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ABSTRACT 

The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third-largest river 

basin covering Nepal and Bhutan and certain parts of China, India, and Bangladesh. Literature 

show that changes in precipitation have a significant impact on climate, agriculture, and the 

environment in the GBM and many natural disasters such as drought, flood, landslides, and 

riverbank erosion are also a function of precipitation in the GBM river basin. Two satellite-based 

precipitation products, Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-

Ensemble Precipitation (MSWEP), were used to study the relationship between seasonal 

precipitation as well as to analyze and compare precipitation trends over the GBM as a whole and 

for Pfafstetter level-05 sub-basins separately for the period 1983–2019. Positive correlations 

between precipitation within nearby hydrological sub-basins of the GBM were found during pre-



 
 

monsoon and monsoon seasons. However, only two sub-basins of the GBM show a significant 

correlation between pre-monsoon and monsoon precipitation among 32 hydrological basins based 

on PERSIANN-CDR. The correlation between ENSO and seasonal precipitation was also studied. 

A higher negative correlation between ENSO and precipitation in the monsoon season was found 

than in the pre-monsoon season. A non-parametric Modified Mann-Kendall test was applied to 

determine significant trends in monsoon (June–September) and pre-monsoon (March–May) 

precipitation. The results show an inconsistency between the two precipitation products. However, 

both products strongly indicate that precipitation has recently declined in the pre-monsoon and 

monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several 

previous studies. The results did not support precipitation as a predictive driver in causing 

riverbank erosion in coastal Bangladesh. The findings of the present study provide useful 

information for managing water crises, agricultural production, and preparing for different natural 

hazards in the GBM river basin.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Precipitation is one of the most important climatic variables (Hamal et al., 2020; 

Sayemuzzaman & Jha, 2014 ) and has a direct connection to the economy, natural ecosystems, and 

human well-being (Stefanidis & Stathis, 2018). Precipitation recharges potable water supplies, 

increases hydropower generation and improves irrigation systems (Duncan & Biggs, 2012). In 

sum, precipitation and its distribution influence the development of society and the evolution of 

ecosystems (Ruiz-Alvarez et al., 2020). Therefore, it is essential to measure precipitation at a 

global scale for the understanding of the climate, weather, hydrology, and ecology (Wentz et al., 

2007). People living in the Ganges-Brahmaputra-Meghna (GBM) river basin depend highly on the 

river system for agricultural, industrial, and domestic purposes (Mirza et al., 1998). Changes in 

precipitation have a huge impact on agriculture, economy and appropriate water resources 

planning for countries in the GBM (GC et al., 2021). For instance, 80% of the population in 

Bangladesh (Shahid, 2011) and Nepal (Karki & Gurung, 2012) depend on rain-fed agriculture, and 

agriculture contributes about 20% of the gross domestic product in India (Zaveri et al., 2016), 

indicating precipitation directly impacts the livelihood of countries within the GBM river basin 

(Duncan & Biggs, 2012). Unpredictable rainfall and extreme events affect land productivity, 

agriculture, food security, water availability, and livelihood (Shahid, 2011). Moreover, changes in 

precipitation cause many natural hazards, such as landslides, drought, flood, and riverbank erosion 

in the GBM (Stefanidis & Stathis, 2018; Hussain et al., 2018; Bisht et al., 2018). Therefore, it is 

essential to understand precipitation variations based on spatial and temporal patterns for a better 

understanding of regional water balances, risks of natural hazards, sustainable rural and forest 
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development, and effective management of water resources (Shahid, 2011; Sayemuzzaman & Jha, 

2014; Stefanidis & Stathis, 2018; Bisht et al., 2018).  

1.2 Problem Statement 

Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third-largest river basin 

covering approximately 1.72 million km2 of five different nations. It is elongated from the foothills 

of the Himalayan Mountains to the Bay of Bengal and has a unique physiographic feature (Islam 

et al., 2010). Studying precipitation variability is essential in the GBM due to its high impact on 

agriculture, human settlements, and environments. Moreover, an abundant amount of water during 

the monsoon season leads to flooding and riverbank erosion in the GBM basin. To better 

understand whether monsoon rainfall could be a predictor for riverbank erosion, this study first 

examines the relationship between pre-monsoon (March-April-May) and monsoon (June-July-

August-September) precipitation patterns of the GBM sub-basins. Secondly, this study 

investigates variability in seasonal precipitation during El Niño /Southern Oscillation (ENSO) with 

respect to hydrological basins and water routing distance to determine whether ENSO can be a 

predictor for riverbank erosion in the GBM river basin. Third, this study investigates trend 

detection on monsoon and pre-monsoon precipitation over the entire GBM river basin and within 

34 pre-defined hydrological sub-basins of the GBM separately to better understand trends in 

erosion. There is a lack of research in precipitation trend analysis in hydrological sub-basins of the 

GBM, even though these spatial units are critical for water management. In addition to studying 

seasonal precipitation, the relationship of riverbank erosion with local extreme daily precipitation 

is investigated. Several previous studies have estimated the riverbank erosion in the GBM river 

basin, but none of the prior research has attempted to establish the relationship between 

precipitation and riverbank erosion, and the current research intends to fill this gap. Overall, this 
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research aims to examine the relationship between seasonal precipitation based on hydrological 

sub-basins for a more regionally refined analysis of precipitation variability, precipitation 

relationships with ENSO, and local daily extreme precipitation in causing riverbank erosion in the 

coastal Bangladesh. The research results will be useful to academics, governmental officials, 

national planners, and concerned authorities to plan a resilient society that minimizes risk from 

riverbank erosion. 

1.3 Research Questions 

The principal objective of the study is to analyze pre-monsoon and monsoon precipitation 

variability in the GBM river basin and its relation in causing riverbank erosion in coastal 

Bangladesh. This study will focus on the following research questions to realize the objective. 

1. What is the relationship between pre-monsoon and monsoon precipitation in the GBM river 

basin based on hydrological sub-basins vs. water routing distance? 

2. Do climate teleconnections, e.g., ENSO, have any relationship with seasonal precipitation 

in the GBM river basin? 

3. What are the pre-monsoon and monsoon precipitation trends in the GBM river basin from 

1983 to 2019? 

4. What is the relative importance of localized extreme daily precipitation versus basin-scale 

seasonal precipitation for riverbank erosion in the study area?



 
 

CHAPTER 2: LITERATURE REVIEW 

This chapter reviews literature and discusses monsoon precipitation, pre-monsoon 

precipitation, extreme daily precipitation, seasonal precipitation trends, satellite-based 

precipitation products, validation of satellite products, ENSO, water routing distance, and 

riverbank erosion research around the world. 

2.1 Monsoon Precipitation 

The term monsoon first originated from an Arabian word mausim, meaning season. 

Ramage (1971) defined monsoon as a seasonal variation in wind and precipitation. Alamgir (2009) 

described monsoon as a seasonal shift of winds created by the land's annual temperature variation 

in contrast with the connected ocean surface. Similarly, according to other researchers Kumar & 

Naidu (2020), monsoon rainfall occurs due to equatorial maritime air masses, and the general 

circulation associated with monsoon precipitation is of continental scale. 

Generally, monsoon is denoted as a rainy phase of a seasonally changing pattern.  While 

the spatial organization of precipitation, especially in remote areas, is uncertain due to the lack of 

data, certain temporal patterns of precipitation, such as those associated with the monsoon, are 

well established. The season that runs from June through September is called monsoon season in 

South Asia. The monsoon rainfall is highly erratic, and its prediction is essential in the South Asian 

context (Romatschke & Houze, 2011). Highly unpredictable monsoon causes severe hardship to 

millions of people living in the GBM basin, especially those living in the low land of Bangladesh 

and India. However, some spatial and temporal patterns may be predictable, which would aid 

decision-makers and stakeholders in managing water resources and natural hazards (Mosaffa et 

al., 2020). Most countries in South Asia, including Bangladesh, Nepal, India, and Bhutan, receive 
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70 to 80% of annual rainfall during the monsoon season ( Mirza, 2011). Due to this reason, there 

is always a risk of moderate to severe floods affecting agricultural land, infrastructures, properties, 

human settlements, and environments in the GBM river basin during the monsoon months. 

In contrast, the amount of drinking water availability, irrigation, and hydropower energy is 

also determined by the monsoon precipitation in South Asia (Duncan & Biggs, 2012). Precipitation 

during the monsoon season forms complex spatiotemporal patterns due to complex topography 

and atmospheric circulation (Malik et al., 2010). Therefore, it is necessary to analyze monsoon 

precipitation for better preparation and adaptation.  

The flow of Ganges and Brahmaputra increases from 10000 m3/s to 80000 m3/s-140000 

m3/s until early September, accelerating different natural hazards such as landslides, floods, and 

riverbank erosion within the countries of GBM. The downstream countries predominantly suffer 

from riverbank erosion and flooding, and the upper reaches suffer from landslides. For example, 

the mean annual rainfall of Bangladesh varies from 1400mm in the western part to 5000mm in the 

northeast region (M. Rahman, 2013). The internal rainfall, high flows of three major rivers, and 

low-lying floodplains lead to wide inundation every year in Bangladesh (Ministry of Water 

Resources of the People’s Republic of Bangladesh, 2000). Nepal and Bhutan experience more 

landslides during the monsoon season (Gerrard & Gardner, 2000) and (Dikshit et al., 2019). 

Landslides take human lives and damage infrastructures and road networks in Bhutan (Dikshit et 

al., 2019) and Nepal (DAHAL, 2012; Petley et al., 2007).  

2.2 Pre-monsoon Precipitation 

The pre-monsoon rainfall season occurs due to tropical maritime air masses, and the 

general circulation associated with pre-monsoon season is of subcontinental scale (Kumar & 
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Naidu, 2020). Due to this reason, pre-monsoon season is appropriate to refer to the southerlies or 

southwesterlies over the Indian peninsula during April and early May. Pre-monsoon starts from 

March to May in South Asia, where April and May contribute a higher amount of rainfall (Shahid, 

2011). Only 15-20 % of annual rainfall occurs during the pre-monsoon season (March-April-May) 

in the GBM river basin (Bajracharya et al., 2015). In addition, pre-monsoon precipitation has a 

large  spatial and temporal variation (Kumar & Naidu, 2020) in the GBM river basin. According 

to (Kumar & Naidu, 2020), the important rain-bearing systems during this season are mesoscale 

convective systems, thunderstorms, and tropical cyclones. The cloud grows vertically during the 

pre-monsoon season maximizing during the late afternoon and early evening hours. Storms are 

triggered by high temperature, low level moisture, and conditional instability. Moreover, pre-

monsoon rainfall is patchy in nature 

(https://meteorologicalconsultant.wordpress.com/2017/04/09/difference-between-monsoon-and-

pre-monsoon-rain). Recent research conducted by (Sharma et al., 2021) found that pre-monsoon 

precipitation is increasing a small amount in the GBM river basin using precipitation data from 

1901 to 2016. Previous research particularly focusing on the countries of the GBM river basin, 

also shows that pre-monsoon precipitation is increasing over time. For instance, the amount of 

precipitation during the pre-monsoon is gradually increasing in Bangladesh over the time period 

of 1958–2007 (Shahid, 2011) and India (Kumar & Naidu, 2020) during 1970–2015. Alamgir 

(2009) also found that the pre-monsoon maximum rain rate is larger than the summer and winter 

monsoon (December–February) in Bangladesh using four years (2000–2003) of precipitation data. 

Rahman & Lateh (2017) also reported that rainfall during pre-monsoon and post-monsoon 

(October–November) is unpredictable in Bangladesh. He found that the pre-monsoon maximum 

rain rate is larger than the summer monsoon and winter monsoon at 114.19, 73.88, and 49.28 

https://meteorologicalconsultant.wordpress.com/2017/04/09/difference-between-monsoon-and-pre-monsoon-rain
https://meteorologicalconsultant.wordpress.com/2017/04/09/difference-between-monsoon-and-pre-monsoon-rain
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mm/h, respectively during the period of 1971 to 2010. The low land of Nepal has experienced 

significantly increasing pre-monsoon precipitation from 1981 to 2010 (Karki et al., 2017). 

Pre-monsoon rainfall has importance in Bangladesh because 70% of total food grain is 

grown during this period (Shahid, 2011). However, the activity of pre-monsoon precipitation is 

low compared to the monsoon and winter seasons in India. Pre-monsoon precipitation is useful for 

mango, jute, rice, and tea cultivation in West Bengal, India, but it provides little rain to dry areas. 

There is less literature on pre-monsoon rainfall than summer monsoon and winter monsoon rainfall 

(Kumar & Naidu, 2020).  

2.3 Extreme Daily Precipitation 

An extreme event is a rare meteorological event at a particular place or time of the year, 

such as heatwaves, cold waves, heavy rainfall, drought, and floods. When the daily precipitation 

exceeds a climatological threshold of its seasonal or annual precipitation, it can be considered 

extreme daily precipitation (Liebmann et al., 2001). According to the authors, heavy precipitation 

events are disruptive in nature, damaging crops and infrastructures, displacing urban populations 

and contributing to flooding and riverbank erosion. Likely, Ruiz-Alvarez et al. (2020) emphasize 

that  normal rainfall is beneficial to rain-fed agriculture, ecosystems, and daily life, but frequent 

extreme events have adverse effects on accelerating floods, riverbank erosion, landslides, and high 

runoff (Ruiz-Alvarez et al., 2020). Precipitation extremes change in a warming climate (Shiu et 

al., 2012), and according to their findings, about 100% increase for the annual top 10% heavy 

precipitation and about 20% decrease for the light and moderate precipitation for one degree 

warming in global temperature. Other studies support that increasing extreme precipitation might 

be due to global warming (Marelle et al., 2018; Roy & Balling, 2004). One researcher (Liebmann 

et al., 2001) mentions that there is an expectation that the frequent occurrence of extreme events 
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in some places may have a relationship to the state of ENSO. However, detail studied is needed to 

make any conclusion for a particular region. From the past two decades, extreme events have 

received the attention and interest of many researchers as evidence mounts for increasing extreme 

precipitation events around the globe (Roy & Balling, 2004; Ajjur & Riffi, 2020). Several studies 

also found that extreme precipitation days are increasing, and the seasonality of extreme 

precipitation is shifting. For instance, South Asia is suffering from the consequences of extreme 

daily precipitation in late October (https://blogs.agu.org/landslideblog/2021/10/20/south-asian-

monsoon-1/). Marelle et al. (2018) studied the changing seasonality of extreme daily precipitation 

using global and regional climate models from the Coupled Model Intercomparison Project phase 

5 and the Coordinated Regional Downscaling Experiment, in 1871–1900, 1976–2005, and 2071–

2100 for an extreme future emission scenario. The findings show that that extreme precipitation 

seasonality will be shifted by the end of 21st century. 

2.4 Seasonal Precipitation Trends in the GBM river basin 

Precipitation trend analysis can help to better interpret changes in hydrology and ecosystem 

services for countries within the GBM (Karpouzos et al., 2010). According to Gajbhiye et al. 

(2016), it is essential to study long-term precipitation trends in India because food supply and 

economic well-being are based on rain-fed agriculture. Ahmad et al. (2015) mention that a precise 

precipitation trend analysis can be useful to improve the future economy in Pakistan because of 

their rain-fed agriculture. Scholars have conducted various studies to estimate precipitation trend 

analysis over the years in river basins within the GBM (Mirza et al., 1998; Sharma et al., 2021; 

Khandu et al., 2017; Kothyari et al., 1997; Janes et al., 2019; Immerzeel, 2008). Mirza et al. (1998) 

studied the trends and persistence in precipitation in the GBM river basin and found that the 

Ganges river basin has a stable precipitation trend, but Meghna and Brahmaputra basins show 

https://blogs.agu.org/landslideblog/2021/10/20/south-asian-monsoon-1/
https://blogs.agu.org/landslideblog/2021/10/20/south-asian-monsoon-1/
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contrasting results for upstream and downstream. Sharma et al. (2021) analyzed precipitation 

trends using historical Climate Research Unit (CRU) monthly precipitation gridded data in the 

GBM river basin for four distinct seasons. The results show that the precipitation is decreasing in 

most places of the GBM river basin during the monsoon season (June–September), whereas the 

precipitation was slightly increasing in most of the regions during the pre-monsoon season from 

1901 to 2016. The study reported no such change for winter, and only a negligible precipitation 

trend was seen in the post-monsoon season. A study by Khandu  et al. (2017) showed that 

precipitation in the high rainfall regions of northeast India, Bhutan, Nepal, and Bangladesh 

decreased up to 39 mm per decade in the monsoon season from 1998 to 2013.  

2.5 Satellite-based precipitation products 

The three promising primary methods to measure precipitation around the world are rain 

gauges, radars, and satellites. Among them, rain gauges provide reliable ground-based direct 

rainfall data. However, intermittent data coverage over most of the continents is the main 

constraint. Radar-based products are not available in many countries due to the cost and beam 

blockage by terrain. These two products, radar and rain gauge, do not measure precipitation over 

oceans, whereas satellite-based products provide rainfall measurements from both land and sea 

with generally good accuracy (Nguyen et al., 2018). In fact, satellite-based products have been 

rapidly developing over the past few decades and are highly applicable for estimating precipitation 

at regional and global scales.  

The Tropical Rainfall Measurement Mission (TRMM) was developed in 1997 as the first 

satellite-based mission to estimate precipitation (Kummerow et al., 2000) and marked the 

beginning of a new era (Nguyen et al., 2018). It ended after a successful 17 years of precipitation 

measurement and was followed by the Global Precipitation Measurement (GPM) mission (Hou et 
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al., 2014). During this time, multiple satellite-based products were developed and are being used 

around the globe. These products mainly use infrared and passive microwave imagery (Guo et al., 

2015), and the algorithms are different for each product (Nguyen et al., 2018). They vary in 

measurement accuracy, sampling frequency, and merging methodology (Hou et al., 2014). The 

commonly used satellite-based precipitation products around the globe are TRMM Multisatellite 

Precipitation Analysis (Huffman et al., 2007), Climate Prediction Center morphing technique 

(CMORPH) (Joyce et al., 2004), Precipitation Estimation from Remotely Sensed Information 

Using Artificial Neural Networks (PERSIANN) (Sorooshian et al., 2000), and Integrated 

Multisatellite Retrievals for Global Precipitation Measurements (IMERG) (Huffman et al., 2019). 

These products are highly useful for developing countries where long-term gauge-based data are 

not available. The current study uses PERSIANN-Climate Data Record (CDR) because it has 

successfully been used in GBM river basin by several researchesr, for instance, Shah & Mishra 

(2016), Mondal et al. (2018), Hussain et al. (2018), Curtis et al. (2017), and Multi-Source Weighted 

Precipitation (MSWEP) products due to its higher 0.1 degree spatial resolution for precipitation 

estimation and analysis.  TRMM is not used because of its shorter data record. 

2.6 Validation of Satellite-based Precipitation Products 

Satellite-based precipitation products are highly applicable in regions where rain gauge 

station data are sparsely distributed, and unable to provide continuous data for long-term studies 

(Atiah et al., 2020; dos Reis et al., 2017). It is necessary to validate satellite estimates because the 

accuracy of these rainfall products over different spatial and temporal scales is unknown. 

Researchers around the world have worked at validating satellite-based precipitation products 

against traditional rain gauge stations (Ashouri et al., 2016; Atiah et al., 2020; dos Reis et al., 2017, 

2017; Katiraie-Boroujerdy et al., 2017; Mazzoleni et al., 2018;Thiemig et al., 2012). Validation 
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mainly focuses on checking the reliability of hydrometeorological measures, such as seasonal 

precipitation, dry season, extreme daily precipitation, etc. (Thiemig et al., 2012).  

For the GBM, rain gauge station data are limited due to the steep topography, climatic 

conditions, and lack of funding. Moreover, limited numbers of rain gauges make spatial averaging 

more difficult. In contrast, satellite-based rainfall products estimate precipitation with high spatial 

and temporal resolution, covering the whole globe, including oceans, high mountains, and remote 

areas. Using satellite data helps resolve the issue of data scarcity and discontinuity, especially in 

developing countries. This study aims to evaluate the performance of two satellite-based rainfall 

products (PERSIANN-CDR and MSWEP) against Nepal’s 223 rain gauge station data from 1983 

to 2009.  Nepal was chosen due to the availability of data (the author is Nepali) and the importance 

of validation in high-elevation variable terrain. Although, evaluating the performance of satellite-

based precipitation products over complex topography of the GBM river basin are still very limited 

(Bajracharya et al., 2015). 

Some example of validation studies comparing PERSIANN-CDR and MSWEP with 

ground-based observations and radar data are as follows. PERSIANN-CDR compared favorably, 

during Hurricane Katrina 2005, with gauge-adjusted stage IV radar data, and PERSIANN-CDR 

reproduced a major flood event over Sydney, Australia, in 1986 with similar results as a gridded 

daily gauge product (Ashouri et al., 2015). In a comparison between the probability density 

function of PERSIANN-CDR and CPC gauge data and TMPA v7 over the contiguous United 

States, PERSIANN-CDR only underestimated the frequency distribution (Ashouri et al., 2015). 

PERSIANN-CDR was used to study the extreme daily precipitation in the eastern China monsoon 

region. It produced a similar result with the ground-based East Asia product in estimating extreme 

daily precipitation (Miao et al., 2015). (Ashouri et al., 2016) also studied the efficacy of the 
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PERSIANN-CDR product in simulating streamflow in three river basins in Oklahoma, Arkansas, 

and Missouri, United States. PERSIANN-CDR proved capable in hydrological rainfall-runoff 

modeling applications over three decades. PERSAINN-CDR also performed better in Indian 

subcontinental basins for real-time streamflow simulation (Shah & Mishra, 2016). Thus, there is 

evidence that PERSIANN-CDR can be used as a long and reliable data set for climate and 

hydrological studies (Ashouri et al., 2015). Similarly, researchers have conducted some validation 

tests for the MSWEP precipitation product around the world. However, more work is needed. (Bai 

& Liu, 2018) recently validated precipitation on the Tibetan plateau comparing five different 

satellite products CHIRPS, CMORPH, PERSIANN-CDR, TMPA 3B42 including MSWEP during 

the period 1998-2012. The five products were validated against precipitation data from 21 rain 

gauge station using the point to pixel method. Among the five products, MSWEP showed the best 

consistency with the gauge observations. Another validation study was conducted by (Nair & Indu, 

2017) for MSWEP over India. They concluded that MSWEP only performed well for the 

estimation of daily precipitation and was unsuitable for the daily extremes. On the contrary, 

MSWEP performed well in the Lancang-Mekong river basin, suggesting MSWEP could be used 

for scientific research for this river basin (Tang et al., 2021). (Awange et al., 2019) evaluated 

MSWEP over Australia and Africa from 1981-2016. Their study shows that MSWEP performed 

well over most of Australia except in those areas where heavy monsoon rainfall occurs. The study 

did not find any outstanding improvement compared to other products in Africa. However, they 

suggested that MSWEP has a potential application to water storage flux, discharge and climate 

impacts over the two continents. Lakew (2020) compared the five precipitation products of gauge 

adjusted Climate Prediction Center Morphing Technique (CMORPH), Tropical Rainfall 

Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis 3B42 version 7 (TMPA), 
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ERA-Interim (ERAI), Global Precipitation Climatology Centre (GPCC), and MSWEP for the 

Upper Blue Nile basin using gauged rainfall and streamflow data. His results indicate that MSWEP 

precipitation shows consistently better performance when compared to other precipitation products 

for the Upper Blue Nile basin. 

2.7 El Niño /Southern Oscillation (ENSO) 

An important climate phenomenon in the Pacific Ocean that has been shown to influence 

the monsoon is the El Niño/Southern Oscillation (ENSO). ENSO denotes the interannual 

variability of the global climate system that irregularly occurs around 2 to 8 years of interval and 

is characterized by warmer (El Niño) and colder (La Niña) than usual ocean temperature in the 

equatorial eastern Pacific (Nyenzi & Lefale, 2006).  

 Walker (1924) first introduced possible linkages between the Southern Oscillation and 

Indian summer monsoon rainfall (ISMR). Afterward, many studies have been conducted to 

examine the relationship between ENSO and ISMR (Kirtman & Shukla, 2000;Ashok et al., 2004; 

Wu & Kirtman, 2004; Gadgil et al., 2004; Ashok & Saji, 2007; Ihara et al., 2008; Xavier et al., 

2007; Curtis et al., 2018). These studies continually reveal the association between ENSO and 

monsoon variability. For example, several monsoon drought and flood years are associated with 

ENSO (Turner & Annamalai, 2012). Bhatla et al. (2015) studied the 142-year long historical 

rainfall data record and found that the severe droughts in the Indo Gangetic Plains are associated 

with El Niño events. Moreover, ENSO induces decreased South Asian monsoon rainfall by 

regulating the length of the rainfall season (Goswami & Xavier, 2005). Again, Bhatla et al. (2015) 

found that summer monsoon rainfall is enhanced in the El Niño years and subdued in the La Niña 

years. Chowdhury (2003) studied the relationship between ENSO and precipitation in the GBM 

basin from 1962 to 2000 and found an association. This study showed significant rainfall deficits 
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in strong El Niño years, whereas rainfall remained moderate to high during the moderate El Niño 

and La Liña years. According to Chowdhury (2003) if the Walker circulation is weak, the Hadley 

circulation is strong and upper tropospheric winds in the Western Pacific are westerly and as a 

consequences, the tropical disturbances are transported northward or north eastward depriving 

Bangladesh from precipitation and causing rainfall deficit or drought. On the contrary, when the 

southern oscillation index (SOI) is negative in moderate El Niño years, the Hadley circulation is 

not as strong as during major El Niño years and, therefore, it allows the tropical disturbances to 

cross into the Bay of Bengal and Bangladesh causing heavy rainfall and flooding (Chowdhury, 

2003). Furthermore, this study revealed that the Ganges is a drier basin, and the rainfall variability 

in normal years is higher than in the wetter basins like Brahmaputra and Meghna. This finding is 

also supported by the earlier study of (Ropelewski & Halpert, 1987), who examined the world’s 

19 regions, including India, for a relationship between precipitation and ENSO. This finding 

indicates that the Ganges has a strong negative association with El Nino (Figure 1).  

 

Figure 1: Global precipitation anomalies due to El Nino (Source: https://iri.columbia.edu/our-

expertise/climate/enso/) 
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Another researcher, Whitaker et al. (2001), used streamflow data of the Ganges river from 

1934 to 1993 to study the relation with ENSO. The results show the existence of a strong linear 

association, and the rate of change of ENSO is statistically related to the Ganges flow. Moreover, 

in the GBM river basin, Khandu et al. (2017) found that ENSO influenced about 10-20 % of the 

total annual rainfall over Bhutan, Nepal, Bangladesh, and north-eastern India from 1998 to 2013. 

Shrestha (2000) also revealed a significant relationship between monsoon precipitation and the 

Southern Oscillation Index (SOI) in Nepal. According to his result, precipitation was less in Nepal 

when the SOI was low. 

2.8 Riverbank erosion in Bangladesh 

Riverbank erosion is a regular phenomenon in a river system. When a river is in the natural 

flow state, and no external disturbances (human caused changes such as grazing, logging, 

construction of dams and flood control levees, channelization, urban development etc.) are present, 

the amount of material eroding from the riverbank and deposited as new sediments into the point 

bars become balanced. Ideally, the river cannot flow without any external disturbances all the time. 

When external factors play roles in the river system, they disturb the flow and turn the river into a 

non-equilibrium state. This process widens the channel and accelerates riverbank erosion. At this 

point, the deposited amount of sediment cannot balance the bank erosion, and rather it widens the 

bank (Madej et al., 1994).  

Riverbank erosion is one of the major and unpredictable hazards of the world (Abidin et 

al., 2017). The major river systems with high riverbank erosion rates include the Ganges-

Brahmaputra-Meghna (GBM) and Mekong rivers of Asia, Mississippi-Missouri river system of 

North America, Amazon river of South America, and Nile river of Africa (Das et al., 2014). The 

loss of land triggered by riverbank erosion is often a permanent phenomenon. Such a loss of 
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productive land creates a long-term effect on the economy, livelihood, and the environment. 

Moreover, it is hard to recover these lands once eroded (Das et al., 2014). 

Bangladesh, a low-lying delta of the Ganges, Brahmaputra, and Meghna river basin, is 

highly susceptible to riverbank erosion (Islam & Rashid, 2011). Riverbank erosion is a perennial 

process (Chowdhury & Ward, 2004), where 92 percent of the total annual runoff generated from 

the GBM basin flows through Bangladesh. Moreover, Bangladesh consists of more than 700 rivers 

and their tributaries and 2400 kilometers of coastlines, making it highly susceptible to floods and 

riverbank erosion in different locations, towns, and growth centers (Islam & Rashid, 2011). 

Annually the GBM basin carries nearly one billion tons of sediments and one trillion cubic meters 

of water, which erode a thousand hectares of the flood plain in Bangladesh (Islam & Rashid, 2011). 

According to (ADB, 2013), GBM eroded approximately 2000 km2 of land in Bangladesh over the 

past 40 years. Further, the Brahmaputra river eroded 3.82 square kilometers from 1996 to 2005 

and accreted 6.1 square kilometers from 1995 to 2015 (Hassan et al., 2017). Rahman (2013) also 

reported evidence of riverbank erosion and land accretion in Bangladesh. Figure 2 shows an 

example of net riverbank erosion and land accretion in coastal Bangladesh from 1984 to 2007. As 

a result, erosion poses a threat to the people, agricultural land, infrastructures, and religious 

monuments (Rahman, 2013). Riverbank erosion compels thousands of Bangladeshis to migrate to 

safer places from their original land every year. According to the Ministry of Water Resources of 

the People’s Republic of Bangladesh (2000), 729,000 people were displaced from their original 

land due to riverbank and char-land erosion from 1981 to 1993 in Bangladesh, which also erodes 

the family, kinship, and social ties. It is estimated that about one million people will directly or 

indirectly be affected by riverbank erosion each year (Islam & Rashid, 2011). It increases 

unemployment rates, poverty, and landlessness (Rahman, 2013). 
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Figure 2: Coastal Bangladesh’s land accretion and erosion from 1984 to 2007 (Source: 

Brammer, 2014). 

The reasons behind the increasing riverbank erosion are alluvial deposits, regular shifting 

of the river channel, and continuous changing of shape and depth (Islam & Rashid, 2011; Nath et 

al., 2013). For example, the annual channel shifting of the three major rivers Ganges, Brahmaputra, 

and Meghna, ranges between 60 m to 1600 m (Rahman, 2013). Another reason that triggers 

riverbank erosion in the Ganges is riverbed siltation that decreases the river's depth and increases 

the pressure on both walls of the river during heavy discharge (Thakur et al., 2012). When the 

threshold of carrying a sediment load is exceeded, the river changes the structures from 

meandering to braided, which are highly prone to riverbank erosion (Leopold & Wolman, 1970). 

Brahmaputra river has a braided nature and a high erosion rate (Richardson & Thorne, 2001;  

Sarma & Acharjee, 2018), and every year significant land that is occupied by inhabitants erodes 

(Akhtar et al., 2011).



 
 

CHAPTER 3: MATERIALS AND METHOD 

3.1 Study Area 

The Ganges-Brahmaputra-Meghna (GBM) River Basin is the world’s third-largest river 

basin after Amazon and Congo river basins (Chowdhury & Ward, 2004). It covers approximately 

1.75 million km2 (Mirza et al., 1998) and is home to 630 million people (FAO, 2011). GBM is a 

transboundary river basin (FAO, 2011) comprised of India (64%), China (18%), Nepal (9%), 

Bangladesh (7%), and Bhutan (3%) (Sharma et al., 2021 & FAO, 2011). Nepal and Bhutan are 

located entirely within the Ganges and Brahmaputra river basins, respectively. Whereas India and 

Bangladesh share areas with all three rivers basins and China is part of only the Ganges and 

Brahmaputra basins (FAO, 2011) (Figure 3).  

The GBM elevation ranges from −24 to 8642 m above sea level, as shown in Figure 4, 

prepared using hydrological data and maps based on the SHuttle Elevation Derivatives at multiples 

Scales (HydroSHEDS) data layer in ArcGIS. The GBM river basin is elongated from the higher 

mountainous region to the Bay of Bengal and has unique climatic and physiographic features that 

leads to four seasons: pre-monsoon, monsoon, post-monsoon, and winter (FAO, 2011). This study 

only focuses on pre-monsoon and monsoon seasonal precipitation analysis in the GBM river basin. 

Among the four seasons, more than 80% of the 1500 mm of GBM annual rainfall (FAO, 2011) 

accumulates in the monsoon season between June to September and the remaining 20% to 30% in 

the dry season. Less precipitation occurs in the Ganges compared to the Brahmaputra and Meghna 

river basins (Mirza et al., 1998). The Ganges river enters Bangladesh through the western side, 

and the Brahmaputra enters from the northern side. The three rivers meet in Bangladesh’s 

Chandpur district and flow into the Bay of Bengal as the Meghna river (Islam et al., 2010), 

comprising the world’s third-largest freshwater system (Mirza, 2011). This river system forms the 
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largest delta in the world (GOB-Bangladesh Planning Commission, 2018). A delta forms when 

larger rivers continuously deposit sediments at the land-sea interface over hundreds and thousands 

of years. The deposited sediments are highly productive and nutrient-rich (Ibáñez et al., 2019). 

Apart from the negative impacts like floods, riverbank erosion, climate change, sea-level rise, and 

drought, the GBM delta supports the lives of millions of people by creating opportunities in 

agriculture, fishing, and sea transportation. The land is highly fertile because of the deposited 

sediments and fine soils from upstream (GOB-Bangladesh Planning Commission, 2018). 

 

Figure 3: Study area map of the GBM river basin 
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Figure 4:  Digital elevation model of the GBM river basin. 

 

3. 2 Data 

3.2.1 Precipitation Estimation from Remotely Sensed Information Using Artificial Neural 

Networks- Climate Data Record (PERSIANN-CDR) 

Over the last two decades, various studies have been conducted by the PERSIANN family, 

namely PERSIANN, PERSIANN- CLOUD CLASSIFICATION SYSTEM (PERSIANN-CCS), 

and PERSIANN-CDR (Nguyen et al., 2018). The PERSIANN algorithm uses combined infrared 

imagery and passive microwave information from multiple Geosynchronous Equatorial Orbit 

(GEO) and Low Earth Orbit (LEO) satellites as an input to the Artificial Neural Network model. 

The PERSIANN-CDR used a modified PERSIANN algorithm to estimate the precipitation from 

1983 to the present (Ashouri et al., 2015). The PERSIANN-CDR precipitation product (Ashouri 

et al., 2015) was developed at the Center for Hydrometeorology and Remote Sensing (CHRS) at 
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the University of California, Irvine in collaboration with National Aeronautics and Space 

Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), and the 

United Nations Educational, Scientific and Cultural Organization (UNESCO) program for the 

Global Network on Water and Development Information for Arid Lands (Table 1). This 

PERSIANN-CDR algorithm eliminates passive microwave imagery and only uses the high 

temporal and spatial resolution infrared imagery from various international GEO satellites. This 

product uses the National Centers for Environmental Prediction (NCEP) stage IV hourly 

precipitation to train the Artificial Neural Network model. It is adjusted using the Global 

Precipitation Climatology Project (GPCP) version 2.2 monthly precipitation product to reduce the 

bias in the PERSIANN-CDR product. The bias-corrected final product uses a modified 

PERSIANN algorithm that adjusts gridded satellite infrared data (GridSat-B1) by the Global 

Precipitation Climatology Project (GPCP) monthly products to estimate global daily precipitation 

with 0.25 × 0.25-degree spatial resolution (Ashouri et al., 2015). It covers latitudes between 60° S 

and 60° N and provides rainfall data every 3 h from 1983 to the present. The gauge adjusted 

PERSIANN 3-hourly rainfall with 0.25° resolution ensures the precipitation data consistency and 

quality. Figure 5 explains the simplified algorithm process of PERSIANN-CDR (Ashouri et al., 

2015). These characteristics make the PERSIANN-CDR a reliable and useful satellite-based 

product for global climate studies and extreme weather events (Ashouri et al., 2015). It has been 

used continuously for different studies throughout the world by researchers in climate change, 

hydrology, water resources management, and natural hazards (Nguyen et al., 2018). Some other 

researchers around the globe have also shown the usefulness of the PERSIANN-CDR data by 

studying daily, monthly, and extreme precipitation patterns (Katiraie-Boroujerdy et al., 2017; 

Arvor et al., 2017; Miao et al., 2015; Ashouri et al., 2016; Ashouri et al., 2015). Shah & Mishra 
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(2016), Mondal et al. (2018), and Hussain et al. (2018) have further demonstrated the usefulness 

of PERSIANN-CDR in South Asia. Finally, this study extends Curtis et al. (2017), who studied 

monsoon precipitation patterns from 1983 to 2015 using the PERSIANN-CDR product in the 

GBM basin. Thus, PERSAINN-CDR has a track record of success in estimating rainfall in South 

Asia. It addresses the need for relevant, high-resolution, and long-term precipitation data for 

hydrological and climate studies (Ashouri et al., 2015). The required PERSIANN-CDR 

precipitation data from 1983 to 2019 was retrieved from the Center for Hydrometeorology and 

Remote Sensing (CHRS) data portal website at https://chrsdata.eng.uci.edu. The number of grid 

boxes covered by GBM river basin was 2309 (see Table 1 and Figure 6). 

 

 

Figure 5: A schematic diagram of the PERSIANN-CDR algorithm (Source: Ashouri et al., 2015) 

 

 

 

https://chrsdata.eng.uci.edu/


23 
 

 
Figure 6: A map showing the grid boxes covered by PERSIANN-CDR. Colors are randomized to 

show the grid resolution 

 

3.2.2 Multi-Source Weighted Ensemble Precipitation (MSWEP) 

MSWEP (Version 2) is a newly developed global precipitation product with 0.1-degree 

spatial resolution (Beck et al., 2019) that provides rainfall data at 3 hour temporal resolution from 

1979 to the present (Table 1). Figure 7 explains the detailed steps implemented to produce 

MSWEP. It uses gauges (WorldClim, Global Historical Climatology Network-Daily (GHCN-D), 

Global Summary of the Day (GSOD), and others), satellites (CMORPH, GridSat, Global Satellite 

Mapping of Precipitation (GSMaP), and TRMM Multi-satellite Precipitation Analysis (TMPA) 

3B42RT), and reanalysis-based products (European Centre for Medium-Range Weather Forecasts 

(ECMWF) interim reanalysis (ERA-Interim), Japanese 55-year Reanalysis (JRA-55), and National 

Centers for Environmental Prediction-Climate Forecast System Reanalysis (NCEP-CFSR)) to 

estimate precipitation over the entire globe (Beck et al., 2017). Compared to other precipitation 

products, MSWEP is more accurate in estimating precipitation over mountainous regions (Beck et 
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al., 2019). It also uses a precipitation gauge correction approach at a daily time scale to improve 

time mismatching (Beck et al., 2019). All these quality enhancements maximize the reliability of 

this product (Awange et al., 2019). However, there is a lack of scientific research using MSWEP. 

The required precipitation data was retrieved from the GloH2O website at 

http://www.gloh2o.org/mswep. The number of grid boxes covered by GBM river basin was 14,401 

(see Table 1 and Figure 8) 

 

Figure 7:Flowchart showing the main process implemented to produce MSWEP V2 (Source: 

Beck et al., 2019). 

 

 

 

 

 

 

 

http://www.gloh2o.org/mswep
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Figure 8: A map showing the grid boxes covered by MSWEP in the GBM river basin. Colors are 

randomized to show the grid resolution. 

 

Table 1: Summary of satellite-based precipitation product used in this study. 

Satellite-Based  

Precipitation 

 Product 

Spatial 

Resolution 

Temporal 

Resolution 

Spatial 

Coverage 

No. of Grid 

Boxes Covered 

by GBM 

Data 

Availability 

References 

MSWEP 0.1° 3h Fully global 14,401 1979–

Present 

Beck et al. 

(2019) 

PERSIANN-

CDR  
0.25° 3h 60°S–60°N 

globally 

2309 1983–

Present 

Ashouri et al. 

(2015) 

 

3.2.3 Rain Gauge Station Data 

Traditional rain gauge stations provide the most accurate rainfall data and are considered 

as an important complement for satellite-based observations. However, rain gauge data collection 

is challenging in many parts of the world due to the topography, economy, and a variety of 

administrative and technical reasons. GBM river basin has a similar problem with inadequate 
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gauge coverage for the whole basin.  This study uses 223 daily rain gauge observations from Nepal 

located entirely within the Ganges river basin (Figure 3) for validation (see Figure 9). Rain gauge 

station data was purchased from the Department of Hydrology and Meteorology of Nepal 

(http://dhm.gov.np/meteorological-station). The rain gauge data covers the period from 1983-2009 

for this analysis. The station data are randomly distributed (see Figure 9), but a large number of 

stations are installed at low elevation and very few are at higher elevation (Figure 9). The reason 

for choosing Nepal only, is the unavailability of rain gauge station data from other countries and 

the priority for validation over mountainous terrain. Generally, the validation of global satellite-

based precipitation products are based on direct comparison with rain gauge networks and their 

predictive ability of streamflow rate in the hydrological modelling categories (Bitew & 

Gebremichael, 2011; Hirpa et al., 2010). This study follows the direct comparison of satellite 

products PERSIANN-CDR and MSWEP to the rain gauge station data. This study assesses the 

accuracy and intercomparison of these two high-resolution satellite-based precipitation products 

(PERSIANN-CDR and MSWEP) for Nepal (GBM) from 1983 to 2009. 

http://dhm.gov.np/meteorological-station
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Figure 9: A Map of Nepal showing Locations of the 281 Rain Gauge Station. 

 

3.3 Method 

This section first discusses the continuous statistical indicator method to validate and 

compare two satellite products against the rain gauge station of Nepal. Secondly, the Pearson 

correlation coefficient method is described for the relationship between seasonal precipitation and 

ENSO based on hydrological sub-basins and water routing distance. Third, this section describes 

the modified Mann-Kendall test to study the precipitation trend from 1983 to 2019. Fourth, the 

shoreline transects and number of extreme daily precipitation are defined in determining the 

relationship between riverbank erosion and extreme precipitation in coastal Bangladesh.   

3.3.1 Analysis Methods for the Validation of the MSWEP and PERSIANN-CDR over Nepal (GBM) 

Before working on the main research questions, this study first evaluated the performance 

of two satellite-based rainfall products in providing reliable rainfall estimates for Nepal, one of the 
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countries of the GBM river basin. The results of the validation will be useful in selecting or 

rejecting these two products for Nepal. However, these findings limit any solid conclusion for the 

efficacy of these two products for whole GBM.  

At first, data from 281 daily rain gauge station were collected for the validation of 

PERSIANN-CDR and MSWEP products. This study excluded those stations that had less than 26 

years of precipitation data and excluded those years that were missing values more than 3 days of 

precipitation for both pre-monsoon and monsoon seasons. Therefore, this study only uses a yearly 

averaged sum of pre-monsoon and monsoon precipitation of 223 rain gauge stations from 1983 to 

2009 for the validation. Both pre-monsoon (March-April-May) and monsoon (June-July-August-

September) days were summed and averaged separately for validation using an R programming 

language. After that, MSWEP and PERSIANN-CDR precipitation data were averaged separately 

over the pre-monsoon and monsoon seasons for all grid boxes which lie within the latitude and 

longitude location of the Nepal station data. ArcGIS Pro 2.8.1 was used for averaging the satellite 

data.  

There are multiple ways to compare and validate different satellite-based precipitation 

products with other rainfall measurements on global and regional scales such as using categorical 

and volumetric indices, and continuous statistical measures (Ayehu et al., 2018). This study 

applied continuous statistical indicator to compare the precipitation between the rain gauge and 

these two satellite-based precipitation products (Tan et al., 2015; Tan et al., 2017). This method 

was successfully implemented by (Tan et al., 2015; Tan et al., 2017) on validating the PERSIANN-

CDR and other products with Malaysian rain gauge stations. The coefficient of determination (R2), 

Root Mean Square Error (RMSE), and the Relative Bias (RB) are included in the continuous 

indices. The coefficient of determination is widely used to evaluate the correlation between two 
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data sets, Root Mean Square Error measures the differences between two data sets, and Relative 

Bias estimates the systematic bias of satellite precipitation. The value of the coefficient of 

determination ranges between 0 and 1. The zero value shows no relationship between the data sets, 

and 1 shows the perfect correlation. The value of zero is a perfect score for RMSE. Therefore, the 

higher values of the coefficient of determination combined with the lower root mean square errors 

(RMSE) and relative biases (RB) indicate rainfall accuracy (Tan et al., 2015; Tan et al., 2017).  

The equations are as follows:  

𝑅2 =
∑ (𝑂𝑖−𝑂)(𝐸𝑖−𝐸)
𝑛
𝑖=1

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1 √∑ (𝐸𝑖−𝐸)
2𝑛

𝑖=1

         (1) 

𝑅𝑀𝑆𝐸 = √
∑ (𝐸𝑖−𝑂𝑖)

2𝑛
𝑖=1

𝑛
        (2) 

𝑅𝐵 =
∑ (𝐸𝑖−𝑂𝑖)
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

                  (3) 

Where the Oi and Ei denote the observed and expected rainfall at the ith value of the time 

series and n is the number of values, respectively. This research would be the first to validate the 

PERSIANN-CDR and MSWEP in the GBM basin. 

This study also tested the correlation between elevation of the rain and relative differences. 

The relative difference (RD) was first calculated as the absolute difference between rain gauge 

station data and satellite data. Then the final value was divided by rain gauge station data. The 

equation are as follows: 

𝑅𝐷 =
𝑅𝑎𝑖𝑛 𝑔𝑢𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛

𝑅𝑎𝑖𝑛 𝑔𝑎𝑢𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛
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3.3.2 Correlation Analysis 

Correlation analysis is a statistical method to measure degree of association between two 

quantitatively measured variables. The major work of this study was to analyze correlation 

between two variables. This study used the common Pearson Correlation Coefficient (r) to assess 

the strength of the two quantitative variables. For the two variables X and Y, correlation coefficient 

r is computed by the following equation:  

𝑟 =  
∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

√∑(𝑋𝑖 − 𝑋̅)2  ∑(𝑌𝑖 − 𝑌̅)2
 

 

The values of r always lie between -1 to 1. It is a unitless measure of correlation. This study 

tested correlation for significance at the 5 % level. 

3.3.3. Analysis Methods for the Relationship Between Pre-monsoon and Monsoon Precipitation in 

the GBM River Basin 

MSWEP and PERSIANN-CDR seasonal precipitation data were then averaged over the 

entire GBM river basin and within 34 pre-defined hydrological sub-basins of the GBM separately. 

The sub-basin boundaries correspond to the HydroBASIN GIS layer from the World Wildlife Fund 

(Lehner & Grill, 2013). Figure 10 shows the Pfafstetter level-05 sub-basins boundaries of the GBM 

obtained from the World Wildlife Fund (Gland, Switzerland). The Pfafstetter coding system was 

developed by Otto Pfafstetter in 1989 and is widely used for the description of watersheds or 

basins. It assigns ID numbers based on the topology of the land surface to describe watersheds as 

either basin, inter-basin, or internal basin. Pfafstetter level-05 corresponds to inter-basin due to the 

contribution of additional water to the main stem (Pfafstetter, 1989). Here, the coding number of 

each sub-basin increments from downstream to upstream. This study only considered 32 pre-
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defined hydrological sub-basins among the total of 34 when using PERSIANN-CDR. We excluded 

the two smallest sub-basins that were not covered by the 0.25-degree grid resolution of 

PERSIANN-CDR.  

 

Figure 10: Hydrological sub-basins boundaries of the Pfafstetter level-05 of GBM. Numbers are 

the Pfafstetter identification codes. Country boundaries are the red lines. 

 

3.3.4 Water Routing Distance  

A Water routing distance also known as flow length is the distance from one defined point 

to the outlet of the watershed. It calculates both the upstream and downstream distance. The main 

objective of the water routing tool is to calculate the longest flow path within a given basin. 

(https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/flow-length.htm). It is a 

method to measure distance traveled by streamflow within the river basin. Figure 11 shows that 

the higher the distance of the water bodies to the main channel, the smaller the water level 

fluctuations. This figure clearly shows the importance of flow length distance of water bodies to 
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the main channel to accelerate any natural hazard such as riverbank erosion. The objective of using 

water routing distance based sub-basins is to provide an alternative in relating precipitation 

variability in the GBM with riverbank erosion in the outlet of Bangladesh. 

 

 

Figure 11: Flood plain geomorphology schematic (Source: Alsdorf, 2003). 

Using drainage direction at 30 arc-second resolution extracted from HydroSHEDS, the 

water routing distance (Figure 12) to the outlet were studied in ArcGIS for every PERSIANN-

CDR grid cell in the GBM. Seasonal precipitation averages were taken over cells with equal flow 

lengths (EFL) (Figure 13) from 1983 to 2019. From this information, ten distance classifications 

were defined (Figure 13) using the equal interval method in ArcGIS Pro.  While there are 

relationships between the EFL-based classifications and the pre-defined hydro basins (compare 

Figure 10 and Figure 13), the EFL-based classifications can be divided spatially.  For example, 

water would travel an equally long distance from the western GBM as the northern GBM (see 9 

and 10 in Figure 13).  Finally, this study adopted the same correlation statistics as the hydrological 

sub-basins in the R programming language. Figure 14 shows the average sizes of water routing 

distance and hydrological sub-basins. 
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Figure 12: Initial water routing distance also known as flow length Map of GBM River Basin. 

 

Figure 13: Classification of water routing distance (flow length) based on GBM river basin. Sub-

basin 1 indicates the shortest distance to reach the outlet of the basin once the precipitation occurs 

compared to 10. 
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Figure 14: (a) shows the average sizes of water routing distance of the grid cells and (b) shows 

the average sizes of hydrological sub-basins of GBM river basin. 

 

3.3.5 Analysis Methods for the Relationship Between Multivariate ENSO Index (MEI) and 

Seasonal Precipitation Based on Hydrological Sub-basins and Water Routing Distance in the 

GBM River Basin 

This study investigated the interannual variability in seasonal precipitation related to ENSO 

in the GBM river basin based on 32 hydrological sub-basins and water routing distance. This study 

only uses PERSIANN-CDR satellite-based precipitation data for the analysis. MSWEP could have 

also been used, but we found a strong year-to-year correlation between the two products, so any 

differences are likely to be small (see Figures 32 and 33 and accompanying discussion).  There are 

several ways to measure ENSO based on mean sea level pressure difference, sea surface 

temperature, outgoing longwave radiation, and wind across the tropical pacific (Jiménez-Esteve & 

(

a) 

(

b) 

(a) 

(b) 
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Domeisen, 2018). The widely used indicators are the Southern Oscillation Index and several sea 

surface temperature indices. A multivariate ENSO index (MEI) is generated to integrate more 

information on coupled ocean-atmosphere phenomena. It includes sea level pressure, sea surface 

temperature, zonal and meridional components of surface wind, surface air temperature, and 

cloudiness. In this study, MEI was chosen to study ENSO and data was retrieved from the NOAA 

Physical Science Laboratory (https://psl.noaa.gov/data/climateindices/list/). This study used 

correlation statistics in the R programming language for correlation between MEI and seasonal 

precipitation based on hydrological sub-basins and water routing distance in the GBM river basin. 

ArcGIS Pro 2.8.1 was used to create maps for this study. 

3.3.6 Analysis Methods for Precipitation Trends in the GBM River Basin Using Seasonal 

Precipitation Based on PERSIANN-CDR and MSWEP 

The Modified Mann-Kendall test was applied to quantify and compare the trend pattern of 

the long-term time series of PERSIANN-CDR and MSWEP seasonal precipitation. The 

‘modifiedmk’ package was used in R to write the algorithm for the non-parametric modified 

Mann-Kendall trend test, and ArcGIS Pro 2.8.1 was used to create maps for this study. The 

methodology is described in Figure 15.  

https://psl.noaa.gov/data/climateindices/list/
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Figure 15: Flow chart of the methodology demonstrating the steps used in precipitation trend in 

this study. 

3.3.6.1 Mann-Kendall Test 

Various statistical methods such as parametric, non-parametric, and Bayesian methods 

have been used to detect trends. Many researchers have used the Mann-Kendall test to estimate 

precipitation trends in different parts of the world (Sayemuzzaman & Jha, 2014) (Mirza et al., 

1998); Kothyari et al., 1997), (Ghalhari et al., 2016),(Júnior et al., 2020),(Hu et al., 2019). A Mann-

Kendall trend test is a non-parametric test used (Mann, 1945) and (Kendall, 1975) to identify trends 

in time series data. It is frequently used to study spatial variation and temporal trends of hydro-

climatic time series (Mondal et al., 2012). The null hypothesis of the Mann-Kendall trend test 

assumes that there is no trend in the data. The statistical method is briefly discussed below. 

The Mann-Kendall statistic Mann (1945), Kendall (1975) is given as: 

 
Satellite-based Precipitation Product  

MSWEP (0.1-degree resolution) PERSIANN-CDR (0.25-degree resolution) 

GBM Whole 34 Hydrological Sub-basins 

Precipitation Trend Analysis, 1983–2019 (Pre-

monsoon, Monsoon Precipitation) 

Modified Mann-Kendall Test 

32 Hydrological Sub-basins 

 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1   

(

(1) 
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where, 

n = number of data points, 

xi = data value in time series I, 

i = 1, 2, …, n – 1, 

xj = data value in time series j (where j > i), 

j = i + 1, i + 2, …, n, 

sgn (xi − xj) is the sign function. 

The variance is computed as: 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑖(𝑡𝑖 − 1)(2𝑡𝑖 + 5)

𝑚
𝑖=1

18
 

(

(3) 

where, 

n = number of data points, 

m = number of tied groups, 

ti = number of ties of extent i (a tied group is a set of sample data having the same value). 

The standard normal test statistics Z is computed using Equation (4): 

𝑍 =

{
 
 

 
 

𝑆 − 1

√𝑣𝑎𝑟(𝑆)
, 𝑖𝑓 𝑆 > 0

0, 𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑣𝑎𝑟(𝑆)
, 𝑖𝑓 𝑆 < 0

 

(

(4) 

𝑆𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

+1, 𝑖𝑓(𝑥𝑗 − 𝑥𝑖) > 0

0, 𝑖𝑓(𝑥𝑗 − 𝑥𝑖) = 0

−1, 𝑖𝑓(𝑥𝑗 − 𝑥𝑖) < 0

 

(  

(2) 
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Positive values of Z indicate increasing trends, while negative Z-values indicate decreasing 

trends. Testing trends is based on the specific α significance level of 0.05. The null hypothesis is 

rejected if the ǀZǀ value is greater than 1.96, which corresponds to the 95% significance level based 

on a look-up table. 

3.3.6.2 Modified Mann-Kendall Test 

The Mann-Kendall test failed to address autocorrelation in the time series data. Therefore, 

the Modified Mann-Kendall (MMK) test is used to resolve this concern. The modification of the 

test improves the accuracy rate of the significance levels and decreases the chance of a nonexistent 

trend (Hamed & Rao, 1998). This study used the Modified Mann-Kendall test based on the 

variance correction approach introduced by (Hamed & Rao, 1998). 

The modified variance (S) is given by: 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18

𝑛

𝑛𝑆
∗ 

Where, 

n = actual number of observations, 

ρ𝑆(𝑖) = autocorrelation function of the ranks of the observations, 

𝑛

𝑛𝑆
∗  = represents a correction due to the autocorrelation in the data. 

 

𝑛

𝑛𝑆
∗ = 1 +

2

𝑛(𝑛−1)(𝑛−2)
× ∑ (𝑛 − 𝑖)(𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)ρ𝑆(𝑖)

𝑛−1
𝑖=1   
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3.3.7 Analysis Methods for the Relationship Between Riverbank Erosion in Coastal Bangladesh 

with Local Extreme Daily Precipitation and Monsoon Precipitation of the GBM River Basin  

This portion of study only used the MSWEP satellite-based precipitation product for the 

analysis of local extreme daily precipitation and its relation to riverbank erosion. We used only 

MSWEP due to its higher spatial resolution given the size of the study area (Figure 16). The local 

study area (Figure 16) was covered by 9 gird boxes of MSWEP and divided into north, central and 

south regions for the analysis. Each region was covered by three grid boxes.  At first, MSWEP 

NetCDF formatted data was retrieved using the R programming language. Extreme precipitation 

was defined as the 95th percentile of daily rainfall for all monsoon days from 1988 to 2017. Once 

the extreme daily precipitation was identified per grid box, then the total number of extreme 

precipitation days was counted for each region, north, central, and south, separately. 

 

Figure 16: A map shows the shoreline study area located in the east bank of the lower Meghna 

estuary (Coastal Bangladesh). The North, Central, and South green boxes indicate the three regions, and 

each boxes of the green color indicates the shoreline transect for each region. 
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As this research is a part of the broader project "Coastal Erosion Vulnerabilities, Monsoon 

Dynamics, and Human Adaptive Response," all the required riverbank erosion data was provided 

by other investigators (Crawford et al., 2020). At first, Landsat imagery with 30 m pixel resolution 

with free cloud coverage was used to produce and describe a thirty-years of shoreline change for 

an 80-km stretch of the Lower Meghna estuary using Digital Shoreline Analysis (DSAS) software 

(Crawford et al., 2020). Riverbank erosion was quantified by the study of shoreline change 

analysis. Figure 17 shows an example of the shoreline transect preparation in the study area 

(Crawford et al., 2020). This study uses End Point Rate (EPR) for the annual change of shoreline 

in meters per year.  Only changes greater than 30 m are considered due to the resolution of the 

pixels.  

Changes for each transect over the north, central, and south regions were summed 

separately (see green boxes in Figure 16), with erosion as negative values and accretion as positive 

values. In summary, this study analyzed the relationship between total monsoon precipitation in 

the GBM along with localized extreme daily precipitation frequency in the north, central, and south 

regions, with riverbank erosion for the north, central and south regions respectively.  Correlation 

statistics were produced in the R programming language.  
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Figure 17: An example of preparation of shoreline transect in the study area using DSAS 

software (Source: Crawford et al., 2020). 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 4: RESULT 

4.1 Results of the Validation of the MSWEP and PERSIANN-CDR over Nepal 

(GBM) 

The result of the statistical assessment of the 26-year (1983-2009) comparisons between 

PERSIANN-CDR and MSWEP seasonal precipitation versus 223 rain gauge station observation 

for Nepal is listed in Table 2 and a scatter plot is provided in Figures 18 and 19. The statistics 

shows that MSWEP has higher coefficient of determination for both pre-monsoon and monsoon 

precipitation than PERSIANN-CDR. The value of the coefficient of determination for MSWEP 

pre-monsoon is 0.53, while PERSIANN-CDR has only 0.38. The RMSE value for MSWEP is 

58.59 mm and 34.55 mm for PERSIANN-CDR. Likewise, the value of coefficient of determination 

for MSWEP monsoon is 0.3, while PERSIANN-CDR has a very low 0.07.  

Table 2: Statistical analysis for pre-monsoon and monsoon precipitation (1983-2009) between 

Precipitation Products (MSWEP and PERSIANN-CDR) and rain gauges. 

Time MSWEP PERSIANN-CDR 

Pre-monsoon 

 

R2 0.53 0.38 

RMSE 

(mm) 

58.59 34.55 

RB% 5% -15% 

Monsoon R2 0.3 0.07 
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RMSE 

(mm) 

308.62 261.69 

RB% -9% -30% 

 

In addition, the result of relative bias shows that MSWEP overestimated by 5% for pre-

monsoon precipitation; on the contrary, PERSIANN-CDR underestimated by -15%. However, 

monsoon precipitation was underestimated by -9% and -30% by both MSWEP and PERSIANN-

CDR products, respectively. The RMSE error for monsoon precipitation based on MSWEP and 

PERSIANN-CDR is 308.62 mm and 261.69 mm, respectively.  

 

Figure 18: The scatter plot result of validation test for pre-monsoon precipitation based on 

MSWEP and PERSIANN-CDR. 
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Figure 19: The scatter plot result of validation test for monsoon precipitation based on MSWEP 

and PERSIANN-CDR. 

Similarly, this study also conducted the correlation test between relative differences vs 

elevation of the rain gauge stations. Figure 20 shows a significant correlation between relative 

differences of pre-monsoon and monsoon precipitation with elevation, at 0.05 significance level.  

However, the results are biased with a few stations above 3000m having the largest relative 

differences.   

It is important to bear in mind the limitations of PERSIANN-CDR and MSWEP when 

evaluating the results in the remainder of the thesis.  PERSIANN-CDR is used for evaluating the 

relationships between pre-monsoon and monsoon rainfall, ENSO and water routing distance.  

PERSIANN-CDR and MSWEP are both used in the trend analysis and in relating GBM 

precipitation to riverbank erosion to provide additional comparison.  Finally, due to the superior 

spatial resolution, MSWEP alone is used for the localized riverbank erosion analysis.  
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Figure 20: The plot shows the correlation result between relative difference and elevation for 

pre-monsoon and monsoon precipitation based on MSWEP and PERSIANN-CDR. 

 

4.2 Results of Relationship Between Pre-monsoon and Monsoon Precipitation in 

the GBM River Basin based on Hydrological Sub-basins 

Figures 21 and 22 show the correlation among the 32 hydrological sub-basins for pre-

monsoon and monsoon precipitation respectively. Each row or column of the figure shows the 

correlation of one sub-basin with all sub-basins. The blue color indicates a positive correlation, 

and the red color indicates a negative correlation. Brighter colors with a bigger circles indicate 
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stronger correlations between sub-basins. It should be noted that there are many more positive 

correlations in the monsoon case compared to the pre-monsoon case.  The only sub-basin that has 

a preponderance of large negative correlations with other sub-basins in the monsoon season is 

45248 in the far western GBM (see Figure 22).  Figure 23 (a) and (b) are examples of the 

correlation between sub-basin 45243 in the central GBM and all other sub-basins for pre-monsoon 

and monsoon, respectively, which is the same as the sixth row and column of Figures 21 and 22. 

Each map's brighter blue and green color indicates a strong positive correlation. The maps clearly 

show the typical spatial dependency of precipitation in the GBM during pre-monsoon and 

monsoon seasons.  

 

Figure 21: The pre-monsoon precipitation correlation between 32 hydrological sub-basins of 

GBM. Each row and column show one result for a single sub-basin with the other. 
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Figure 22: Monsoon precipitation correlation between 32 hydrological sub-basins. Each row and 

column show one result for a single sub-basin with the other. 

 

(a) 
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Figure 23: (a) Example of pre-monsoon precipitation correlation for sub-basin 45243 with all 

sub-basins. (b) Example of monsoon precipitation correlation for sub-basin 45243 with all sub-basins. 

The correlation between pre-monsoon and monsoon precipitation is varied (Figure 24). 

Among the 32 hydrological sub-basins, only two sub-basins of the GBM show a significant 

correlation between pre-monsoon and monsoon precipitation, as shown in Figure 24.  Sub-basin 

45245 has a significant negative correlation, and 45280 has a significant positive correlation.  The 

overall pattern is for negative correlations in the western and northern GBM and positive 

correlations in the eastern and southern GBM.   

(b) 
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Figure 24: Correlation between pre-monsoon and monsoon precipitation showing only two sub-

basins are significant. 

 

4.3 Results of Relationship between Pre-monsoon and Monsoon Precipitation in the 

GBM River Basin based on water routing distance 

Figures 25 and 26 show the correlation among the 10 sub-basins based on water routing 

distance for pre-monsoon and monsoon precipitation respectively. Each row or column of the 

figure shows the correlation of one sub-basin with all sub-basins. The blue color indicates a 

positive correlation, and the red color indicates a negative correlation. Brighter colors with a bigger 

circles indicate stronger correlations between sub-basins. It should be noted that there are many 

more positive correlations in the pre-monsoon case compared to the monsoon case. Sub-basin 10 

with the longest distance to the outlet has a large number of positive correlations for pre-monsoon 

as compared to monsoon. 



50 
 

 

Figure 25: Correlation of pre-monsoon precipitation based on water routing distance flow length 

between 10 sub-basins 

 

Figure 26: Correlation of monsoon precipitation based on water routing distance between 10 

sub-basins 

The correlation between pre-monsoon and monsoon precipitation shows that sub-basins 

near costal Bangladesh have a positive correlation (Figure 27). Although this map has a similar 
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pattern of positive and negative correlations to what was presented using sub-basins in Figure 24, 

no single water routing region shows a significant correlation between pre-monsoon and monsoon 

precipitation.  

 

Figure 27: Map showing no significant correlation between pre-monsoon and monsoon 

precipitation based on water routing distance (flow length). 

 

4.4 Results of Relationship Between MEI (ENSO) and Seasonal Precipitation Based 

on 32 Hydrological Sub-basins of GBM 

Only three sub-basins, 45246, 45240, and 45260 show significant positive correlations 

between MEI and pre-monsoon precipitation based on 32 hydrological sub-basins (see Figure 28a). 

On the contrary, seven sub-basins, 45249, 45246, 45245, 45299, 45240, 45298, and 45297 show 

significant negative correlations between MEI and monsoon precipitation (Figure 28b, indicating 

the far northern and western regions of the GBM experience a dry monsoon during El Nino events 

(Figure 28b). 
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Figure 28: Figure 28 (a) shows the correlation between Pre-monsoon Precipitation and MEI 

ENSO, including significant test results, (b) shows the correlation between Monsoon Precipitation and 

MEI ENSO, including significant test results. 

 

Significant Positive Correlation 

 

Significant Negative Correlation 

(a) 

(b) 
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4.5 Results of Relationship Between MEI(ENSO) and Seasonal Precipitation Based 

on Water Routing Distance of GBM River Basin 

There are no significant correlations between MEI and pre-monsoon precipitation based 

on water routing distance (flow length) (Figure 29). However, monsoon precipitation based on 

water routing distance and MEI shows significant negative correlation in 6, 7, 8, 9, and 10 sub-

basins of GBM (see Figure 30), which correspond to the further distances and somewhat agrees 

with Figure 28b.  However, more of the GBM experiences drying with El Nino when considering 

water routing than when considering sub-basin divisions. 

 

Figure 29: The figure shows the correlation between Pre-monsoon Precipitation and MEI 

(ENSO) based on water routing distance 
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Figure 30: The figure shows the correlation between monsoon Precipitation and MEI (ENSO) 

based on water routing distance including significant test result 

 

4.6 Results of Seasonal Precipitation Trend Analysis in the GBM River Basin 

Precipitation trend analysis was performed on the whole GBM river basin and pre-defined 

hydrological sub-basins of the GBM river basin. Both MSWEP and PERSIANN-CDR 

precipitation products are used for the trend analysis and comparison. This study used pre-

monsoon and monsoon precipitation based on 32 and 34 hydrological sub-basins for PERSIANN-

CDR and MSWEP, respectively. 

4.6.1 Precipitation Trend of Ganges-Brahmaputra-Meghna River Basin 

The precipitation trend test results for both MSWEP and PERSIANN-CDR are shown in 

Figure 31, and all the Z-values and p-values for the Modified Mann-Kendall trend test are shown 

in Table 3. This study found that MSWEP pre-monsoon precipitation has a significant positive 
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trend at the 95% significance level, whereas no significant trend was detected for the PERSIANN-

CDR precipitation. 

  

(a) (b) 

  

(c) (d) 

Figure 31: a) MSWEP pre-monsoon precipitation trend; (b) MSWEP monsoon precipitation 

trend; (c) PERSIANN-CDR pre-monsoon precipitation trend; (d) PERSIANN-CDR monsoon precipitation 

trend. The red dotted line indicates the linear regression. 

Table 3: p- and Z-value of pre-monsoon and monsoon precipitation trends using Modified Mann-

Kendall for the GBM river basin during 1983–2019. 

Satellite-Based Pre-Monsoon  Monsoon 

Precipitation Product Z-value      p-Value            Z-Value p-Value 

MSWEP 2.236 0.025 −0.554 0.579 

PERSIANN-CDR −0.536 0.592 −33.071 < 0.000 
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The Z-value of the MSWEP pre-monsoon precipitation trend was 2.236, and that of 

PERSIANN-CDR was −0.5362. On the contrary, a strong significant negative precipitation trend 

was detected in the PERSIANN-CDR monsoon precipitation with the Z-value of −33.07, while no 

significant precipitation trend was seen in the MSWEP. The Z-value using MSWEP was −0.554. 

However, the correlations between the time series are highly positive and significant for the pre-

monsoon (R = 0.79) and monsoon (R = 0.78) seasons (Figure 32 and 33), indicating that the 

satellite products have similar year-to-year variability. 

 

 

Figure 32: The figure shows the scatter plot result between MSWEP Pre-monsoon VS 

PERSIANN-CDR Pre-monsoon 
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Figure 33: The figure shows the scatter plot result between MSWEP monsoon VS PERSIANN-

CDR monsoon 

4.6.2 Precipitation Trends of Pre-Defined Hydrological Sub-Basins of the GBM River Basin 

The MSWEP pre-monsoon precipitation had a significant positive trend in 13 sub-basins. 

In contrast, only four sub-basins had a significant positive trend in PERSIANN-CDR precipitation. 

Significant positive precipitation trends were mostly found in the central, far north, and western 

region of the basin, as shown in Figure 34. Among the 34 hydrological sub-basins, only six sub-

basins in MSWEP showed negative Z-values, but none were significant. Meanwhile, for 

PERSIANN-CDR, 22 hydrological sub-basins showed negative Z-values, and only sub-basin 

45280, situated in the eastern region, showed a significant negative precipitation trend. 
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Figure 34: Pre-monsoon precipitation trend for (a) MSWEP and (b) PERSIANN-CDR. A red 

color upright triangle indicates a significant increasing trend (p < 0.05), and a purple color downright 

triangle indicates a significant decreasing trend. 

 

(b) 

(a) 



59 
 

Regarding the monsoon season, eight sub-basins had a significant negative trend for 

monsoon precipitation in MSWEP (Figure 35a), whereas 19 sub-basins had a significant negative 

precipitation trend in the PERSIANN-CDR (Figure 35b). The eight MSWEP sub-basins with 

significant negative precipitation trends were found near Bangladesh and in the eastern region. 

Similarly, in PERSIANN-CDR, significant negative precipitation trends were mostly found near 

the southern, central, and eastern parts of the GBM (Figure 35b). On the contrary, significant 

positive precipitation trends were detected in the three sub-basins situated in the upper Himalayas 

(45299, 45298, and 45240) in MSWEP, whereas, in PERSIANN-CDR, those three sub-basins 

showed negative Z-values. Only three sub-basins, 45296 (upper Himalayas), 45247, and 45248, 

situated in the western region, had positive Z-values in PERSIANN-CDR, though they were not 

significant. 

 

 

 

(a) 
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Figure 35: Monsoon precipitation trend for (a) MSWEP and (b) PERSIANN-CDR. A red color 

upright triangle indicates a significant increasing trend (p < 0.05), and a purple color downright triangle 

indicates a significant decreasing trend. 

 

4.7 Results of the Relationship Between Riverbank Erosion and Precipitation 

The analysis of MSWEP showed no significant relationship between local extreme daily 

precipitation and annual riverbank change (positive = accretion and negative = erosion) in the 

study area of coastal Bangladesh. In addition, no significant relationship was found between 

riverbank change and monsoon precipitation for the entire GBM based on either PERSIANN-CDR 

and MSWEP. However, when examining the relationship between riverbank change and monsoon 

precipitation based on GBM hydrological sub-basins significant correlations were achieved. Six 

sub-basins 45220, 45244, 45253, 45255, 45257, and 45258 showed significant positive 

correlations between PERSIANN-CDR monsoon precipitation and riverbank change in the central 

region (Figure 37), indicating anomalously high rainfall is related to anomalous accretion.  In 

(b) 
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addition, MSWEP based monsoon precipitation also showed a significant positive correlation for 

two sub-basins, 45252 and 45255, whereas sub-basin 45298 showed a significant negative 

correlation with the central region (Figure 38). Only one basin, 45255, overlaps and should be 

investigated further (see Figure 36).  There was no significant relationship between monsoon 

precipitation and riverbank change in the north and south regions in the study area. 

             

Figure 36: Scatter plots showing the correlation between sub-basin 45255 and riverbank erosion 

in the central region based on MSWEP (left) and PERSIANN-CDR (right) respectively 
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Figure 37: Map showing the significant correlation between monsoon precipitation and 

riverbank change based on PERSIANN-CDR 

 

Figure 38: Map showing the significant correlation between monsoon precipitation and 

riverbank change based on MSWEP 



 
 

CHAPTER 5: DISCUSSION 

5.1 Validation of the MSWEP and PERSIANN-CDR over Nepal (GBM) 

Two satellite-based precipitation products were correlated with a dense rain gauge network in 

Nepal for the pre-monsoon and monsoon seasons from 1983 to 2009. The results showed that 

MSWEP performed better than PERSIANN for both seasons. The coefficient of determination 

value for MSWEP pre-monsoon was 0.53 and RMSE error 58.59mm. Whereas the relative bias 

percentage indicated that MSWEP only overestimated by 5%. The reason for the differences seen 

over Nepal could be the difference in spatial scale of the products.  The spatial resolution of 

MSWEP is 0.1 degree, whereas PERSIANN-CDR has a 0.25 degree grid spacing. MSWEP was 

able to resolve more station locations than PERSINN-CDR which gives it advantage when using 

the direct comparison methodology. Furthermore, MSWEP merges gauge, satellite, and reanalysis 

data to obtain the highest quality precipitation data locally (Beck et al., 2019). However, 

MSWEP’s performance was not as satisfactory in the monsoon season.  

The underperformance of PERSIANN-CDR has been noted in the literature. One of the 

possible reason of underestimation of PERSIANN-CDR is due to warm orographic rainfall that 

cannot be detected by microwave and infrared sensor (Bajracharya et al., 2015). According to Gao 

et al. (2018) PERSIANN-CDR cannot accurately measure the spatial distribution of precipitation 

events compared to other products. They compared two reanalysis data sets and two satellite-based 

datasets in the Xiang river basin in China at two spatial and temporal scales. PERSIANN-CDR 

underestimated monthly precipitation and performed poorly compared to the other data sets (Gao 

et al., 2018). In addition, (Vu et al., 2018) used three satellite-based precipitation products namely, 

Tropical Rainfall Measuring Mission (TRMM 3B42 V7), Precipitation Estimation from Remotely 
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Sensed Information using Artificial Neural Networks (PERSIANN), and PERSIANN-Climate 

Data Record (PERSIANN-CDR), to simulate the streamflow of the Han River Basin. PERSIANN-

CDR performed low compared to other products. 

The reason both products had lower correlations with gauges in the monsoon versus the 

pre-monsoon season could be related to the mode of precipitation delivery.  The rainfall in the 

monsoon season is convectively driven making it more sporadic and intense as compared to the 

pre-monsoon season, which is controlled by advancing air masses (Kumar & Naidu, 2020).  There 

was a strong correlation between station elevation and relative bias for both products in both 

seasons. The relative bias was especially large for a few high elevation stations.  Thus, topography 

is seen as a limitation in the usefulness of satellite estimates, and according to (Decker et al., 2012) 

errors are expected to be higher in complex topography.  I am unable to assess the validity of 

PERSIANN-CDR and MSWEP in other parts of the GBM and so additional validation studies are 

required to fully address the first research question.  

5.2 Relationship Between Pre-monsoon and Monsoon Precipitation in the GBM 

River Basin based on Hydrological Sub-basins, Water Routing Distance, and ENSO 

The first and second research questions were: What is the relationship between pre-

monsoon and monsoon precipitation in the GBM river basin based on hydrological sub-basins vs. 

water routing distance? and Do climate teleconnections, e.g., ENSO, have any relationship with 

seasonal precipitation in the GBM river basin?  To answer these questions PERSIANN-CDR was 

averaged over 32 hydrological sub-basins and 10 water routing distance divisions.  All of the 

regions were then correlated with each other within seasons, across seasons and with an ENSO 

index. It was found that the pre-monsoon season has less spatial dependency in precipitation as 

organized by sub-basin boundaries compared to the monsoon season, mainly because of the large 
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number of positive correlations between sub-basins during the monsoon compared to pre-monsoon 

season (see Figure 21 and 22). The only sub-basin that has a preponderance of large negative 

correlations with other sub-basins in the monsoon season was 45248 in the far western GBM. The 

result suggests that pre-monsoon precipitation over the GBM river basin is highly variable in space 

as compared to the monsoon precipitation.  

It was hypothesized that the pre-monsoon precipitation may have some influence on 

monsoon precipitation locally in the GBM river basin. A researcher (Narayanan et al., 2013) also 

postulated that the pre-monsoon season may impact the intensity of monsoon precipitation in India. 

However, no such relation was found between pre-monsoon and monsoon precipitation in the 

hydrological sub-basins of the GBM river basin. In fact, sub-basin 45245, located in India, has a 

significant negative correlation, whereas sub-basin 45280 in the far eastern GBM has a significant 

positive correlation. The reason for this lack of persistence from one season to the next might be 

because pre-monsoon rainfall occurs due to maritime air masses (Kumar & Naidu, 2020); on the 

contrary, monsoon rainfall occurs due to the seasonal shift of winds created by the land’s annual 

temperature variation in contrast with the connected ocean surface (Alamgir, 2009). Similarly, 

Kiguchi et al. (2016) also conducted research on the relationship between the intermittent pre-

monsoon rainfall and monsoon onset over the Indochina peninsula and found no such relationship. 

Likewise, this study did not find any such relationship between pre-monsoon and monsoon 

precipitation based on the water routing distance classification.  

To determine if there were any teleconnections, a study was conducted to reveal the 

relationship between seasonal precipitation and ENSO (MEI) within the watersheds of the GBM 

river basin. It showed that only three sub-basins have positive significant correlation between pre-

monsoon precipitation and ENSO, even though there were many sub-basins that showed positive 
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correlation (see Figure 28a). The significantly positive sub-basins were sparsely distributed and 

located a distance from the coastal region of the GBM river basin. Positive correlations indicate 

wet conditions during the El Nino phase (Chowdhury, 2003) and the wide coverage suggests that 

ENSO has some role to play in increasing pre-monsoon precipitation in the GBM river basin.  

The study revealed that monsoon precipitation has a strong significant negative correlation 

with ENSO in the outer regions of the basin, namely sub-basins, 45249, 45246, 45245, 45299, 

45240, 45298, and 45297 (see Figure 28b). With regards to the monsoon season (Chowdhury, 

2003) also found that Southern Oscillation Index (SOI) has strong relation with the rainfall in the 

upstream portions of the GBM basin whereas no relationship was found in the context of 

Bangladesh climate. The negative relation indicates dry conditions in the GBM river basin during 

El Nino (Chowdhury, 2003), including the western Ganges, consistent with previous studies like 

Whitaker et al. (2001). In addition, the findings of the study also showed consistency with 

(Ropelewski & Halpert, 1987), Ganges has a strong negative association with ENSO. Interestingly, 

no significant relationship was found between ENSO and pre-monsoon precipitation based on 

water routing distance.  However, there was more spatial consistency in the correlations, as all 

water routing regions showed positive correlation with ENSO, whereas this was not the case for 

the sub-basin analysis.  For the monsoon season, the water routing regions had strong negative 

correlations with ENSO, where the area of significance exceeded that of the sub-basins.  This is 

an interesting finding and indicates that the distance from the outlet of the GBM river complex 

may be an important consideration when determining ENSO relationships in this mega river basin.  

Specifically, the periphery of the GBM river basin has a strong dry response to El Nino during the 

monsoon season as compared to the central to southern GBM. 
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5.3 Seasonal Precipitation Trend Analysis 

The third research question was: Do precipitation trends in the GBM river basin show 

consistency in satellite-based products? The pre-monsoon and monsoon precipitation trends were 

studied for the GBM and pre-defined hydrological sub-basins of the GBM for 1983–2019 using 

the non-parametric Modified Mann-Kendall test. This study compared two different satellite-based 

precipitation products, MSWEP and PERSIANN-CDR. While the two data sets were significantly 

correlated over the pre-monsoon and monsoon seasons, the precipitation trend analysis found 

differences in the GBM river basin. Different resolutions of the precipitation products likely play 

a significant role in the contrasting results between PERSIANN-CDR and MSWEP (see Table 1). 

MSWEP may detect rainfall that PERSIANN-CDR does not. Moreover, the precipitation 

estimation process is different in these two products. PERSIANN-CDR is developed from infrared 

and passive microwave observations, whereas MSWEP estimates precipitation using gauge, 

satellite, and reanalysis-based products. Small biases in rainfall estimates can lead to large 

differences in the GBM because of the vagaries of the Indian monsoon and the orographic effects 

of the Himalayan mountains (Khandu et al., 2017). The significant increasing pre-monsoon 

precipitation trend identified by MSWEP and significant decreasing monsoon precipitation trend 

identified by PERSIANN-CDR are similar to (Sharma et al., 2021), reflecting that seasonal 

precipitation has changed in the GBM river basin. However, precipitation trends vary with the 

length of record, and the results are not suitable to extrapolate into the future (Blöschl et al., 2019; 

Luca et al., 2020).  The sixth assessment report of the Intergovernmental Panel on Climate Change 

(IPCC, 2021) and other investigators (Kothyari et al., 1997; Immerzeel, 2008; Janes et al., 2019) 

have reported that monsoon precipitation decreased in South Asia, especially during the 1960s to 

1980s, likely due to local cooling from human-caused aerosol emissions. However, future 
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projections from CMIP 6 model runs (IPCC, 2021) predict an increase in monsoon precipitation 

due to anthropogenic emissions of greenhouse gases (Sharma et al., 2021). The MSWEP 

precipitation trends are more consistent with this picture. 

Very few sub-basins have similar trend results between the two satellite products for pre-

monsoon and monsoon precipitation. Only four sub-basins show a significant increasing pre-

monsoon precipitation trend for both MSWEP and PERSIANN-CDR. Thus, there is greater 

confidence that rainfall has increased in the central, far north, and western region of the GBM river 

basin (45246, 45249, 45295, and 45297). Sharma et al. (2021) also found that pre-monsoon 

precipitation trend increased gradually in that same region of the GBM. Ahmed et al. (2017) found 

a similar result in India consistent with the significant increasing pre-monsoon precipitation trend 

found in sub-basins 45247 and 45249. Similarly, the sub-basins 45242, 45243, and 45244, which 

cover Nepal, had a significant increasing trend in pre-monsoon precipitation based on MSWEP. 

Karki et al. (2017) also found pre-monsoon precipitation trend significantly increased from 1970–

2012 in the lowlands and central hill area of Nepal using daily precipitation data from the 

Department of Hydrology and Meteorology (DHM), Nepal, and applying a Mann-Kendall test. 

Bhutan is covered mostly by two sub-basins: 45254 and 45256, and 45254 shows significant 

increasing pre-monsoon precipitation trend based on MSWEP. 

One sub-basin (45280) in the far eastern region shows a significant decreasing pre-

monsoon precipitation trend based on PERSIANN-CDR, and eight sub-basins show significant 

decreasing monsoon precipitation trends based on both products. The overall trends strongly 

indicate that precipitation has declined in the pre-monsoon and monsoon seasons in the eastern 

and southern regions of the GBM river basin. These regions include the Brahmaputra and Meghna 

river basins. According to Khandu et al. (2017), Brahmaputra and Meghna basins’ precipitation 
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declined up to 39 mm per decade in the monsoon season from 1998 to 2013. Sharma et al. (2021) 

also suggest similar decreasing precipitation trend in pre-monsoon and monsoon seasons in this 

area. On the contrary, Ahmed et al. (2017) found that Bangladesh monsoon precipitation increased 

by 3.04 mm/year and did not find any decreasing monsoon precipitation trend across Bangladesh 

from 1948 to 2012 using both parametric and non-parametric approaches. However, it should be 

noted that unlike Sharma et al. (2021) and Ahmed et al. (2017), our study area only covers the 

northern area of Bangladesh (Figure 3) and does not extend to the coast. (Baidya et al., 2008) found 

increasing daily extremes in precipitation and heavy precipitation events from 1961–2006 in 

Nepal. Similarly, MSWEP-based monsoon precipitation also has a significant increasing monsoon 

precipitation trend in the upper GBM, primarily in Tibet-China. The 0.1-degree grid resolution of 

MSWEP may help it to resolve precipitation processes in this highly mountainous region better 

than PERSIANN-CDR. Finally, it is interesting to note that the MSWEP trend in the Tibetan 

Plateau is consistent with the IPCC’s projected trend in monsoon precipitation, where by 2100, 

rainfall is expected to increase by 38–45% with a 2 °C increase in temperature. 

5.4 Relationship Between Riverbank Erosion and Precipitation 

The final research question was: What is the relative importance of localized extreme daily 

precipitation versus basin-scale seasonal precipitation for riverbank erosion in the study area?  

Riverbank erosion is the perennial issue for the NSF project that funded my work and has a huge 

impact on Bangladesh's livelihood, environment, and the economy. It plays an important role to 

socio-environmental changes in Bangladesh (Islam & Rashid, 2011). This study was focused on 

studying the relationship between riverbank erosion and precipitation based on local extreme daily 

precipitation and monsoon precipitation of the GBM river basin. The local study area was divided 

into three region; North, Central, and South to obtain more stable results and to be consistent with 
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the regions used by Crawford et al. (2020). However, the study showed no significant relationship 

between the frequency of local extreme daily precipitation events and riverbank change in coastal 

Bangladesh. Only a few sub-basins of the GBM showed significant positive correlations between 

monsoon precipitation and riverbank change, and all in the central region of our study area. This 

is an interesting finding as the central region was dominated by accretion from 1988-2008 before 

being dominated by erosion from 2008-2018 (Crawford et al. 2020).  One possible explanation for 

the relationships may be the long-term trends in GBM rainfall.  The areas that experienced a 

decline in monsoon rainfall based on MSWEP and especially PERSIANN-CDR were also areas 

that showed the positive correlations with riverbank change.  It is hypothesized that the lack of 

rain and flooding over time would reduce sediment transport to the study area reducing the 

accretion.   

It should be noted that this study was solely focused on precipitation as the main driver for 

riverbank erosion in the GBM basin. However, other factors may have a role, including soil type, 

vegetation and other anthropogenic factors. According to (Rahman et al., 2015), the factors that 

affect riverbank erosion are: changes of river course, decrease or increase in shear strength, 

characteristics of erosion prone bank and bed materials, pressure imbalance at the bank face, rapid 

drawdown, poor vegetation cover, obstacle in the streams, wind wave and boat wakes. To improve 

the local analysis, future studies should also consider these factors and attempt to collect finer scale 

precipitation data in Bangladesh. Regarding the large-scale analysis, this study was only concerned 

with 80 km of shoreline area from Chandpur to Lakshmipur where transects were calculated. 

Future studies should consider a longer stretch of coastline and include both sides of the riverbank 

when computing riverbank erosion statistics.  Integrating larger areas of land change would likely 

have a stronger relationship with upstream accumulated precipitation amounts.



 
 

CHAPTER 6: CONCLUSION 

This study has important findings that elucidate the time-space characterization of 

precipitation in the Ganges-Brahmaputra-Meghna (GBM) river basin based on PERSIANN-CDR 

and MSWEP satellite products. Validation of these two satellite-based products against rain gauge 

station data over Nepal was conducted to elucidate the reliability of any results generated. Further 

validation is required before making any firm conclusion, however, MSWEP performed better 

than PERSIANN-CDR overall and especially for pre-monsoon precipitation over Nepal. The main 

objective of the study was to examine the relationships between seasonal precipitation, 

precipitation trends, and extreme precipitation as predictive drivers in causing riverbank erosion 

in the coastal Bangladesh.  

The findings showed no significant relationship between pre-monsoon and monsoon 

precipitation in the GBM river basin based on hydrological sub-basins and water routing distance. 

On the contrary, one of the most important contributions was refining the relationship between 

ENSO and pre-monsoon and monsoon precipitation in the GBM river basin. In particular, El Nino 

leads to dry conditions in the periphery of the GBM, or the areas of the GBM where water the 

water routing distance is large.  Further, this study conducted a precipitation trend analysis from 

1983 to 2019 using MSWEP and PERSIANN-CDR. The modified Mann-Kendall test was used to 

detect precipitation trends for the GBM basin as whole and pre-defined hydrological sub-basins 

within the GBM. The precipitation trend test result obtained from two satellite-based products was 

compared and results were conflicting. Pre-monsoon precipitation trend significantly increased 

according to MSWEP while monsoon precipitation trend significantly decreased according to 

PERSIANN-CDR for the period of record. However, the study found that pre-monsoon 

precipitation based on PERSIANN-CDR, and monsoon precipitation based on MSWEP, have no 
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significant negative or positive trend for the GBM whole. A closer examination of sub-basins 

within the GBM showed regionality of these precipitation trends. The last and final objective of 

the study was to compare the relationship between riverbank erosion and local extreme 

precipitation and monsoon precipitation over the GBM river basin. Only a few hydrological sub-

basins showed significant relationships that would suggest accretion rates increase with monsoon 

precipitation. The findings of the present study provide useful information for managing water 

crises, agricultural production, and preparing for different natural hazards in the GBM river basin.  

6.1 Limitations and Future Work 

Despite the contributions of the thesis, there are certain limitations. The first is related to 

the use of satellite-based precipitation products. We did not use those products which have shorter 

records of precipitation data, such as TRMM, even though they have comparatively higher 

accuracy. Second, the validation study was done only for Nepal. It would be better if we could 

separate the area into low land, mid hills, and higher mountains to compare the efficacy of these 

two satellite products against rain gauge because of the unequal distribution of the rain gauge 

station locations. Also, this study was limited to point to grid comparison. An interpolation of the 

gauge data accounting for elevation may have led to a better comparison.  A curious finding was 

the conflicting trends in rainfall between PERSIANN-CDR and MSWEP, and additional 

investigations are required.   

The analysis of extreme precipitation and riverbank change was limited.  For example, this 

study only used the total number of extreme days based on the local 95th percentile of MSWEP 

rainfall for the analysis and not other measures of extreme rainfall.  The direct relationship between 

ENSO and extreme precipitation in coastal Bangladesh was also not investigated.  Instead, the 

study sought to fulfill the objectives of the NSF funded project on how seasonal and local 
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precipitation affect riverbank erosion in coastal Bangladesh.  This study defined a water routing 

distance spatial scale, but due to time limitations this unit of analysis was not related to riverbank 

erosion.  This will be a priority for future work.  Finally, integrating gauge-based local precipitation 

data with larger areas of riverbank change (e.g. both banks) would be helpful for the riverbank 

erosion study. Other factors could also be considered besides precipitation such as haphazard 

human settlement, agriculture practices, and land use land cover change.
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