CCWE) risk is assessed through proxy variables rep-

resenting the three flood drivers. Precipitation represents pluvial flooding, stream discharge

represents fluvial flooding, and water level above MLLW represents tidal flooding. These

proxy variables are common in the literature studying compound flooding (Khanal et al.,

2019; Klerk et al., 2015; Svensson and Jones, 2002; Ward et al., 2018).

All in-situ station data was retrieved with a temporal record of at least 30 years. There
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were only three tidal stations within Eastern NC that fit this criterion and will dictate the

regions of analysis. Descriptive information regarding the stations for all counties can be

found in tables 3.1, 3.3, and 3.5. Basic statistical information for the three flood proxy

variables is given in tables 3.2, 3.4, and 3.6

3.2.1 Precipitation

24-hour precipitation accumulation, the proxy variable for pluvial flooding, was retrieved

using the National Oceanic and Atmospheric Administration (NOAA) National Centers for

Environmental Information (NCEI) API (https://www.ncei.noaa.gov/support/access-data-

service All precipitation stations utilized are part of the Global Historical Climatology Net-

work (GHCN), NOAA’s primary station dataset.

3.2.2 Stream Discharge

Mean daily stream discharge (meters cubed per second; m3/s) was sourced

from the United States Geological Survey’s (USGS) Daily Values Site Web Service

(https://waterservices.usgs.gov/rest/DV-Service.html). Stream discharge is the measure-

ment of the quantity of water passing a location along the stream calculated by multiplying

the area by velocity (Figure 3.2).
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Figure 3.2: Diagram of stream channel cross section with subsections and equations. From
USGS.

3.2.3 Tide Level

Water level with the tidal datum of Mean Lower Low Water (MLLW) sourced from

NOAA/NOS/CO-OPS stations (Figure 3.3) is used to represent tidal floods. The tidal

datum is a standard elevation defined by a phase of the tide. Datums are used as a reference

to discuss heights or depths, it could also be seen as a starting point of where to measure from

(Figure 3.4). MLLW is the average of the lower low water height of each tidal day observed

over the NOAA National Ocean Service Tidal Datum Epoch (1983-2001). This data was

retrieved through NOAA Tides and Currents API (https://api.tidesandcurrents.noaa.

gov/api/prod/).
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Figure 3.3: Example of tidal gauge station at Duck, North Carolina. From NOAA Tides
and Currents.

Figure 3.4: Visualization of Tidal Datums. From COMET MetEd.
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3.2.4 Selection of Stations

For each of the three study areas (i.e., northern, central, and southern) within the greater

study region a triplet of stations is created. A station triplet includes one precipitation

station, one stream gauge station, and one tidal station. Through a R script, all possible

station triplets are created and the one with the most correlation is selected as the station

triplet for that area.

For the northern study area, the station triplet is composed of the precipitation station

Edenton, NC, US; the stream discharge station Cashie River at SR1257 Near Windsor, NC;

and the tidal station Duck, NC (Figure 3.5). Further station descriptors can be found in

Table 3.1 and basic statistics can be found in Table 3.2.

Figure 3.5: Selected Stations within the Northern Case Study.

Table 3.1: Northern Case Study: Station Descriptors

Variable Station Name Station ID Start Date End Date

Precipitation Edenton, NC, US USC00312635 1872-01-01 Current
Tide Duck, NC 8651370 1979-11-01 Current

Stream Cashie River at SR1257 Near Windsor, NC 0208111310 1987-06-03 Current
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Figure 3.6: Scatterplot of in-situ station measurements for each annual CCWE in the North-
ern Case Study.

Table 3.2: Northern Case Study: Station variable characteristics

Variable Minimum Mean Maximum Standard Deviation Variance Skewness Kurtosis

Precipitation 48.30 99.84 274.60 50.84 2584.41 1.66 5.89
Tide 1.12 1.46 2.38 0.28 0.08 1.50 5.42

Stream 0.00 53.67 410.59 93.99 8834.32 2.43 8.54

For the central study area, the station triplet is composed of the precipitation station

Trenton, NC, US; the stream discharge station Trent River Near Trenton, NC; and the tidal

station Beaufort, NC (Figure 3.7). Further station descriptors can be found in Table 3.3 and

basic statistics can be found in Table 3.4.
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Figure 3.7: Selected Stations within the Central Case Study.

Table 3.3: Central Case Study: Station descriptors

Variable Station Name Station ID Start Date End Date

Precipitation Trenton, NC, US USC00318706 1955-10-18 2014-10-31
Tide Beaufort, NC 8656483 1979-06-01 Current

Stream Trent River Near Trenton, NC 02092500 1985-10-01 Current

Figure 3.8: Scatterplot of in-situ station measurements for each annual CCWE in the
Central Case Study.
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Table 3.4: Central Case Study: Station variable characteristics

Variable Minimum Mean Maximum Standard Deviation Variance Skewness Kurtosis

Precipitation 47.00 103.03 273.60 52.32 2737.13 1.60 5.68
Tide 1.02 1.34 1.92 0.25 0.06 0.87 2.76

Stream 0.14 45.74 339.80 69.03 4764.55 2.84 11.54

For the southern study area, the station triplet is composed of the precipitation station

Elizabethtown, NC, US; the stream discharge station Cape Fear at Lock #1 N R Kelly, NC;

and the tidal station Wilmington, NC (Figure 3.9). Further station descriptors can be found

in Table 3.5 and basic statistics can be found in Table 3.6.

Figure 3.9: Selected Stations within the Southern Case Study.

Table 3.5: Southern Case Study: Station descriptors

Variable Station Name Station ID Start Date End Date

Precipitation Elizabethtown, NC, US USC00312732 1910-12-01 2021-02-27
Tide Wilmington, NC 8658120 1979-08-31 Current

Stream Cape Fear at Lock #1 N R Kelly, NC 02105769 1985-10-01 Current
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Figure 3.10: Scatterplot of in-situ station measurements for each annual CCWE in the
Southern Case Study.

Table 3.6: Southern Case Study: Station variable characteristics

Variable Minimum Mean Maximum Standard Deviation Variance Skewness Kurtosis

Precipitation 56.10 99.16 298.50 46.25 2138.88 2.97 13.03
Tide 1.19 1.64 2.23 0.25 0.06 0.68 2.95

Stream 20.25 279.67 1067.55 286.51 82087.27 1.37 4.02

3.3 Methods

3.3.1 Designing Compound Coastal Water Events

In this study, the block (annual) maxima approach is used to characterize a CCWE. This

approach may also be called the Annual (Maximum) series or AM approach. Within this

approach the observational period is divided into non-overlapping periods of equal size and

the attention is focused on the maximum observation in each period (Gumbel 1958). The

annual maxima observation is the 24-hour accumulation of precipitation. This variable is

thought to have the strongest relationship to the other two variables: stream discharge and

tide height. After determining the annual maxima 24-hour precipitation accumulation for

each year of analysis, the stream discharge and tidal height maxima within three days were

found. All CCWE events are listed in Appendix A. Together all three variables are defined

as one CCWE in that year. Using a script in R, for each year of analysis.
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3.3.2 Copulas

When researching extreme events, multivariate analysis allows for a better understand-

ing of the risk and impacts through considering more than one variable which influences

the event. Typically, multivariate frequency distributions have been derived using one of

these fundamental assumptions (Zhang and Singh, 2006, 2007): the variables each have the

same type of distribution; the variables are assumed to have or are transformed to have a

joint normal distribution; or the variables are assumed to be independent. Though in real

applications, the variables which make up extreme events are generally dependent, do not

follow the normal distribution, and do not have the same type of marginal distributions. One

way to undertake multivariate analysis which does not fall to these assumptions is through

copula modeling.

A copula is a statistical technique used to connect multivariate probability distributions

through the univariate probability distributions (Nelsen, 2006; Salvadori et al., 2016). The

etymology of the term copula is derived from the Latin verb “copulare” which means “to

join together”. Another way to view copulas is as a mathematical function that “joins” or

“couples” the best fit univariate distributions (Genest and Favre, 2007). Copulas provide a

systematic way of studying the underlying dependence structure and a foundation for con-

structing families of multivariate distributions (Joe 1997). The advantages of implementing

a multivariate copula model are numerous, especially the aspect that each variable in the

analysis can be represented by a distribution which represents it best.

The copula method was first developed for use in the fields of statistics and finance by

Sklar (1959), with the formulation of their theorem called the Sklar theorem which estab-

lished the theoretical framework for the copula theory utilized today. Other contributors to

copula theory include Joe (1997) and (Nelsen, 2006) who further discussed the dependence

structure of multivariate random variables.

In general, the steps of modeling a copula include fitting marginal distributions, model
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parameter estimation, goodness-of-fit tests, and model simulations (Favre et al., 2004). The

first step fitting marginal distributions is discussed in Section 3.3.3. After determining the

best fit marginal distribution for each variable of analysis as well as dependence between the

variables (Section 3.3.4), the next step in the copula modelling approach is the selection of

appropriate copula and goodness-of-fit testing (Figure 3.11).
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Figure 3.11: Procedure for multivariate frequency analysis via copulas. From Zhang and
Singh (2019).

Properties of copulas are explained by Favre et al. (2004) and further discussed in Nelsen

(2006) and Joe (1997). Based upon Sklar’s theorem, the theoretical foundation, copulas have

two or more dimensions. For this explanation, p is the dimension of a copula as well as the

number of non-independent uniform random variables being considered for analysis.
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In beginning the creation of a copula, we consider p uniform U(0, 1) random variables

U1, ..., Up. Any continuous random variable can be transformed to be uniform over (0, 1) by

its probability integral transformation. The relationship between these variables is described

through their joint distribution function:

C(u1, ..., up) = Probability(U1 ≥ u1, ..., Up ≥ up) (1)

Probability(U1 ≥ u1, ..., Up ≥ up) can relate to the marginal distributions of each vari-

able. A marginal distribution is simply the cumulative distribution function of each of these

individual variables. The cumulative distribution function (CDF) FX(x) describes the prob-

ability that a random variable X with a given probability distribution will be found at a

value less than or equal to x.

Here C is the copula function. p-copula is the CDF of a multivariate distribution function

with all of the univariate marginal distributions being uniform on the interval [0, 1].

Marginal distributions functions F1(x1), ..., F2(xp) evaluated at x1, ..., xp are then selected

and C can be written as:

C(F1(x1), ..., Fp(xp)) = C(u1, ..., up) = F (x1, ..., xp) (2)

which is a multivariate joint distribution function of all variables, evaluated at x1, ..., xp.

That is done by transforming the univariate variables (xn) into uniform variables (un) by

applying a suitable marginal distribution (Fn). The dependence structure between variables

is described by C. The variables input into the copula are the marginal distributions that

represent each random variable.
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Figure 3.12: Representation of a copula. From Favre et al. (2004).

If the n-dimensional random sample (X1, X2, ..., Xn) is considered then the asso-

ciated marginal distributions are F1(X1), F2(X2)..., Fn(Xn). According to Sklar’s theo-

rem, if (X,Y,Z) are the trivariate random variables with continuous marginal distributions

u1 = Fx(x) = P (X <= x), u2 = Fy(y) = P (Y <= y), and u3 = Fz(z) = P (Z <= z), then

it can be characterized uniquely by its associated dependence function called a Copula (C)

which can be defined on the unit square, can be expressed as;

H(x,y,z) = C[Fx(x), Fy(y), Fz(z)] = C(u1, u2, u3) (3)

where, C is any type of copula. Fx(x), are CDF of the univariate variables X, Y, and Z.

H(x,y) is the bivariate joint distributions which can be expressed in terms of its univariate

marginal functions and the associated dependence function C.

There are a multitude of copulas. Generally speaking, copulas may be grouped into the

Archimedean copulas, meta-elliptical copulas, and copulas with prescribed geometric support

(e.g., copulas with quadratic or cubic sections). According to their exchangeable properties,

copulas may also be classified as symmetric copulas and asymmetric copulas. The most

popular class of copulas is the Archimedean copulas Liebscher (2008). The Archimedean
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family of copulas, which are widely applied in hydrology because they can be easily generated

and are capable of capturing a wide range of dependence structures are used as the type of

copula in this study.

The cumulative distribution functions of both the trivariate and bivariate copulas are

used within the creation of return periods discussed in Section 3.3.5.

Within this project all code related to copulas is carried out in R utilizing the ”Copula”

Library. The copulas selected to model CCWE include four Archimedean copulas: the

Frank Copula, Gumbel Copula, Joe Copula, and Clayton Copula. The copula dependence

parameter is estimated using the maximum pseudo log-likelihood estimation procedure. The

best fitted trivariate copulas are selected using the Cramer-von Mises distance statistics

where the approximation of p-values for the test statistics are obtained using the faster

multiplier bootstrapping approach

The copula methodology has been found to be an effective tool for multivariate modeling

of flood risks, as the models preserve the dependence of different flood characteristics. Studies

have applied copulas to flood frequency analysis (Chen et al., 2010; Favre et al., 2004), and

flood coincidence risk analysis (Chen et al., 2012). Bivariate copula studies have shown

dependence between flow and peak volume (Favre et al., 2004), and rainfall intensity and

duration (De Michele and Salvadori, 2003). Bivariate Archimedean copulas have been used to

simulate pairs of flood peak-volume to determine synthetic flood hydrographs (De Michele

et al., 2005). Trivariate Copula studies have previously been done for rainfall frequency

analysis (Balistrocchi and Bacchi, 2011), flood frequency analysis (Escalante-Sandoval and

Raynal-Villasenor, 1994; Escalante-Sandoval and Raynal-Villasenor, 2008), analysis of flood

risks (Ganguli and Reddy, 2013), modeling dependence structure of flood properties (Ganguli

and Reddy, 2013), joint distribution of flood peak, volume and duration for flood frequency

analysis (Grimaldi and Serinaldi, 2006), and relation between univariate and bivariate return

periods in terms of Archimedean copulas (Salvadori and De Michele, 2004).
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3.3.3 Univariate Analysis: Fitting Marginal Distributions

The first steps in creation of a copula model includes the fitting of marginal distributions

for each variable of analysis (Figure 3.11). To perform the fitting or marginals, estimation of

parameters, and goodness-of-fit measurements the MATLAB program AllFitDist was used.

The continuous distributions considered include Beta, Birnbaum-Saunders, Exponential, Ex-

treme value, Gamma, Generalized extreme value, Generalized Pareto, Inverse Gaussian, Lo-

gistic, Log-logistic, Lognormal, Nakagami, Normal, Rayleigh, Rician, t location-scale, and

Weibull. The parameters of the marginal distributions are estimated through a maximum

likelihood algorithm that minimizes the distance between empirical probability values and

their modeled counterparts. We share a common assumption with the literature that the

underlying marginal distribution does not change over time (Salvadori et al., 2014).

More than one distribution may fit the data well making the selection of the best model

difficult. To circumvent this difficulty, the best fitting distribution for each variable was se-

lected based on having the smallest values for Negative of the log likelihood (LogL), Bayesian

information criterion (BIC), Akaike Information Criterion (AIC), and AIC with a correction

for finite sample sizes (AICc). The best marginal distribution is selected based on the BIC.

The parameters of the marginal distributions are estimated through a maximum likelihood

algorithm that minimized the distance between empirical probability values and their mod-

eled counterparts. Q-Q plot also used to verify the acceptability of the distribution fit. Using

a wide range of distributions is essential to minimize prior assumptions on the distribution of

data by selecting the best fitted function. Any distribution holds some underlying assump-

tions but our flexible approach strives to identify those closest to that of the underlying

empirical distribution of data (Sadegh et al., 2018).
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3.3.4 Assessing Dependence

The next step involved in the copula modeling procedure is to assess the dependence

between modelled variables (Figure 3.11). To measure dependence between the flood driver

proxy variables different graphical and common statistical tools were utilized, these include

Pearson (r), Kendall tau (τ), and Spearman rho (ρ) correlation coefficients.. As the Pearson

coefficient only measures linear dependence making it incompatible with heavy-tailed distri-

butions, Kendall and Spearman are more appropriate for expressing the dependence between

variables, such as those in this study, given they are non-parametric and based upon ranks.

3.3.5 Return Period

Return periods are defined as the average time between two of the same events (Salvadori

and De Michele, 2004) and they are typically used within the risk assessment and commu-

nication sphere. Copulas allow for the easy estimation and creation of joint return periods

(Salvadori, 2004; Salvadori and De Michele, 2004; Gräler et al., 2013; Latif and Mustafa,

2020).

In creating return periods, T , we are interested in the probability that a variable or

variables exceed predetermined threshold values. Another way to think of this is the expected

period between occurrence of two events with the same values, in the case of CCWE, the

same amount of precipitation, tide level, and stream discharge. The threshold values in this

case are based upon the annual CCWE values defined in Section 3.3.1.

The univariate return period considers the probability of one variable (i.e., X) exceeds a

threshold value (i.e., x), as given below,

TUnivariate =
µ

total number of events per year

=
1

P (X ≥ x)
=

1

(1− F (x))
=

1

1− CDF (x))

(4)

where µ = 1 for annual based return periods, TUnivariate = return period in years, and F (x)
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= univariate CDF of variable.

Return periods can also be created with more than one variable. Joint return periods can

be estimated using the inclusive probability also known as ”OR” and ”AND” cases(Salvadori

and De Michele, 2004; Zhang and Singh, 2007; Latif and Mustafa, 2020). The type that is

most relevant to the analysis of CCWE are joint ”AND” return periods, which describes the

situation that all variables simultaneously meet or exceed a certain threshold value during

an event (i.e., X1 ≥ x1, ANDX2 ≥ x2...ANDXn ≥ xn) (Latif and Mustafa, 2020). While

the ”OR” cases only consider situations were at least one variable meets or exceeds a certain

threshold value. To create these joint return periods, the cumulative distribution function

(CDF) of the best fitted bivariate and trivariate copulas are utilized,

TAND
X,Y,Z(x, y, z) =

1

P (X ≥ x AND Y ≥ y AND Z ≥ z)

=
1

1− F (x)− F (y)− F (z) +H(x, y) +H(x, y) +H(y, z)−H(x, y, z)

=
1

1− F (x)− F (y)− F (z) + C(F (x), F (y)) + C(F (x), F (y)) + C(F (y), F (z))− C(F (x), F (y), F (z))

(5)

where H(x, y, z) = trivariate CDF and C(F (x), F (y), F (z)) = trivariate copula CDF.

3.3.6 Focus Groups

The focus group was held on February 26, 2020, when planners, emergency managers and

elected officials attended a workshop at the Murphy Center on East Carolina University’s

campus. This workshop was held as part of a larger National Oceanic and Atmospheric

Administration (NOAA) Coastal Ocean Climate Applications (COCA)/Sectoral Applica-

tions Research Program (SARP) project: “Preparing for, Responding to, and Mitigating

Compound Coastal Water Hazards for Resilient Rural Communities”. The focus group was

conducted by the NOAA COCA/SARP research project team members. Focus group dis-

cussions were conducted through two sessions. The first session divided all participants into

geographically based regions. All participants were given the opportunity to respond to four

questions relevant to their region in this session. The second session had all participants
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at tables according to their profession. Questions within this session were from one of two

groups depending upon the table. At each table there was also a facilitator and a note taker

(Figure 3.13). The facilitator’s role included directing the questions, focusing the discussion,

and managing the time. The note taker’s role was to record results on a large poster sheet.

These sheets were hung up on a wall in the room after each session concluded for further

discussions and to allow the participants to add comments through the use of post it notes

(Figure 3.14).

Figure 3.13: Photo of focus group table during workshop held February 26, 2020.

The focus group consisted of representatives of three of the Planning Councils for eastern

North Carolina. These councils include the Mid-East Commission, Albemarle Commission,

the Cape Fear Council of Governments, and county-level emergency managers. Forty-one

people participated in the focus group. The day was split into three sessions. Session 1

was the opening and introductions where an overview of the day’s goals was given, and all

participants were asked to introduce themselves to the group.

The questions presented in session 2 focused on the varied risk of flooding in each ge-

ographic region, delving into the types of floods that participants found most surprising,
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frequent, and severe. The goal was to determine the relative risk of flood hazards and if they

have been changing over time. To conclude this session, questions were asked to determine

opportunities and obstacles in cooperating across jurisdictional boundaries along with chal-

lenges in securing resources. This session was organized by geographic region to get a better

sense of the scope of flood types regionally, their relative importance, any changes they have

noticed, and obstacles to addressing flood risk.

Session 3 focused on roles and responsibilities before, during, and after a flood event.

The goal was to collect perspectives on the economic and health impacts witnessed, the

technology and information sources people used or wish they had access to, the mitigation

projects they have sought, along with the barriers to adequate preparation, response, recov-

ery, and mitigation. This session was grouped by similar occupation or responsibility to know

what their roles are regarding flood hazard management and corresponding perspectives on

economic disruption and health impacts.

After concluding the focus group, the recordings were transcribed, and the poster notes

were transcribed into a spreadsheet document. Pre-workshop survey data was reformatted

into a spreadsheet and used to quantify perceptions based on the differing types of flooding

(i.e., pluvial, fluvial, and ocean). The data analysis portion was performed in three steps

by the qualitative team (Mukherji et al., 2021a). The first step was pre-analysis, where the

focus group recordings were manually transcribed into text documents. Next was the first

cycle of coding, descriptive coding (Saldana, 2009), which summarizes in a word or short

phrase the basic topic of a passage. Last was the second cycle of coding, pattern coding

(Miles and Huberman, 1994), which helps to identify emergent themes or explanations and

is a good way of grouping summaries into sets or themes. The result of the second cycle of

coding is used in this analysis.
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Figure 3.14: Photo of poster hung on wall during workshop held February 26, 2020.

34



4 RESULTS

This section presents the primary results of the study for all areas of interest. The

results are presented following the steps of fitting marginal distributions, creation of trivariate

copulas, and construction of return period values. Finally, this section will conclude with a

discussion of data collection within the focus group.

4.1 Marginal Distribution

The first step of the copula modelling approach is to find the distribution that best

represents the data. Elaborated upon below is the best fit marginal distributions for all

parameters in all study areas. Distributions that possess the minimum values of Negative

of the log likelihood (NLogL), Bayesian information criterion (BIC, Schwarz, 1978), Akaike

information criterion (AIC, Akaike (1973)), and AIC with a correction for finite sample

sizes (AICc, Hurvich and Tsai, 1989) in comparison to the other candidates are selected

to represent that variable. The NLogL is utilized in creating the following goodness of

fit measures. Information theoretic criteria play an important role in model selection and

most practitioners use AIC and BIC (Rao et al. 2010). The AIC is a method for scoring

and selecting a model, it is optimal in the sense of minimizing the mean square error of

predictions. AIC is defined in terms NLogL adjusted for the number of adjustable parameters

in the model. The AIC statistic penalizes complex models less than BIC. BIC is also a

method for scoring and selecting a model, this quantity is different, though proportional to

AIC. BIC will tend to select the ’true’ model as the size of the dataset increases. AICc, a

corrected version of AIC, provides a stronger penalty or adjustment than AIC and BIC for

small sample sizes. This measure is reported to have better small-sample behavior and will

be used as the primary measure for this study (Brewer et al., 2016).

Within each of the following sections are tables listing the performance level of differ-

ent univariate distributions for fitting the marginal distribution for the flood driver proxies,



parameters of these best fitting marginal distributions, and graphical goodness of fit visu-

alizations. It is important to note that these are visual representations, and it cannot be

associated with a degree of confidence. The graphics include, plotted empirical and theo-

retical densities, quantile-quantile (Q-Q) plot, the cumulative distribution functions (CDF),

and corresponding probability-probability (P-P) plot for each proxy variable. Q-Q plots is a

graphical technique for determining if two data sets come from populations with a common

distribution, it plots the quantiles of the first data set against the quantiles of the second

data set. If graph follows a linear pattern, it indicates that the distribution fits the given data

well (Ramachandran and Tsokos, 2020). Q-Q plots take sample data, sorts it in ascending

order, and then plot them versus quantiles calculated from a theoretical distribution. Similar

to Q-Q plots, the P-P plot is a graphical tool to test how well a data set fits a distribution.

This plot compares the empirical cumulative distribution functions of the given data with

that of the assumed true cumulative probability distribution functions. If the plot of these

two distributions is approximately linear, it indicates that the assumed true pdf gives a rea-

sonably good fit to the given data that we seek to find its true distribution (Ramachandran

and Tsokos, 2020).

4.1.1 Northern Case Study

Within the northern case study, the CCWE proxy drivers of precipitation, tide level,

and stream discharge follow the Inverse Gaussian, Generalized Extreme Value, and Gamma

distributions, whose parameters are within Table 4.1. Within the copula approach, it is not

necessary to have the same distributions represent all variables. The best-fitted distributions

to represent each driver were selected using AIC, BIC, and AICc, which are reported in Ap-

pendix D. The value with the smallest AIC is selected as the representative distribution.

To confirm the selection of the marginal distributions, the empirical and theoretical densi-

ties (PDF), the quantile-quantile plots, the empirical and theoretical cumulative distribution

function (CDF), and the probability-probability (P-P) plot, were plotted to the fitted dis-
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tributions. It is important to note that the selected precipitation distribution (i.e., Inverse

Gaussian) does not contain the smallest AIC. The Inverse Gaussian distributing has the

second smallest AIC value of 349.47, though it does have the smallest BIC value of 352.53.

The smallest AIC value of 349.47 belongs to the distribution Generalized Extreme Value.

The decision to use Inverse Gaussian was made analyzing the graphical goodness-of-fit tests

which are equally as important especially with relatively close values of AIC and BIC.

Using the estimated parameters for each distribution, we can obtain the comparison

of the theoretical and empirical probabilities of the observed drivers. The distributions of

CCWE proxy drivers are shown in the empirical and theoretical density plot (Figures 4.1a,

4.2a, and 4.3a). From the histogram, the distribution of stream discharge is highly right

skewed. While the distributions of precipitation and tide level are skewed right though not

as distinct. In these figures, the density of each best-fit distribution (i.e., the red line in each

figure) fits the empirical histograms of each flood proxy driver. The Q-Q plots shows that

the best-fit distributions and observed data sets come from roughly the same distribution

(Figures 4.1b, 4.2b, and 4.3b). In a Q-Q plot, the values for the observed proxy variables

(i.e., black circles) aligning in a straight line indicate the distribution is the exact same as the

best-fit distribution. The Q-Q plot for tide level (Figure 4.2b) displays as relatively straight.

While the Q-Q plots for precipitation and tide level curve off at the higher values indicating

there are more extreme values than the best-fit distribution. In Figures 4.1c, 4.2c, and 4.3c,

it is determined that the theoretical CDF of the best-fit distributions (i.e., red line) fit the

empirical CDF for each respective flood proxy driver (i.e., black circles). Figures 4.1d, 4.2d,

and 4.3d display the CDFs of the empirical and theoretical distributions against each other.

Similar to the Q-Q plot, a straight line between the observed values (i.e., black circles) and

best-fit distribution (i.e., black line) indicate the data sets are the same.
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Table 4.1: Best Fit Marginal Distributions.

Variable Distribution Estimated Parameter(s)

Precipitation Inverse Gaussian scale (µ) = 99.84
(Figure 4.1) shape (λ) = 484.3533

Tide Level Generalized Extreme Value shape (k) = 0.173
(Figure 4.2) scale (σ) = 0.172

location (µ) = 1.327

Stream Discharge Gamma shape (a) = 0.297
(Figure 4.3) scale (b) = 186.252

Visual representation of goodness-of-fit in referenced figures.

Figure 4.1: Inverse gaussian distribution visual goodness-of-fit measures for precipitation in
the northern case study.
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Figure 4.2: Generalized extreme value distribution visual goodness-of-fit measures for tide
level in the northern case study.

Figure 4.3: Gamma distribution visual goodness-of-fit measures for stream discharge in the
northern case study.
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4.1.2 Central Case Study

Within the CCWE case study, the CCWE proxy drivers of precipitation, tide level, and

stream discharge follow the Inverse Gaussian, Generalized Extreme Value, and Weibull dis-

tributions, whose parameters are within Table 4.2. Note that within the copula approach,

it is not necessary to have the same distributions represent all variables. The best-fitted

distributions to represent each driver were selected using AIC, BIC, and AICc, which are

reported in Appendix D. The value with the smallest AIC is selected as the representative

distribution. To confirm the selection of the marginal distributions, the empirical and theo-

retical densities (PDF), the quantile-quantile plots, the empirical and theoretical cumulative

distribution function (CDF), and the probability-probability (P-P) plot, were plotted to the

fitted distributions.

Using the estimated parameters for each distribution, we can obtain the comparison

of the theoretical and empirical probabilities of the observed drivers. The distributions of

CCWE proxy drivers are shown in the empirical and theoretical density plot (Figures 4.4a,

4.5a, and 4.6a). From the histogram, the distribution of stream discharge is highly right

skewed. While the distributions of precipitation and tide level are skewed right though not

as distinct. In these figures, the density of each best-fit distribution (i.e., the red line in each

figure) fits the empirical histograms of each flood proxy driver. The Q-Q plots shows that

the best-fit distributions and observed data sets come from roughly the same distribution

(Figures 4.4b, 4.5b, and 4.6b). In a Q-Q plot, the values for the observed proxy variables

(i.e., black circles) aligning in a straight line indicate the distribution is the exact same as

the best-fit distribution. The Q-Q plot for tide level (Figure 4.5b) displays as relatively

straight. In Figures 4.4c, 4.5c, and 4.6c, it is determined that the theoretical CDF of the

best-fit distributions (i.e., red line) fit the empirical CDF for each respective flood proxy

driver (i.e., black circles). Figures 4.4d, 4.5d, and 4.6d display the CDFs of the empirical

and theoretical distributions against each other. Similar to the Q-Q plot, a straight line

between the observed values (i.e., black circles) and best-fit distribution (i.e., black line)
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indicate the data sets are the same.

Table 4.2: Best Fit Marginal Distributions.

Variable Distribution Estimated Parameters

Precipitation Inverse Gaussian Scale (µ) = 103.034
(Figure 4.4) Shape (λ) = 484.354

Tide Level Generalized Extreme Value Shape (k) = 0.191
(Figure 4.5) Scale (σ) = 0.1671

Threshold (µ) = 1.214

Stream Discharge Weibull Scale (A) = 35.499
(Figure 4.6) Shape (B) = 0.691

Visual representation of goodness-of-fit in referenced figures.

Figure 4.4: Inverse gaussian distribution visual goodness-of-fit measures for precipitation in
the central case study.
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Figure 4.5: Generalized extreme value distribution visual goodness-of-fit measures for tide
level in the central case study.

Figure 4.6: Weibull distribution visual goodness-of-fit measures for stream discharge in the
central case study.
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4.1.3 Southern Case Study

Within the southern case study, the CCWE proxy drivers of precipitation, tide level, and

stream discharge follow the LogLogistic, Inverse Gaussian, and Birnbaum Saunders, whose

parameters are within Table 4.3. Note that within the copula approach, it is not necessary to

have the same distributions represent all variables. The best-fitted distributions to represent

each driver were selected using AIC, BIC, and AICc, which are reported in Appendix D.

The value with the smallest AIC is selected as the representative distribution. To confirm

the selection of the marginal distributions, the empirical and theoretical densities (PDF),

the quantile-quantile plots, the empirical and theoretical cumulative distribution function

(CDF), and the probability-probability (P-P) plot, were plotted to the fitted distributions.

Using the estimated parameters for each distribution, we can obtain the comparison of the

theoretical and empirical probabilities of the observed drivers. The distributions of CCWE

proxy drivers are shown in the empirical and theoretical density plot (Figures 4.7a, 4.8a,

and 4.9a). From the histogram, the distribution of stream discharge is highly right-skewed.

While the the precipitation distribution is skewed right though not as distinct. Lastly, the

tide level distribution exhibits minimal skewness. In these figures, the density of each best-fit

distribution (i.e., the red line in each figure) fits the empirical histograms of each flood proxy

driver. The Q-Q plots shows that the best-fit distributions and observed data sets come

from roughly the same distribution (Figures 4.7b, 4.8b, and 4.9b). In a Q-Q plot, the values

for the observed proxy variables (i.e., black circles) aligning in a straight line indicate the

distribution is the exact same as the best-fit distribution. The Q-Q plot for tide level (Figure

4.8b) displays as relatively straight. In Figures 4.7c, 4.8c, and 4.9c, it is determined that the

theoretical CDF of the best-fit distributions (i.e., red line) fit the empirical CDF for each

respective flood proxy driver (i.e., black circles). Figures 4.7d, 4.8d, and 4.9d display the

CDFs of the empirical and theoretical distributions against each other. Similar to the Q-Q

plot, a straight line between the observed values (i.e., black circles) and best-fit distribution

(i.e., black line) indicate the data sets are the same.
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Table 4.3: Best Fit Marginal Distributions.

Variable Distribution Estimated Parameters

Precipitation LogLogistic Log Location (µ) = 5.718431;
(Figure 4.7) Log Scale (σ) = 90.2906

Tide Level Inverse Gaussian Scale (µ) = 1.643;
(Figure 4.8) Shape (λ) = 77.345

Stream Discharge Birnbaum Saunders Scale (β) = 161.79;
(Figure 4.9) Shape = (γ) = 1.203

Visual representation of goodness-of-fit in referenced figures

Figure 4.7: LogLogistic distribution visual goodness-of-fit measures for precipitation in the
southern case study.
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Figure 4.8: Inverse Gaussian distribution visual goodness-of-fit measures for tide level in the
southern case study.

Figure 4.9: Birnbaum Saunders distribution visual goodness-of-fit measures for stream dis-
charge in the southern case study.
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4.2 Correlations

After marginal distribution functions were defined, dependence between separate vari-

ables was assessed. The strength of dependency between the flood drivers’ proxies i.e.,

precipitation, stream discharge, and tide level are estimated using Pearson’s linear corre-

lation (r), and the two non-parametric dependence measures, also called the rank based

correlations statistics such as Kendall’s tau (τ) and Spearman’s rho (ρ). These values are lo-

cated in Tables 4.4, 4.5, 4.6. All dependencies except Pearson’s tide - stream are statistically

significant. The strongest dependence within all the study areas is between precipitation and

tide level, with the second strongest dependence between precipitation and stream discharge.

Table 4.4: Northern Study Area: Station variable-pair correlations

Variable Pair Pearson r Spearman ρ Kendall τ

Precipitation - Tide Level 0.433 (0.011)* 0.466 (0.006)* 0.307 (0.011)*
Precipitation - Stream Discharge 0.418 (0.014)* 0.466 (0.006)* 0.366 (0.002)*
Tide Level - Stream Discharge 0.140 (0.429) 0.419 (0.014)* 0.293 (0.015)*

Table 4.5: Central Study Area: Station variable-pair correlations

Variable Pair Pearson r Spearman ρ Kendall τ

Precipitation - Tide Level 0.644 (0)* 0.578 (0)* 0.409 (0)*
Precipitation - Stream Discharge 0.755 (0)* 0.470 (0.004)* 0.343 (0.004)*
Tide Level - Stream Discharge 0.4 (0.017)* 0.345 (0.042)* 0.259 (0.029)*

Table 4.6: Southern Study Area: Station variable-pair correlations

Variable Pair Pearson r Spearman ρ Kendall τ

Precipitation - Tide Level 0.689 (0)* 0.579 (0)* 0.411 (0.002)*
Precipitation - Stream Discharge 0.675 (0)* 0.379 (0.039)* 0.263 (0.042)*
Tide Level - Stream Discharge 0.689 (0)* 0.421 (0.021)* 0.255 (0.048)*

4.3 Trivariate Copulas

In this study a total of four Archimedean families that capture different kinds of joint de-

pendence structures are used: Clayton, Gumbel, Frank, and Joe. The Clayton, Gumbel and
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Joe copulas describe an asymmetrical tail behavior, while the Frank copula captures joint

symmetric dependence. While Gumbel and Joe copulas can represent upper tail dependence,

Clayton copulas can represent lower tail dependence. They are tested for their goodness-

of-fit for modelling trivariate CCWE hazard proxies. The copulas dependence parameters

are estimated using maximum pseudo log-likelihood (or MPL) estimation procedure. Iden-

tification and selection of best-fit copulas for establishing the trivariate joint distribution is

performed using the Cramér–von Mises distance statistics (Sn) with parametric bootstrap

procedure. The Cramér–von Mises criterion is a criterion used for judging the goodness of

fit of two distributions. According to Genest et al. (2009), Cramér–von Mises test is the

most powerful goodness of fit test based on empirical process. P-values for Cramér–von

Mises test can be calculated with the parametric bootstrap procedure (Bezak et al., 2014).

This statistic has been computed from 1000 simulated random sample by the mean of faster,

multiplier approach and the estimated values are in Tables 4.7, 4.9, 4.10.

4.3.1 Northern Case Study

Within the northern case study based upon Sn, the best fit copula for the trivariate model

was the Frank copula, see Appendix C for the equation. The estimated copula parameters

and goodness-of-fit measures are presented in table 4.7.

First, within the northern case study the best fit copula for the trivariate model was the

Frank Copula. This copula maintained consistency in the dependency structure of CCWE

between the observed and modelled points as shown in Section 4.4.1.

Table 4.7: Three-dimensional copula goodness-of-fit measures and copula parameters.

Copula Family Parameter Estimates Maximized Log Likelihood Sn

Gumbel 1.503 9.896 0.042
Clayton 0.735 7.868 —
Frank 3.475 10.95 0.037
Joe 1.712 8.374 0.0672
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Figures 4.10 and 4.10 represent the simulations on 2-dimensional and 3-dimensional scat-

ter plots. Through these scatter plots it can be observed that the frank copula produced

events that adequately overlap with the dependence pattern of observed CCWE.

Figure 4.10: Scatterplot of simulated CCWE events created from the 3-dimensional frank
copula within the northern case study.
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Figure 4.11: Scatterplot of simulated CCWE events created from the 3-dimensional frank
copula (grey asterisks) and actual CCWE events (black circles) within the northern case
study.

4.3.2 Central Case Study

In the central case study, based upon Sn, the best fit copula for the trivariate model was

the Gumbel copula, see Appendix C for the equation. The estimated copula parameters and

goodness-of-fit measures are presented in 4.9.

Table 4.8: Three-dimensional copula goodness-of-fit measures and copula parameters.

Copula Family Parameter Estimates Maximized Log Likelihood Sn

Gumbel 1.559 14.05 0.040
Clayton 0.723 7.298 —
Frank 3.195 10.60 0.069
Joe 1.895 14.57 0.042
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Table 4.9: Three-dimensional copula goodness-of-fit measures and copula parameters.

Copula Family Parameter Estimates Maximized Log Likelihood Sn

Gumbel 1.559 14.05 0.040
Clayton 0.723 7.298 —
Frank 3.195 10.60 0.069
Joe 1.895 14.57 0.042

Figures 4.12 and 4.13 represent the simulations on 2-dimensional and 3-dimensional scat-

ter plots. Through these scatter plots it can be observed that the frank copula produced

events that adequately overlap with the dependence pattern of observed CCWE.

Figure 4.12: Scatterplot of simulated CCWE events created from the 3-dimensional frank
copula within the central case study.
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Figure 4.13: Scatterplot of simulated CCWE events created from the 3-dimensional frank
copula (grey asterisks) and actual CCWE events (black circles) within the central case study.

4.3.3 Southern Case Study

Within the southern case study, based upon Sn, the best fit copula for the trivariate model

was the Joe copula, see Appendix C for the equation. The estimated copula parameters and

goodness-of-fit measures are presented in 4.10.

Table 4.10: Three-dimensional copula goodness-of-fit measures and copula parameters.

Copula Family Parameter Estimates Maximized Log Likelihood Sn

Gumbel 1.699 15.63 0.071
Clayton 0.805 7.121 —
Frank 3.439 9.992 0.109
Joe 2.2 17.28 0.049

Figures 4.14 and 4.15 represent the simulations on 2-dimensional and 3-dimensional scat-

ter plots. Through these scatter plots it can be observed that the frank copula produced

events that adequately overlap with the dependence pattern of observed CCWE.
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Figure 4.14: Scatterplot of simulated CCWE events created from the 3-dimensional Frank
Copula within the southern case study.

52



Figure 4.15: Scatterplot of simulated CCWE events created from the 3-dimensional Frank
Copula (grey asterisks) and actual CCWE events (black circles) within the southern case
study.

4.4 Return Period

4.4.1 Univariate

The univariate return periods are derived from the best-fitted CDFs for each flood char-

acteristic. Tables 4.14, 4.15, and 4.16 present the return period (T ) for each observed CCWE

and corresponding values of precipitation, tide level, and stream discharge. It is important

to note that estimation and use of univariate return periods could cause underestimation

or overestimation of risk in CCWE, considering all drivers and creating a trivariate return

period will be discussed in the next section.
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Table 4.11: Univariate return period (T ; years) derived from best-fit distributions for
CCWE flood drivers in the northern case study.

CCWE Event (Y ear) Precip. (mm) Tide (m) Stream (m3/s) T(Precip) T(Tide) T(Stream)

1987 66 1.268 0.040 1.307 1.315 1.074
1988 67.3 1.122 0.680 1.331 1.022 1.218
1989 96.5 1.171 0.164 2.254 1.072 1.125
1990 49.5 1.271 0.765 1.088 1.326 1.228
1991 108 1.439 5.635 2.889 2.396 1.565
1992 57.2 1.256 84.951 1.170 1.273 5.032
1993 54.6 1.149 14.725 1.139 1.045 1.967
1994 115.6 1.442 66.261 3.431 2.425 4.098
1995 95.3 1.302 9.599 2.199 1.455 1.752
1996 140 1.417 38.228 6.148 2.198 2.889
1997 53.3 1.438 0.003 1.125 2.387 1.030
1998 55.9 1.762 81.269 1.154 8.675 4.838
1999 114.3 1.362 410.594 3.330 1.786 78.199
2000 115.8 1.422 12.658 3.447 2.241 1.882
2001 86.4 1.479 14.640 1.841 2.811 1.963
2002 66 1.24 0.001 1.307 1.222 1.017
2003 196.9 2.383 93.446 26.320 66.367 5.499
2004 48.3 1.24 116.382 1.078 1.222 6.914
2005 154.9 1.385 16.452 8.916 1.945 2.036
2006 128.5 1.44 72.774 4.648 2.406 4.410
2007 62.2 1.246 0.000 1.242 1.240 1.000
2008 57.7 1.147 0.105 1.177 1.043 1.106
2009 118.6 2.006 20.841 3.678 20.835 2.209
2010 124.2 1.521 270.709 4.195 3.332 26.409
2011 274.6 1.52 114.966 205.441 3.318 6.820
2012 82.6 1.49 0.450 1.715 2.939 1.184
2013 67.3 1.761 0.351 1.331 8.642 1.167
2014 74.9 1.494 4.106 1.498 2.987 1.482
2015 102.6 1.242 0.236 2.566 1.228 1.143
2016 215.9 1.647 282.319 43.353 5.540 28.986
2017 59.2 1.569 2.512 1.197 4.048 1.382
2018 72.4 1.342 3.710 1.439 1.663 1.459
2019 118.1 2.044 8.353 3.635 23.656 1.696
2020 94 1.616 76.739 2.141 4.894 4.607
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Table 4.12: Univariate return period (T ; years) derived from best-fit distributions for
CCWE flood drivers in the central case study.

CCWE Event (Y ear) Precip. (mm) Tide (m) Stream (m3/s) T(Precip) T(Tide) T(Stream)

1980 60.7 1.056 51.820 1.199 1.063 3.665
1981 99.1 1.319 81.836 2.241 2.360 5.935
1982 82.6 1.050 32.564 1.648 1.055 2.566
1983 89.2 1.044 0.566 1.854 1.048 1.059
1984 118.1 1.252 41.343 3.336 1.818 3.038
1985 122.4 1.636 2.240 3.667 8.376 1.160
1986 116.1 1.340 33.131 3.194 2.568 2.595
1987 52.8 1.267 51.253 1.109 1.924 3.629
1988 62.7 1.252 3.568 1.228 1.818 1.227
1989 61.0 1.157 1.331 1.203 1.319 1.109
1990 75.4 1.258 26.250 1.465 1.860 2.252
1991 74.7 1.215 22.200 1.449 1.590 2.061
1992 73.9 1.288 50.970 1.431 2.087 3.611
1993 50.5 1.096 3.398 1.088 1.135 1.219
1994 94.0 1.322 44.741 2.029 2.388 3.233
1995 50.3 1.227 10.081 1.086 1.659 1.521
1996 148.8 1.863 56.917 6.721 18.802 3.998
1997 47.0 1.021 15.263 1.062 1.026 1.748
1998 147.6 1.638 37.661 6.534 8.440 2.835
1999 273.6 1.915 339.802 146.335 22.315 116.793
2000 73.9 1.158 13.196 1.431 1.323 1.657
2001 92.2 1.203 2.322 1.960 1.525 1.164
2002 48.3 1.208 37.378 1.071 1.552 2.819
2003 137.9 1.186 82.968 5.211 1.442 6.036
2004 72.1 1.520 3.823 1.393 5.334 1.239
2005 156.0 1.546 127.992 7.972 5.913 11.306
2006 160.3 1.343 225.402 8.835 2.599 36.063
2007 68.6 1.562 0.141 1.325 6.298 1.022
2008 94.2 1.501 1.713 2.036 4.943 1.131
2009 111.5 1.755 29.733 2.893 12.960 2.423
2010 250.2 1.530 124.877 81.367 5.550 10.853
2011 153.7 1.905 28.600 7.547 21.600 2.367
2012 128.8 1.132 8.722 4.232 1.232 1.461
2013 80.8 1.094 1.388 1.599 1.131 1.112
2014 77.2 1.188 5.720 1.507 1.451 1.328
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Table 4.13: Univariate return period (T ; years) derived from best-fit distributions for
CCWE flood drivers in the southern case study.

CCWE Event (Y ear) Precip. (mm) Tide (m) Stream (m3/s) T(Precip) T(Tide) T(Stream)

1980 69.6 1.192 25.627 1.226 1.016 1.041
1981 123.7 1.566 85.800 7.051 1.664 1.420
1982 97.8 1.457 174.715 2.579 1.292 2.107
1983 105.4 1.679 129.408 3.423 2.431 1.743
1984 61.5 1.368 216.907 1.111 1.133 2.479
1985 59.2 1.56 41.343 1.089 1.637 1.124
1986 69.9 1.591 60.032 1.231 1.791 1.243
1987 71.6 1.502 113.267 1.265 1.416 1.620
1988 56.1 1.292 294.495 1.066 1.060 3.261
1989 85.3 1.509 540.852 1.722 1.438 6.974
1990 100.3 1.396 78.721 2.824 1.173 1.371
1991 97.8 1.472 116.665 2.579 1.329 1.646
1993 101.1 1.627 54.085 2.909 2.012 1.204
1996 193 2.132 993.921 78.018 32.692 23.660
1997 79.8 1.556 99.392 1.493 1.619 1.518
1998 100.3 1.661 770.218 2.824 2.270 13.164
1999 298.5 2.229 1067.545 933.372 68.588 28.558
2000 95.5 1.498 181.511 2.378 1.403 2.165
2005 91.2 1.449 199.067 2.059 1.273 2.318
2006 110.2 1.767 276.089 4.125 3.540 3.063
2007 71.6 1.619 20.247 1.265 1.959 1.020
2008 104.1 2.036 600.317 3.257 16.610 8.260
2009 96.5 1.909 407.763 2.463 7.468 4.695
2010 78.7 1.833 438.911 1.456 4.906 5.164
2011 62.2 1.597 42.192 1.119 1.825 1.129
2012 94.5 1.463 90.048 2.298 1.306 1.451
2013 64.8 1.617 515.367 1.150 1.946 6.478
2014 94.2 1.749 36.246 2.274 3.260 1.095
2015 117.3 2.082 546.515 5.466 22.808 7.089
2016 123.2 1.866 172.733 6.913 5.855 2.091

4.4.2 Trivariate

In the following tables 4.14, 4.15, 4.16, each row represents an annual CCWE defined

in Section 3.3.1. The columns Precip. (mm), Tide (m), and Stream (m3/s) are values

from each CCWE. Both the ”AND” and ”OR” joint return periods are represented. The

”AND” return period represents the probability that the Precip. (mm), Tide (m), and

Stream (m3/s) meet or exceed the values measured within that event. The ”OR” return

period represents the probability that at least one of the drivers, Precip. (mm), Tide (m),
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or Stream (m3/s), meet or exceed the values they measured in that event. The type that is

most relevant to the analysis of CCWE are joint ”AND” return periods as we are interested

in all variables occurring at extreme levels at the same time. The probability of exceeding

all measurements at the same time (TAND
PTS ) is less than the probability that at least one of

the driver measurements is exceeded (TOR
PTS). Hence, it is inferred that the occurrence of

trivariate flood drivers simultaneously is less frequent in the ”AND” case and more frequent

in the ”OR” case.

Through all of the modelled points return periods are able to be created for all of the

observed CCWE and their in-situ driver measurements. The maximum observed measure-

ments for all three drivers within the temporal extent of this analysis occur within different

CCWE. The maximum precipitation occurs 8/27/2011 with a value of 274.6millimeters and

a univariate return period of 205 years. The maximum tide level measurement of of 2.383

meters occurs within a CCWE on 9/18/2003 and this value of tide level has a univariate

return period of 66 years. The maximum corresponding stream discharge occurs 9/17/1999

with a value of 410.59 m3/s and return period of 78 years. The maximum “AND”-based

joint return period for all values occurs on 8/27/2011, the same date as maximum station

precipitation, with a return period of 400 years. The next largest “AND”-based return pe-

riod occurs with Hurricane Floyd with variable values of precipitation of 114.3 millimeters,

tide level of 1.362 meters, stream discharge of 410.594 m3/s, and a return period of 155

years.
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Table 4.14: Trivariate return period (years) for CCWE flood drivers in the northern case
study.

CCWE Event (Y ear) Precip. (mm) Tide (m) Stream (m3/s) TAND
PTS (years) TOR

PTS (years)

1987 66 1.268 0.040 1.623 1.022
1988 67.3 1.122 0.680 1.533 1.006
1989 96.5 1.171 0.164 2.406 1.018
1990 49.5 1.271 0.765 1.579 1.022
1991 108 1.439 5.635 5.104 1.348
1992 57.2 1.256 84.951 5.588 1.072
1993 54.6 1.149 14.725 2.108 1.012
1994 115.6 1.442 66.261 8.939 1.799
1995 95.3 1.302 9.599 3.311 1.219
1996 140 1.417 38.228 10.902 1.723
1997 53.3 1.438 0.003 2.491 1.008
1998 55.9 1.762 81.269 20.269 1.143
1999 114.3 1.362 410.594 155.487 1.622
2000 115.8 1.422 12.658 5.985 1.467
2001 86.4 1.479 14.640 4.829 1.385
2002 66 1.24 0.001 1.501 1.005
2003 196.9 2.383 93.446 80.401 4.775
2004 48.3 1.24 116.382 7.399 1.033
2005 154.9 1.385 16.452 13.647 1.502
2006 128.5 1.44 72.774 10.930 1.892
2007 62.2 1.246 0.000 1.448 1.000
2008 57.7 1.147 0.105 1.299 1.005
2009 118.6 2.006 20.841 38.649 1.879
2010 124.2 1.521 270.709 48.229 2.430
2011 274.6 1.52 114.966 400.026 2.780
2012 82.6 1.49 0.450 3.855 1.118
2013 67.3 1.761 0.351 9.913 1.082
2014 74.9 1.494 4.106 4.044 1.204
2015 102.6 1.242 0.236 2.875 1.052
2016 215.9 1.647 282.319 106.289 4.754
2017 59.2 1.569 2.512 4.771 1.098
2018 72.4 1.342 3.710 2.426 1.140
2019 118.1 2.044 8.353 47.646 1.571
2020 94 1.616 76.739 12.794 1.797

Next, within the central NC case study the maximum measured values for the proxy

variables occur within the same year ranging from the dates 9/16/1999 to 9/17/1999 which

coincided with Hurricane Floyd. The maximum 24-hour precipitation was 273.6millimeters,

with a univariate return period of 146 years; the corresponding tide level measurement was

1.915 m with a univariate return period of 22.3 years; and the corresponding stream discharge
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was 339.8 m3/s with a univariate return period of 116 years. The “AND”-based joint return

period for all of these values occurring at one was 215 years, which means all of these drivers

are more common on their own than occurring at the same time.

Table 4.15: Trivariate return period (years) for CCWE flood drivers in the central case
study.

CCWE Event (Y ear) Precip. (mm) Tide (m) Stream (m3/s) TAND
PTS (years) TOR

PTS (years)

1980 60.7 1.056 51.820 3.759 1.025
1981 99.1 1.319 81.836 6.726 1.642
1982 82.6 1.05 32.564 3.005 1.036
1983 89.2 1.044 0.566 1.923 1.008
1984 118.1 1.252 41.343 4.977 1.507
1985 122.4 1.636 2.240 10.270 1.144
1986 116.1 1.34 33.131 5.025 1.665
1987 52.8 1.267 51.253 4.754 1.078
1988 62.7 1.252 3.568 2.175 1.059
1989 61 1.157 1.331 1.562 1.024
1990 75.4 1.258 26.250 3.212 1.216
1991 74.7 1.215 22.200 2.789 1.169
1992 73.9 1.288 50.970 4.667 1.264
1993 50.5 1.096 3.398 1.406 1.014
1994 94 1.322 44.741 4.617 1.506
1995 50.3 1.227 10.081 2.233 1.041
1996 148.8 1.863 56.917 16.594 3.233
1997 47 1.021 15.263 1.811 1.005
1998 147.6 1.638 37.661 11.757 2.424
1999 273.6 1.915 339.802 215.075 20.725
2000 73.9 1.158 13.196 2.207 1.099
2001 92.2 1.203 2.322 2.445 1.077
2002 48.3 1.208 37.378 3.458 1.043
2003 137.9 1.186 82.968 8.446 1.388
2004 72.1 1.52 3.823 5.956 1.110
2005 156 1.546 127.992 15.319 4.049
2006 160.3 1.343 225.402 30.973 2.453
2007 68.6 1.562 0.141 6.605 1.013
2008 94.2 1.501 1.713 5.748 1.098
2009 111.5 1.755 29.733 11.198 1.873
2010 250.2 1.53 124.877 259.770 4.695
2011 153.7 1.905 28.600 20.713 2.221
2012 128.8 1.132 8.722 4.753 1.115
2013 80.8 1.094 1.388 1.766 1.023
2014 77.2 1.188 5.720 2.102 1.092

Lastly, in the southeastern case study location the maximum values of all proxy variables
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are all within the same event which occurred 9/16/1999 to 9/19/1999. These dates also

coincide with Hurricane Floyd. For this event the maximum in-situ precipitation value is

298.5 millimeters which has a return period of 933 years. The coinciding in-situ tide level

value of 2.229 meters has a return period of 68 years, while the coinciding in-situ stream

discharge value of 1067.5 m3/s has a return period of 28 years. Within a CCWE all of these

values are occurring simultaneously which can be represented by the joint “AND” return

period. The return period of all these occurring or being exceeded has a value of 833 years.

This suggests that precipitation accompanied by these extreme values of stream discharge

and tide level are more likely to occur than extreme precipitation on its own. The values

that represent closest to a 100-year return period (actually 109 years) are 193 millimeters

precipitation, 2.132 m tide level, and 993.9 m3/s stream discharge. The values that represent

a 50-year return period are 117 millimeters precipitation, 2.082 meters tide level, and 546.5

m3/s stream discharge.
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Table 4.16: Trivariate return period (years) for CCWE flood drivers in the southern case
study.

CCWE Event (Y ear) Precip. (mm) Tide (m) Stream (m3/s) TAND
PTS (years) TOR

PTS (years)

1980 69.6 1.192 25.627 1.271 1.000
1981 123.7 1.566 85.800 7.441 1.223
1982 97.8 1.457 174.715 3.654 1.179
1983 105.4 1.679 129.408 4.563 1.460
1984 61.5 1.368 216.907 2.633 1.020
1985 59.2 1.56 41.343 1.779 1.012
1986 69.9 1.591 60.032 2.079 1.050
1987 71.6 1.502 113.267 2.100 1.072
1988 56.1 1.292 294.495 3.338 1.007
1989 85.3 1.509 540.852 7.131 1.242
1990 100.3 1.396 78.721 3.194 1.067
1991 97.8 1.472 116.665 3.231 1.155
1993 101.1 1.627 54.085 3.535 1.131
1996 193 2.132 993.921 109.592 19.313
1997 79.8 1.556 99.392 2.313 1.126
1998 100.3 1.661 770.218 12.514 1.870
1999 298.5 2.229 1067.545 833.119 26.843
2000 95.5 1.498 181.511 3.519 1.230
2005 91.2 1.449 199.067 3.338 1.159
2006 110.2 1.767 276.089 6.834 2.181
2007 71.6 1.619 20.247 2.136 1.006
2008 104.1 2.036 600.317 27.667 3.062
2009 96.5 1.909 407.763 11.141 2.200
2010 78.7 1.833 438.911 7.837 1.410
2011 62.2 1.597 42.192 1.971 1.018
2012 94.5 1.463 90.048 2.786 1.112
2013 64.8 1.617 515.367 6.754 1.107
2014 94.2 1.749 36.246 3.936 1.071
2015 117.3 2.082 546.515 50.543 4.424
2016 1.866 172.733 10.185 1.970

4.4.3 Regional Trivariate Comparison

To determine regional differences between occurrence of CCWE within the study region,

the trivariate return period will be used to represent the probability of all drivers occurring

at one time. To first represent the distribution at each station quantiles are determined

(Table 4.17). The quantile, which is a measure of dispersion and variability, is shown as four

equal parts, each being 1/4th of the entire range of the dataset (McGrew Jr. and Monroe,
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2009). The first quantile represents the lowest 25% of the return period distribution while

the fourth quantile represents the largest 25% of the return period distribution. The most-

used quantiles are the 0% and 100% quantiles which are equivalent to the minimum and

maximum respectively, while the 50% quantile represents the median.

To determine the regionality between the probability of occurrence of CCWE between

all three case study locations, the distributions of trivariate return periods are compared. It

was found through the Two-sample Kolmogorov-Smirnov test that all of the stations trivari-

ate return periods are statistically similar, meaning there is not a statistically significant

difference between all locations. Though the estimator of the CDF graphic shows that these

central and southern study areas have the most similar shaped distribution which may be due

to their similarity in geography compared to the northern region which is characterized by

a large estuary environment. The area which may be at most risk to CCWE is the southern

case study area as it has the “lowest” return periods which means that CCWE may occur

more frequently based on our definition. In table 4.17, the southern case study has 50% of

trivariate (TAND
PTS ) under 3.5 years.

Table 4.17: Trivariate return period quantiles for distributions of trivariate return periods
for all case study areas.

Quantile of Trivariate Return Period (years)

Region 0% 25% 50% 75% 100%

Northern 1.299 2.443 5.346 13.434 400.026
Central 1.406 2.339 4.753 9.358 259.770
Southern 1.271 2.671 3.594 7.738 833.119

The objective of the Kolmogorov-Smirnov (K-S) statistic is to compare random sample

frequency counts of a single variable with expected frequency counts. The K-S test tests

similarity between two distributions. The K-S test is related to the comparison of the ECDFs

associated to each population (Figure 4.16). The null hypothesis of this test states that no

significant difference exists between the two frequency distributions. The K-S test statistic,
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D, represents the maximum absolute difference between the two sets of cumulative values.

When the deviation between the distributions is large, D is large and the null hypothesis

of no difference between the two distributions could be incorrect. Conversely, if all the

differences between the distributions are small, then D will be small and the distributions

are statistically similar (McGrew Jr. and Monroe, 2009). Since the p-value between all case

study pairs is greater than .05 (Table 4.18), we accept the null hypothesis. We have sufficient

evidence to say that the three data sets come from similar distributions. It was found through

the Two-sample Kolmogorov-Smirnov test that all of the stations trivariate return periods

are statistically similar, meaning there is not a statistically significant difference between all

locations.

Table 4.18: Two-sample kolmogorov-smirnov test for distributions of trivariate return pe-
riods for all case study areas.

Case Study Pair K-S Test Statistic (D) p-value

Northern-Central 0.15546 0.727
Northern-Southern 0.18824 0.5435
Central-Southern 0.17143 0.662
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Figure 4.16: Comparing empirical cumulative distribution functions of trivariate return
periods for all case study areas.

4.5 Focus Group Analysis

This section provides a review of focus group discussions and a pre-focus group survey

to summarize perceptions of flood drivers among focus group participants. This builds upon

the work of Mukherji et al. (2021b). The questions and results of the pre-focus group survey

are within Appendix B. It was noted in depth how floods are high risk events that can

occur year-round for some regions in Eastern North Carolina which can lead to health and

infrastructure hazards. Attendees also emphasized the importance of rain as a driver of

CCWE and the compounding aspects of risks that can be exacerbated by infrastructural

deficiencies.
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4.5.1 Relationships Between CCWE Drivers Perceptions

As just the quantitative analysis can explain the numerical results and relationships of

the CCWE drivers, working with stakeholders we are able to further understand the path

of occurrence, as well as relationship of drivers within CCWE. Participants elaborated upon

how rain first falls and its impact is then seen within the rivers. At the same time impacts

are seen from storm surge pushing up the river.

Over nine inches of rain, we know we’re gonna have problems. . . once the rain

falls, they have issues with it getting to the river, and once it gets to the river

then the river swells. And then if we’re in the middle of a hurricane and we’ve

got coastal surge going on, then our river can’t flush out. So all three of them

really tie into what the issues are for everybody in the county.

Though the attendees also noted, rain and riverine flooding are the most frequent and related,

as well as most likely to combine into compound floods over common areas. Within the

Pamlico Sound, which is within the Northern Case Study of this analysis participants said

they ”had storm surge coming up through Pamlico Sound... and in some cases close to fifty

inches of rain upriver. So now were getting it from both sides.” This was also noted in the

Central Case Study area where New Bern, North Carolina is located,

New Bern had all of that wind pushing it up the river, and then after the storm

kind of turned and set down over Wilmington, then you had all the water coming

down the river. And that just compounded everything.

4.5.2 Flood Hazard Perceptions

Emergency managers and planners who attended the workshop were asked how they

perceive flood risk in their community or jurisdiction in regard to how often it occurs, the

severity, and its comparison to other hazards. The consensus was that it is high to very high

risk, as one participant noted,
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We perceive flood risk in Bertie County, and Windsor included, as high, for us.

I mean, take in seventeen years, we’ve had four one-hundred, five-hundred year

floods, depending on who wants to calculate the risk of that.

This perception of the high level of risk is accompanied by the perception that flood hazards

are growing in both severity and frequently. This was shown in both the pre-focus group

survey and focus group discussions. In the pre-focus group survey, between all types of

flooding, 80% of the participants saw pluvial as becoming more frequent than fluvial or tidal

(Figure 4.17). In the focus group discussion, pluvial flooding was also the most unexpected

form of flooding which is also becoming more surprising over the past 10 years. One partic-

ipant told us, ”over time, too, that the risk is starting to change, that its’ not just what’s in

that mapped floodplain. We’re running into a lot of localized flooding”. It was stated that

both tropical systems and heavy rainfall events are contributing to the high risk of flooding.

Another participant stated how intensity and frequency are becoming more noticeable.

I think the intensity and the occurrence have both increased over the last twenty

years. Used to, we dealt with flooding during a hurricane event most of the time

and now you’re getting a lot of localized flooding from a six-inch rain in the middle

of the summer, which used to was unheard of.

In regard to frequency, the time between flood events is important to decision makers.

Another aspect being that water tables become saturated (or impermeable) with recurring

summer storms exacerbating impacts. Consecutive storms may make recovery more difficult

as one participant notes, ”You can’t get one storm cleaned up before you’ve got another

one.” The threat of flooding is constant and clear. Municipal agencies frequently struggle

recovering from one flood before being subjected to another.

It just seems like these hurricane keep rolling in. You might get a one-year

reprieve but its every other year, it seems like, it’s automatic.
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Another question posed to the attendees is the type or source of flooding which is most

surprising and unexpected in their community or jurisdiction. The types were ocean-caused,

rain-caused, or river-caused which are the same drivers used in the analysis of CCWE.

In both the pre-focus group survey and focus group discussions rain-caused floods are the

most surprising, where there are concentrated areas of precipitation outside of established

flood zones. To put this into perspective, one participant noted, ”The storm we had three

weeks ago was worse than the hurricane last October.” The surprising aspect includes places

unaccustomed to flooding now become flooded from rainstorms.

“But I think every big event . . . for a typical rainstorm, we kind of know the

rain flow. But when you get one of those mega-rainfalls, I don’t know why but it

floods in places that we’re not accustomed to it flooding.”

Figure 4.17: Pre-focus group question: In the past 10 years, have these floods become more
or less frequent?

Ocean-caused Rain-caused River-caused

Less Frequent

About the Same
More Frequent
No Response

Similarly to asking about what type or source of flooding is most surprising, the partic-

ipants were asked which is most damaging. The compounding nature of CCWE is a major

contributor to impacts. Within the pre-focus group survey it was evident that for all drivers,

the amount of damage has either stayed the same or increased when viewed separately (Fig-

ure 4.18. Compound flooding events incur compounding damages that can be difficult to

evaluate individually. Storm surge, riverine flooding, and excessive rainfall can all damage

property and infrastructure, but compound flooding increases and magnifies all damage.
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It’s causing damage more frequently, not necessarily causing more damage in

one particular event. But because it’s compounding each time it happens... it’s

definitely more damaging from that perspective.

Figure 4.18: Pre-focus group question: In the past 10 years have these floods become more
or less damaging?

Ocean-caused Rain-caused River-caused

Less Damaging

About the Same
More Damaging
No Response
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5 DISCUSSION AND CONCLUSION

This research investigates the relationships and return periods of drivers of Compound

Coastal Water Events (CCWE) in Eastern North Carolina (NC) through use of copula

modelling. The results display return periods of observed CCWE. The results of this analysis

show that the occurrence of the drivers of equaling or exceeding a value simultaneously is

less frequent in the “AND” case return periods compared to the “OR” case return periods.

It is rarer to experience all three simultaneously than at least one occurring.

5.1 Discussion of Results

Within this research a definition of CCWE was constructed and events were located

for three different case study locations within Eastern NC. The definition of CCWE was

based upon the assumption that pluvial flooding was the primary driver of CCWE which

was confirmed by the correlation structure between it and the other flooding types of tidal

and fluvial. The strongest dependence is between the proxy for pluvial flooding: 24-hour

precipitation (millimeter), and the proxy for tidal flooding: tide level above MLLW (meter).

The second strongest dependence is between precipitation and the proxy for fluvial flooding:

stream discharge (m3/s). This highlights the contention that extreme precipitation is an

important variable that needs to be incorporated into the analysis of CCWE. Another thing

noted about the drivers are that their distributions are right or positively skewed, which is

typically shown in the case of extreme events where more intense values are not as common

as moderate or low values. In further interpreting what is a defined as a CCWE, all three

locations exhibit CCWE with a minimum near 50millimeters of precipitation (i.e., northern

case study: 48.3 millimeters, central case study: 47 millimeters, and southern case study:

56.1 millimeters).

One of the advantages of using copulas is you are able to create simulations of events

from the distributions of drivers and modelled relationships. In all of the case study areas



copulas were fitted and showed agreement to empirical distributions of CCWE. It was es-

tablished for the region of Eastern North Carolina that the copula method is an effective

tool for multivariate modelling of CCWE, as the copula effectively preserved the dependence

structure of multiple flood drivers. This dependence structure showed agreement within the

theoretical univariate distributions and the copula simulated CCWE distributions.

From the copula simulations, the sample of CCWE is expanded and more return periods

can be created to represent a broader probability of occurrence. Before examining the

probability of occurrence for all variables occurring at the same time, univariate return

periods were calculated to determine the probability of occurrence for observed measurements

on their own. To further understand the relationship between drivers, trivariate return period

were constructed to see the probability in the instance that of all three of the measurements

occur at the same time. Two types of trivariate return periods were created. The first is the

”OR” case which characterizes the probability that as least of the driver values will meet

or exceed their value measured for that CCWE. The next type of trivariate return period

is the ”AND” case, which is the representation of how often it would be expected that all

driver values in a CCWE meet or exceed their measurements within one event. Regarding

the trivariate return periods, the “OR” case is always less than the return period for the

“AND” cases. This is also interpreted as the occurrence of the drivers of interest equalling or

exceeding a value simultaneously is less frequent in the “AND” compared to the “OR” case.

It is more rare to see all together than at least one occurring. The comparative analysis

of different return period types showed that is it important to calculate it in the trivariate

sense to know the expected risk of CCWE and their potential probability of occurrence if

they happen simultaneously.

Another aspect to consider with the return periods is comparing the univariate to trivari-

ate outputs. For most cases in all case study areas, CCWE risk would be underestimated

if each drivers univariate return period is added together compared to the return period

derived from the trivariate copula models. If decision makers only consider the risk posed by
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one driver compared to the risk posed by all drivers, they will underestimate the probability

of the event occurring.

Within this project another goal is to connect the outcome from the statistical analysis to

the discussions with decision makers which occurred at the focus group. Contributing to our

motivation for this research, in both the pre-workshop survey and focus group discussions the

participants noted that precipitation based flooding was becoming more frequent and more

damaging. Participants also noted ways in which all three drivers are compounding adding

more depth to the definition of CCWE. The perception held by decision makers reinforces

the importance of considering pluvial flooding as a principal driver of CCWE in hazard and

risk assessments.

5.2 Implications of Research

The results of this study add to our knowledge about Compound Coastal Water Events

(CCWW) in Eastern North Carolina. Also, it was concluded that utilizing a copula model

effectively preserves the dependence between CCWE drivers within events based upon simu-

lated values and is thus a valuable tool for assessment of these multivariate events. From these

copula models further simulations can be created from a limited temporal record dataset.

This research will be shared directly with decision makers in a second focus group discussion

as part of the National Oceanic and Atmospheric Administration (NOAA) Coastal Ocean

Climate Applications (COCA)/Sectoral Applications Research Program (SARP) project:

“Preparing for, Responding to, and Mitigating Compound Coastal Water Hazards for Re-

silient Rural Communities”. As extreme impacts caused by tropical cyclones highlight the

significance of compound events, communicating more accurate return periods that consider

all variables will assist practitioners in planning.
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5.3 Limitations of the Research

While this paper provides some important methodology and results, there are some lim-

itations that must be noted. In researching compound flooding, only a few studies have

explicitly tried to measure the impacts and risks given some practical difficulties in quantify-

ing them. Some of these difficulties lie in spatial analysis as well as the number of variables

added into the analysis. The copula model and return period output is only relevant to

the three studied locations and cannot be generalized to all locations in which Compound

Coastal Water Events (CCWE) occur. In using only in-situ stations this study was only

limited to three locations given there were only this amount of tidal gauge stations within

the region of study that fit the temporal record criteria. In addition to the location aspect,

there are limitations and uncertainties involved with the formation of CCWE which may

include additional flood drivers, flood protection structures, and catchment properties that

affect water levels. Also, in creating return periods, the results are only related to the em-

pirical CCWE values and not standardized years as typically presented to practitioners (i.e.,

50, 100, 200 years). Another limitation is that this study is based on the assumption that

the precipitation series is stationarity, even though this may not be true within a changing

climate. Therefore, future studies should consider non-stationarity of precipitation and in-

corporate climate dynamics models. Also, the limited length of study period leads to the

scarcity of the CCWE events, which is a major source of uncertainty in frequency analysis,

particularly in the upper tail of the probability distributions. However, the CCWE frequency

analysis method proposed in this study is beneficial for risk management.

5.4 Contributions to Knowledge and Future Work

This project has set a foundation for analyzing the co-occurrence of three flood hazards,

that when they occur create a Compound Coastal Water Event (CCWE). This project

utilizes and builds upon this term first introduced by Curtis and De Polt (2020). Future
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work could extend this methodology to other coastal locations to further delve into spatial

differences, which is similar to research question 2 posed within the introduction. Future

work could also analyze more than one compound coastal water event per year. Seasonality

would be an interesting approach so that different modes of precipitation-based hazards

could be analyzed. As posed by Couasnon et al. (2020) further studies should investigate

additional synoptic and meteorological aspects of these events, like the type of synoptic

weather conditions. As with most compound events and hazards in general, flood events

are extremely multidimensional, but can also be influenced by the different topography, land

cover, human interventions, and water management.

5.5 Conclusion

There has been a paradigm shift in the understanding that most climate and weather

events are composed of multiple hazards. These types of climate and weather events are

defined as compound events. The paradigm shift is especially noticeable in the recent Inter-

governmental Panel on Climate Change (Seneviratne et al., 2021) report where compound

events were provided their own chapter in the physical science basis report. The goal of this

project is to contribute to this ongoing paradigm shift and analyze a type of compound event.

Within the study region of Eastern North Carolina, coastal floods are typically classified by

three different flooding types: pluvial (i.e., precipitation-based), fluvial (i.e., river-based),

and tidal (i.e., ocean-based). Especially during tropical cyclone events, which are a common

occurrence within this region, these three flood types can occur within the time and place.

When this occurs it is defined as a Compound Coastal Water Event (CCWE).

Typically in predicting, assessing, and researching these floods only one or two variables

are considered. Utilizing these conventional univariate approaches will not give accurate

information regarding the multivariate relationships and association impacts. The objectives

of this thesis was to determine the trivariate relationship between the drivers of CCWE, find

differences in regionality to these relationships, and determine if the perceptions that decision
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makers in the region match the statistical interpretations. The methodology chosen, based

upon previous literature, was the copula model. Copulas are useful in that the model can be

created with unique marginal distribution representations for each variable. From modelled

copulas simulated events can be created. These simulated events expand upon the limited

temporal record of about 30 years for each of our case study locations. The relationships

were compared to views and concerns held by decision makers within the study region, with

data sourced from a focus group and accompanying survey.

By increasing the analysis from a traditional univariate or bivariate to a trivariate ap-

proach there will be a more complete depiction of compound coastal water events. Through

this depiction the inclusion of more variables will lead to a more accurate risk assessment

and return period. The findings in this study were connected to a survey and dialogue from

a flood focus group. The focus group pre-workshop survey and discussions were able to

provide key understanding about decision makers perceptions of CCWE hazards and rela-

tionships between drivers. To decision makers within the region believe that they are at

a high level of risk from CCWE given it’s increase in severity and frequency. Focus group

participants also noted and reinforced the concept found within the copula modelled analysis

that precipitation is one of the most important drivers of CCWE. It will be important in

future correspondence to convey to decision makers the importance of CCWE with extreme

precipitation along with corresponding high tidal levels and stream discharge. While the

results of this analysis have established new understanding there are even more spatial and

temporal research pursuits which may be undertaken.
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Appendix A: Compound Coastal Water Event Data

Northern study area CCWE events
Date of Max. Precip. Precip. (mm) Tide (m) Date of Max. Tide Stream (m3/s) Date of Max. Stream

9/6/1987 66 1.268 9/8/1987 0.039643585 9/8/1987
8/21/1988 67.3 1.122 8/24/1988 0.679604318 8/22/1988
7/13/1989 96.5 1.171 7/14/1989 0.16423771 7/16/1989
11/10/1990 49.5 1.271 11/10/1990 0.764554858 11/12/1990
7/11/1991 108 1.439 7/11/1991 5.635052472 7/14/1991
8/16/1992 57.2 1.256 8/16/1992 84.95053978 8/19/1992
3/13/1993 54.6 1.149 3/13/1993 14.72476023 3/15/1993
3/2/1994 115.6 1.442 3/4/1994 66.26142103 3/4/1994
6/6/1995 95.3 1.302 6/9/1995 9.599410995 6/8/1995
10/8/1996 140 1.417 10/9/1996 38.2277429 10/10/1996
8/20/1997 53.3 1.438 8/22/1997 0.003114853 8/21/1997
2/4/1998 55.9 1.762 2/5/1998 81.26934972 2/6/1998
9/16/1999 114.3 1.362 9/16/1999 410.5942756 9/17/1999
6/29/2000 115.8 1.422 7/2/2000 12.65763043 6/30/2000
7/27/2001 86.4 1.479 7/27/2001 14.63980969 7/28/2001
8/26/2002 66 1.24 8/29/2002 0.000566337 8/28/2002
9/18/2003 196.9 2.383 9/18/2003 93.44559375 9/20/2003
8/14/2004 48.3 1.24 8/17/2004 116.3822395 8/16/2004
10/8/2005 154.9 1.385 10/11/2005 16.45208787 10/10/2005
9/1/2006 128.5 1.44 9/3/2006 72.77429574 9/3/2006
8/22/2007 62.2 1.246 8/22/2007 0 2007-08-22, 2007-08-23, 2007-08-24, 2007-08-25
7/24/2008 57.7 1.147 7/26/2008 0.105338669 7/24/2008
11/12/2009 118.6 2.006 11/13/2009 20.84119909 11/14/2009
9/30/2010 124.2 1.521 10/3/2010 270.7090534 10/1/2010
8/27/2011 274.6 1.52 8/27/2011 114.9663972 8/28/2011
8/19/2012 82.6 1.49 8/20/2012 0.450237861 8/19/2012
10/10/2013 67.3 1.761 10/10/2013 0.351128898 10/13/2013
9/14/2014 74.9 1.494 9/14/2014 4.105942756 9/14/2014
6/26/2015 102.6 1.242 6/28/2015 0.235596164 6/26/2015
10/9/2016 215.9 1.647 10/9/2016 282.3189605 10/9/2016
6/6/2017 59.2 1.569 6/7/2017 2.511704293 6/8/2017
6/20/2018 72.4 1.342 6/23/2018 3.709506904 6/23/2018
9/6/2019 118.1 2.044 9/6/2019 8.353469745 9/7/2019
2/7/2020 94 1.616 2/7/2020 76.73865426 2/8/2020



Central study area CCWE events
Date of Max. Precip. Precip. (mm) Tide (m) Date of Max. Tide Stream (m3/s) Date of Max. Stream

3/29/1980 60.7 1.056 3/31/1980 51.81982926 4/1/1980
8/20/1981 99.1 1.319 8/22/1981 81.83568665 8/22/1981
1/4/1982 82.6 1.05 1/4/1982 32.56437358 1/6/1982
6/1/1983 89.2 1.044 6/1/1983 0.566336932 1983-06-01, 1983-06-02
2/14/1984 118.1 1.252 2/14/1984 41.34259602 2/16/1984
9/27/1985 122.4 1.636 9/27/1985 2.239862565 9/29/1985
8/19/1986 116.1 1.34 8/20/1986 33.13071051 8/22/1986
3/1/1987 52.8 1.267 3/1/1987 51.25349233 3/3/1987
6/10/1988 62.7 1.252 6/10/1988 3.567922671 6/12/1988
9/3/1989 61 1.157 9/6/1989 1.33089179 9/4/1989
3/30/1990 75.4 1.258 3/30/1990 26.24971679 4/2/1990
3/30/1991 74.7 1.215 3/30/1991 22.20040773 4/2/1991
8/14/1992 73.9 1.288 1992-08-17, 1992-08-17 50.97032387 8/17/1992
9/5/1993 50.5 1.096 1993-09-07, 1993-09-08 3.398021591 9/8/1993
10/14/1994 94 1.322 10/17/1994 44.74061762 10/16/1994
7/5/1995 50.3 1.227 7/8/1995 10.08079739 7/5/1995
9/6/1996 148.8 1.863 9/6/1996 56.91686165 9/9/1996
3/15/1997 47 1.021 3/15/1997 15.26278031 3/17/1997
8/27/1998 147.6 1.638 8/27/1998 37.66140597 8/30/1998
9/16/1999 273.6 1.915 9/16/1999 339.8021591 9/17/1999
9/19/2000 73.9 1.158 9/19/2000 13.19565051 9/21/2000
7/30/2001 92.2 1.203 8/1/2001 2.321981421 8/1/2001
3/3/2002 48.3 1.208 3/3/2002 37.3782375 3/6/2002
7/14/2003 137.9 1.186 7/15/2003 82.96836051 7/16/2003
10/14/2004 72.1 1.52 10/15/2004 3.82277429 10/17/2004
10/8/2005 156 1.546 10/8/2005 127.9921466 10/10/2005
9/1/2006 160.3 1.343 9/1/2006 225.4020989 9/3/2006
10/27/2007 68.6 1.562 10/27/2007 0.141017896 10/30/2007
9/26/2008 94.2 1.501 9/26/2008 1.713169219 9/28/2008
11/12/2009 111.5 1.755 11/14/2009 29.73268892 11/15/2009
9/30/2010 250.2 1.53 9/30/2010 124.8772935 10/2/2010
8/27/2011 153.7 1.905 8/27/2011 28.60001506 8/30/2011
7/13/2012 128.8 1.132 7/14/2012 8.72158875 7/16/2012
7/30/2013 80.8 1.094 8/2/2013 1.387525483 7/30/2013
7/4/2014 77.2 1.188 7/5/2014 5.720003012 7/6/2014
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Southern study area CCWE events
Date of Max. Precip. Precip. (mm) Tide (m) Date of Max. Tide Stream (m3/s) Date of Max. Stream

8/17/1980 69.6 1.192 8/20/1980 25.62674617 8/20/1980
7/30/1981 123.7 1.566 8/1/1981 85.80004517 8/1/1981
10/25/1982 97.8 1.457 10/28/1982 174.7149435 10/28/1982
6/8/1983 105.4 1.679 6/11/1983 129.4079889 1983-06-09, 1983-06-11
7/14/1984 61.5 1.368 7/14/1984 216.9070449 7/17/1984
7/17/1985 59.2 1.56 7/19/1985 41.34259602 7/17/1985
5/20/1986 69.9 1.591 5/23/1986 60.03171478 5/22/1986
9/10/1987 71.6 1.502 9/10/1987 113.2673864 9/11/1987
1/8/1988 56.1 1.292 1/8/1988 294.4952046 1/8/1988
10/2/1989 85.3 1.509 10/2/1989 540.8517699 10/5/1989
8/8/1990 100.3 1.396 8/8/1990 78.72083353 8/11/1990
9/26/1991 97.8 1.472 9/28/1991 116.665408 9/28/1991
9/17/1993 101.1 1.627 9/19/1993 54.08517699 9/19/1993
9/6/1996 193 2.132 9/6/1996 993.9213154 9/9/1996
9/25/1997 79.8 1.556 9/28/1997 99.39213154 9/28/1997
3/9/1998 100.3 1.661 3/9/1998 770.2182273 3/12/1998
9/16/1999 298.5 2.229 9/16/1999 1067.545117 9/19/1999
9/5/2000 95.5 1.498 9/8/2000 181.5109867 9/6/2000
7/30/2005 91.2 1.449 8/2/2005 199.0674315 8/2/2005
9/1/2006 110.2 1.767 9/4/2006 276.0892543 9/2/2006
8/27/2007 71.6 1.619 8/30/2007 20.24654531 8/30/2007
9/6/2008 104.1 2.036 9/6/2008 600.3171478 9/9/2008
11/11/2009 96.5 1.909 11/14/2009 407.7625909 11/14/2009
9/30/2010 78.7 1.833 9/30/2010 438.9111222 10/3/2010
8/27/2011 62.2 1.597 8/30/2011 42.19210142 8/28/2011
7/12/2012 94.5 1.463 7/14/2012 90.04757216 7/15/2012
6/7/2013 64.8 1.617 6/7/2013 515.366608 6/10/2013
7/11/2014 94.2 1.749 7/14/2014 36.24556364 7/12/2014
10/3/2015 117.3 2.082 10/4/2015 546.5151392 10/6/2015
9/3/2016 123.2 1.866 9/3/2016 172.7327642 9/4/2016
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Appendix B: Pre-Focus Group Survey

1. How frequent are the following types of floods?

• Rain-caused

– Never: 0 respondent(s)

– Almost never: 1 respondent(s)

– Somewhat frequent: 14 respondent(s)

– Very frequent: 8 respondent(s)

– Constant: 1 respondent(s)

– Not applicable: 0 respondent(s)

– No response: 1 respondent(s)

• Ocean-caused

– Never: 3 respondent(s)

– Almost never: 1 respondent(s)

– Somewhat frequent: 8 respondent(s)

– Very frequent: 2 respondent(s)

– Constant: 1 respondent(s)

– Not applicable: 9 respondent(s)

– No response: 1 respondent(s)

• River-caused

– Never: 1 respondent(s)

– Almost never: 2 respondent(s)

– Somewhat frequent: 14 respondent(s)

– Very frequent: 3 respondent(s)

– Constant: 1 respondent(s)

– Not applicable: 3 respondent(s)

– No response: 1 respondent(s)



2. In the past 10 years, have these floods become more or less frequent?

• Rain-caused

– Less frequent: 0 respondent(s)

– About the same: 5 respondent(s)

– More frequent: 19 respondent(s)

– No response: 1 respondent(s)

• Ocean-caused

– Less frequent: 1 respondent(s)

– About the same: 4 respondent(s)

– More frequent: 7 respondent(s)

– No response: 13 respondent(s)

• River-caused

– Less frequent: 1 respondent(s)

– About the same: 8 respondent(s)

– More frequent: 11 respondent(s)

– No response: 5 respondent(s)
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3. When are these types of floods surprising/unexpected?

• Rain-caused

– Never: 0 respondent(s)

– Sometimes: 13 respondent(s)

– About half the time: 4 respondent(s)

– Most of the time: 6 respondent(s)

– Always: 1 respondent(s)

– Not applicable: 0 respondent(s)

– No response: 1 respondent(s)

• Ocean-caused

– Never: 8 respondent(s)

– Sometimes: 4 respondent(s)

– About half the time: 2 respondent(s)

– Most of the time: 0 respondent(s)

– Always: 0 respondent(s)

– Not applicable: 10 respondent(s)

– No response: 1 respondent(s)

• River-caused

– Never: 5 respondent(s)

– Sometimes: 14 respondent(s)

– About half the time: 0 respondent(s)

– Most of the time: 2 respondent(s)

– Always: 0 respondent(s)

– Not applicable: 3 respondent(s)

– No response: 1 respondent(s)
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4. In the past 10 years have these floods become more or less surprising?

• Rain-caused

– Less surprising: 8 respondent(s)

– About the same: 9 respondent(s)

– More surprising: 6 respondent(s)

– No response: 2 respondent(s)

• Ocean-caused

– Less surprising: 2 respondent(s)

– About the same: 10 respondent(s)

– More surprising: 0 respondent(s)

– No response: 13 respondent(s)

• River-caused

– Less surprising: 7 respondent(s)

– About the same: 10 respondent(s)

– More surprising: 2 respondent(s)

– No response: 6 respondent(s)
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5. How damaging are these types of floods?

• Rain-caused

– Not damaging: 1 respondent(s)

– Slightly damaging: 6 respondent(s)

– Somewhat damaging: 11 respondent(s)

– Very damaging: 5 respondent(s)

– Extremely damaging: 0 respondent(s)

– Not applicable: 0 respondent(s)

– No response: 1 respondent(s)

• Ocean-caused

– Not damaging: 1 respondent(s)

– Slightly damaging: 1 respondent(s)

– Somewhat damaging: 4 respondent(s)

– Very damaging: 5 respondent(s)

– Extremely damaging: 2 respondent(s)

– Not applicable: 9 respondent(s)

– No response: 3 respondent(s)

• River-caused

– Not damaging: 3 respondent(s)

– Slightly damaging: 1 respondent(s)

– Somewhat damaging: 2 respondent(s)

– Very damaging: 9 respondent(s)

– Extremely damaging: 5 respondent(s)

– Not applicable: 4 respondent(s)

– No response: 1 respondent(s)
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6. In the past 10 years have these floods become more or less damaging?

• Rain-caused

– Less damaging: 0 respondent(s)

– About the same: 12 respondent(s)

– More damaging: 12 respondent(s)

– No response: 1 respondent(s)

• Ocean-caused

– Less damaging: 1 respondent(s)

– About the same: 8 respondent(s)

– More damaging: 4 respondent(s)

– No response: 12 respondent(s)

• River-caused

– Less damaging: 3 respondent(s)

– About the same: 9 respondent(s)

– More damaging: 8 respondent(s)

– No response: 5 respondent(s)

7. What economic and/or health impacts have you seen from these types of floods?
(briefly list)

8. Select ALL the resources you typically use during a flood event in regards to response
and recovery in your community, county, or region

9. Select ALL the resources you typically use during a flood event in regards to response
and recovery in your community, county, or region - websites or software

10. Select ALL the resources you typically use during a flood event in regards to response
and recovery in your community, county, or region - field-based tools

11. Select ALL the resources you typically use during a flood event in regards to response
and recovery in your community, county, or region - other

12. Select ALL the resources you typically use to seek funding for hazard mitigation plan-
ning in your community, county, or region

13. Select ALL the resources you typically use to seek funding for hazard mitigation plan-
ning in your community, county, or region - websites or software

14. Select ALL the resources you typically use to seek funding for hazard mitigation plan-
ning in your community, county, or region - field-based tools

15. Select ALL the resources you typically use to seek funding for hazard mitigation plan-
ning in your community, county, or region - other
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Appendix C: Equations

Probability Distribution Density Functions

LogLogistic

f(x) =
(β/α)(x/α)β−1

(1 + (x/α)β)2
(6)

where α is the scale parameter and is also the median of the distribution and β is a shape
parameter.

Inverse Gaussian

f(x) =

√
λ

2πx3
exp

[
−λ(x− µ)2

2µ2x

]
(7)

for x > 0, where µ ≥ 0 is the mean and λ ≥ 0 is the shape parameter.

Generalized Extreme Value

f(x) =
1

σ
t(x)ξ+1e−t(x) (8)

where

t(x) =

{
(1 + ξ) ifξ(x−µ

σ
) ̸= 0

e−(x−µ)/σ) ifξ = 0
(9)

Gamma The general formula for the probability density function of the gamma distri-
bution is

f(x) =
(x−µ

β
)γ−1 exp (−x−µ

β
)

βΓ(γ)
x ≥ µ; γ, β > 0 (10)

where γ is the shape parameter, µ is the location parameter, β is the scale parameter,
and Γ is the gamma function which has the formula

Γ(a) =

∫ ∞

0

ta−1e−tdt (11)

Weibull

f(x) =
γ

α
(
x− µ

α
)(γ−1) exp (−((x− µ)/α)γ) x ≥ µ; γ, α > 0 (12)

where γ is the shape parameter, µ is the location parameter and α is the scale parameter.



Birnbaum Saunders The Birnbaum-Saunders distribution is also commonly known
as the fatigue life distribution. There are several alternative formulations of the Birnbaum-
Saunders distribution in the literature. The general formula for the probability density
function of the Birnbaum-Saunders distribution is

f(x) =


√

x−µ
β

+
√

β
x−µ

2γ(x− µ)

ϕ


√

x−µ
β

−
√

β
x−µ

γ

 x > µ; γ, β > 0 (13)

where γ is the shape parameter, µ is the location parameter, β is the scale parameter, φ is
the probability density function of the standard normal distribution, and ϕ is the cumulative
distribution function of the standard normal distribution.

Copula Functions
The families of copulas detailed here are used within this study. u1, u2, u3 represent the

best-fit distribution of variables while θ represents the copula’s parameter value.

Gumbel Copula. The multivariate Gumbel copula takes the form,

C(u1, u2, ..., un; θ) = exp

−

(
n∑

i=1

(−lnui)
θ

)1/θ
 (14)

with parameter, θ ≥ 1.

The trivariate Gumbel copula takes the form,

C(u1, u2, u3; θ) = e−[(−lnu1)θ+(−lnu2)θ+(−lnu3)θ]1/θ (15)

Clayton The multivariate Clayton opula takes the form,

C(u1, u2, ..., un; θ) =

(
n∑

i=1

u−θ
i − n+ 1

)−1/θ

(16)

with parameter, θ > 0.

The trivariate clayton copula takes the form,

C(u1, u2, u3; θ) = max[(u−θ
1 + u−θ

2 u−θ
3 − 2)−1/θ, 0] (17)

Frank Copula. The trivariate Frank copula takes the form,

C(u1, u2, u3; θ) = −1

θ
ln

[
1 +

(e−θu1 − 1)(e−θu2 − 1)(e−θu3 − 1)

(e−θ − 1)2

]
(18)
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Joe Copula. The multivariate Joe copula takes the form,

C(u1, u2, ..., un; θ) = 1−

(
n∑

i=1

(1− ui)
θ −

n∏
i=1

(1− ui)
θ

)1/θ

(19)

with parameter, θ ≥ 1.

93



Appendix D: Univariate Distributions Goodness-of-Fit

Northern Case Study: Precipitation Distributions Goodness-of-Fit

Distribution NLogL BIC AIC AICc

Inverse Gaussian 172.74 352.53 349.47 349.86
Generalized Extreme Value 171.05 352.69 348.11 348.91

Birnbaum Saunders 172.86 352.78 349.73 350.12
Lognormal 172.93 352.90 349.85 350.24
LogLogistic 173.52 354.10 351.04 351.43
Gamma 174.79 356.63 353.58 353.96
Rayleigh 178.04 359.61 358.08 358.21
Nakagami 177.33 361.71 358.66 359.04
Weibull 177.92 362.90 359.84 360.23
Rician 178.04 363.13 360.08 360.47
Logistic 179.00 365.05 362.00 362.38

T Location Scale 177.99 366.56 361.98 362.78
Normal 181.32 369.69 366.63 367.02

Exponential 190.52 384.57 383.04 383.17
Extreme Value 191.38 389.81 386.76 387.15

Minimum value indicating best fit is bolded.

Northern Case Study: Tide Level Distributions Goodness-of-Fit

Distribution Name NLogL BIC AIC AICc

Generalized Extreme Value -2.89 4.80 0.22 1.02
LogLogistic -0.35 6.35 3.30 3.69
Lognormal 0.32 7.70 4.65 5.03

Inverse Gaussian 0.34 7.73 4.68 5.06
Birnbaum Saunders 0.35 7.76 4.71 5.09

Gamma 1.36 9.77 6.72 7.11
Logistic 1.93 10.92 7.86 8.25
Nakagami 2.59 12.23 9.18 9.56

t Location Scale 0.96 12.50 7.93 8.73
Rician 3.89 14.83 11.78 12.16
Normal 3.95 14.94 11.89 12.28
Weibull 7.52 22.09 19.04 19.42

Extreme Value 13.41 33.88 30.82 31.21
Rayleigh 24.97 53.47 51.94 52.07

Exponential 46.86 97.25 95.72 95.85

Minimum value indicating best fit is bolded.



Northern Case Study: Stream Discharge Distributions Goodness-of-Fit

Distribution Name NLogL BIC AIC AICc

Gamma 136.65 280.29 277.30 277.70
Nakagami 136.84 280.68 277.69 278.09
Weibull 137.46 281.92 278.92 279.32

LogLogistic 141.03 289.06 286.07 286.47
Lognormal 141.22 289.44 286.45 286.85

Birnbaum Saunders 145.43 297.85 294.86 295.26
Generalized Extreme Value 146.71 303.90 299.41 300.24

Generalized Pareto 147.72 305.93 301.44 302.27
Exponential 165.42 334.33 332.83 332.96

t Location Scale 171.01 352.51 348.03 348.85
Logistic 191.27 389.53 386.53 386.93
Normal 196.59 400.17 397.18 397.58

Inverse Gaussian 199.12 405.24 402.24 402.64
Extreme Value 208.54 424.08 421.09 421.49

Rayleigh 263.90 531.30 529.80 529.93
Rician 263.90 534.79 531.80 532.20

Minimum value indicating best fit is bolded.

Central Case Study: Precipitation Distributions Goodness-of-Fit

Distribution Name NLogL BIC AIC AICc

Inverse Gaussian 179.39 365.88 362.77 363.15
Birnbaum Saunders 179.50 366.10 362.99 363.37

LogNormal 179.56 366.24 363.13 363.50
LogLogistic 180.14 367.39 364.28 364.66

Generalized Extreme Value 178.60 367.86 363.20 363.97
Gamma 181.26 369.63 366.52 366.89
Rayleigh 184.40 372.36 370.81 370.93
Nakagami 183.69 374.50 371.39 371.76
Weibull 184.27 375.66 372.55 372.92
Rician 184.40 375.92 372.81 373.18
Logistic 185.51 378.12 375.01 375.39

t Location Scale 184.69 380.05 375.38 376.15
Normal 187.67 382.45 379.34 379.71

Exponential 197.23 398.01 396.45 396.58
Extreme Value 197.75 402.61 399.50 399.87

Minimum value indicating best fit is bolded.
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Central Case Study: Tide Level Distributions Goodness-of-Fit

Distribution Name NLogL BIC AIC AICc

Generalized Extreme Value -3.47 3.73 -0.94 -0.17
Inverse Gaussian -1.30 4.52 1.41 1.78

Birnbaum Saunders -1.29 4.54 1.43 1.80
Lognormal -1.25 4.61 1.50 1.87
Gamma -0.59 5.93 2.82 3.20

LogLogistic -0.47 6.17 3.06 3.44
Nakagami 0.17 7.46 4.35 4.72
Rician 1.08 9.27 6.16 6.53
Normal 1.12 9.35 6.24 6.62
Logistic 1.42 9.94 6.83 7.21

t Location Scale 1.11 12.90 8.23 9.00
Weibull 3.32 13.76 10.65 11.02

Extreme Value 7.01 21.14 18.02 18.40
Rayleigh 22.84 49.24 47.69 47.81

Exponential 45.35 94.26 92.71 92.83

Minimum value indicating best fit is bolded.

Central Case Study: Stream Discharge Distributions Goodness-of-Fit

Distribution Name NLogL BIC AIC AICc

Weibull 163.97 335.05 331.94 332.32
Gamma 164.37 335.86 332.75 333.12

LogNormal 165.52 338.15 335.04 335.41
LogLogistic 165.98 339.07 335.96 336.33
Nakagami 166.59 340.30 337.18 337.56

Birnbaum Saunders 166.75 340.60 337.49 337.87
Generalized Pareto 165.07 340.80 336.14 336.91

Exponential 168.80 341.16 339.61 339.73
Generalized Extreme Value 168.38 347.43 342.76 343.54

Inverse Gaussian 176.26 359.64 356.52 356.90
t Location Scale 181.73 374.12 369.46 370.23

Logistic 189.98 387.06 383.95 384.33
Normal 197.37 401.85 398.74 399.11

Extreme Value 212.06 431.23 428.12 428.50
Rayleigh 223.08 449.72 448.16 448.28
Rician 223.08 453.27 450.16 450.54

Minimum value indicating best fit is bolded.
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Southern Case Study: Precipitation Distributions Goodness-of-Fit

Distribution Name NLogL BIC AIC AICc

Weibull 163.97 335.05 331.94 332.32
Gamma 164.37 335.86 332.75 333.12

LogNormal 165.52 338.15 335.04 335.41
LogLogistic 165.98 339.07 335.96 336.33
Nakagami 166.59 340.30 337.18 337.56

Birnbaum Saunders 166.75 340.60 337.49 337.87
Generalized Pareto 165.07 340.80 336.14 336.91

Exponential 168.80 341.16 339.61 339.73
Generalized Extreme Value 168.38 347.43 342.76 343.54

Inverse Gaussian 176.26 359.64 356.52 356.90
t Location Scale 181.73 374.12 369.46 370.23

Logistic 189.98 387.06 383.95 384.33
Normal 197.37 401.85 398.74 399.11

Extreme Value 212.06 431.23 428.12 428.50
Rayleigh 223.08 449.72 448.16 448.28
Rician 223.08 453.27 450.16 450.54

Minimum value indicating best fit is bolded.

Southern Case Study: Tide Level Distributions Goodness-of-Fit

Distribution Name NLogL BIC AIC AICc

Inverse Gaussian -0.81 5.19 2.38 2.83
Birnbaum Saunders -0.81 5.19 2.39 2.83

LogNormal -0.79 5.22 2.42 2.86
LogLogistic -0.59 5.62 2.81 3.26
Gamma -0.51 5.78 2.98 3.42
Nakagami -0.14 6.53 3.73 4.17
Rician 0.33 7.47 4.66 5.11
Normal 0.35 7.51 4.70 5.15
Logistic 0.35 7.51 4.71 5.15

Generalized Extreme Value -1.20 7.81 3.60 4.52
Generalized Pareto 0.34 10.88 6.68 7.60
t Location Scale 0.34 10.89 6.69 7.61

Weibull 2.54 11.87 9.07 9.52
Extreme value 5.00 16.80 14.00 14.44

Rayleigh 25.07 53.54 52.14 52.28
Exponential 44.89 93.17 91.77 91.91

Minimum value indicating best fit is bolded.
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Southern Case Study: Stream Discharge Distributions Goodness-of-Fit

Distribution Name NLogL BIC AIC AICc

Birnbaum Saunders 197.05 400.91 398.11 398.55
Exponential 199.01 401.42 400.02 400.16

Inverse Gaussian 197.75 402.31 399.51 399.95
LogNormal 198.12 403.05 400.25 400.69

Generalized Pareto 196.53 403.26 399.06 399.98
Gamma 198.96 404.72 401.92 402.37
Weibull 199.00 404.81 402.01 402.45

LogLogistic 199.21 405.23 402.43 402.87
Nakagami 200.27 407.34 404.54 404.99

Generalized Extreme Value 199.27 408.75 404.54 405.47
Logistic 210.88 428.56 425.76 426.21

t Location Scale 209.84 429.89 425.68 426.61
Normal 211.80 430.40 427.60 428.05
Rayleigh 215.22 433.84 432.44 432.59
Rician 215.22 437.25 434.44 434.89

Extreme Value 218.97 444.73 441.93 442.38

Minimum value indicating best fit is bolded.
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