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Abstract

This study was designed to investigate mechanisms of lipid metabolic inflexibility in human 

obesity and the ability of fenofibrate (FENO) to increase skeletal muscle fatty acid oxidation 

(FAO) in primary human skeletal muscle cell cultures (HSkMC) exhibiting metabolic inflexibility. 

HSkMC from 10 lean and 10 obese, insulin resistant subjects were treated with excess fatty acid 

for 24 hours (24hFA) to gauge lipid-related metabolic flexibility. Metabolically inflexible HSkMC 

from obese individuals were then treated with 24hFA in combination with FENO to determine 

effectiveness for increasing FAO. Mitochondrial enzyme activity and FAO were measured in 

skeletal muscle from subjects with pre-diabetes (n=11) before and after 10 weeks of fenofibrate in 

vivo. 24hFA increased FAO to a greater extent in HSkMC from lean vs. obese subjects (+49% vs. 
+9%, for lean vs. obese, respectively; p<0.05) indicating metabolic inflexibility with obesity. 

Metabolic inflexibility was not observed for measures of cellular resporiration in permeabilized 

cells using carbohydrate substrate. Fenofibrate co-incubation with 24hFA, increased FAO in a 

subset of HSkMC from metabolically inflexible, obese subjects (p<0.05), which was eliminated by 

PPARα antagonist. In vivo, fenofibrate treatment increased skeletal muscle FAO in a subset of 

subjects with pre-diabetes but did not affect gene transcription or mitochondrial enzyme activity. 

Lipid metabolic inflexibility observed in HSkMC from obese subjects is not due to differences in 

electron transport flux, but rather upstream decrements in lipid metabolism. Fenofibrate increases 
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the capacity for FAO in human skeletal muscle cells, though its role in skeletal muscle metabolism 

in vivo remains unclear.
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Introduction

The capacity to modify substrate oxidation in response to changes in macronutrient 

availability is a hallmark of healthy metabolic tissues [1]. While many studies have 

investigated this metabolic flexibility in response to changes in glucose supply [2–4], fewer 

have examined the ability to adjust fatty acid oxidation (FAO) in response to fatty acid 

exposure. There is evidence of reduced mitochondrial capacity and FAO in the skeletal 

muscle of obese and/or diabetic humans 5–8], however, the underlying mechanisms linked 

with this metabolic inflexibility and interventions aimed increasing skeletal muscle FAO are 

not clearly evident.

We have previously reported a dampened ability to increase FAO in response to lipid 

exposure in skeletal muscle and primary human skeletal muscle cells (HSkMC) from obese, 

insulin resistant humans [6,9]. In addition, we observed an inability to upregulate 

peroxisome proliferator-activated receptor (PPAR)α and PPARα-responsive genes in 

response to high fat feeding in skeletal muscle of obese, insulin resistant humans [10]. 

PPARα is a global transcriptional regulator of FAO, activated by endogenous fatty acids and 

fatty acid derivatives [11]. Thus, PPARα is a prominent candidate for interventions aimed at 

increasing FAO and improving metabolic flexibility in obese, insulin resistant individuals 

who exhibit a reduced capacity for appropriately modulating FAO in response to nutrient 

availability.

Fibrates such as fenofibrate (FENO) are PPARα activators commonly used for treatment of 

hypertriglyceridemia [12]. These PPARα activators are known to induce the expression of 

genes involved in lipid oxidation, including pyruvate dehydrogenase kinase (PDK)4 and 

carnitine palmitoyl transferase (CPT)1 [13] in vitro or in animal models; however, there are 

limited data on whether FENO can increase FAO in metabolically inflexible, obese insulin-

resistant humans. In addition, there are conflicting reports on effects of fibrates on insulin 

resistance [14–20]. Thus, as a regulator of PPARα, and potentially FAO, this series of 

experiments was designed to investigate the mechanisms linked with the lipid metabolic 

inflexibility of human obesity and the ability of FENO to increase FAO in human skeletal 

muscle.

Methods

HSkMC were derived from muscle biopsy specimens of lean and obese, insulin resistant 

humans and used to examine metabolid inflexibilty, FAO, and the effects of FENO. In vivo 

effects of FENO were determined in skeletal muscle samples collected before and after 10 

weeks of FENO treatment in pre-diabetic individuals.
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HSkMC

The East Carolina University Policy and Review Committee on Human Research approved 

this protocol and written, informed consent was obtained prior to the muscle biopsy 

procedure. For the HSkMC studies, skeletal muscle biopsies were performed as described 

[10,21] in the vastus lateralis of 10 lean (BMI<25 kg/m2) and 10 obese (BMI>30 kg/m2) 

Caucasian males (ages 18–31 y). Participants were free from disease, nonsmokers, and not 

taking medications known to alter lipid or carbohydrate metabolism. Subjects were excluded 

if they were performing more than 60 min/week of organized physical activity, or if they 

experienced a weight change greater than 2 kg in the previous 3 months.

Skeletal muscle satellite cells were isolated and cultured from fresh skeletal muscle tissue 

and differentiated to myotubes for 7 days [9]. Metabolic flexibility was tested by incubating 

cells for 24 h in differentiation medium supplemented with either 0.1% BSA (control; 

CTRL) or 200 μM oleate:palmitate (1:1 ratio) bound to BSA (2.5:1 molar ratio) plus 2 mM 

carnitine (24hFA), after which metabolic measures were made to determine: 1) FAO of 

intact HSkMC using 14C-labeled fatty acid incorporation to 14CO2; or 2) mitochondrial 

oxygen consumption of permeabilized HSkMC (Seahorse XF-24, Seahorse Bioscience, 

Billerica, MA).

Experiments were performed to determine the optimal FENO concentration and duration of 

incubation considering cell viability and capacity for increasing FAO (2h, 6 μM). In 

subsequent experiments, HSkMCs were exposed to 24hFA and 2h, 6 μM FENO in 

combination with 10 μM GW6471 (PPARα inhibitor), 20 μM Compound C (AMPK 

inhibitor), or 0.5 M AICAR (AMPK activator) to discern the mechanism of FENO action on 

HSkMC FAO.

HSkMC Fatty Acid Oxidation Assays

FAO assays were performed as described [22]. Briefly, myotubes were incubated at 37 °C in 

sealed 24-well plates containing differentiation media containing 0.25 μCi/ml [14C]oleate 

and 0.25 μCi/ml [14C]palmitate (PerkinElmer Life Sciences, Waltham, MA), with 200 μM, 

1:1 ‘cold’ oleate:palmitate. After a 2h incubation, the rate of FAO was determined by 

measuring the 14CO2 released from the media following acidification. Measures were 

performed in triplicate and data were corrected for total protein content, as measured by 

BCA method (bicinchoninic acid assay; Pierce Biotechnology, Inc.)

HSkMC Respiration Experiments

For permeabilized cell respiration, media was removed and 200 μl of sucrose-based 

respiration buffer (MiR05), supplemented with 2.5 μg/ml digitonin, were added. After 5 

min, an additional 300 μl MiR05 respiration buffer containing basal substrate conditions (5 

μM palmitoyl carnitine, 1 mM malate) but without digitonin supplement, were added. Cells 

were then subjected to the following respiration experiment: basal state 4 respiration 

(palmitoyl carnitine + malate, PCM4), state 3 respiration supported by palmitoyl carnitine 

(+2 mM ADP; PCM3), state 3 respiration supported by succinate (+3 mM succinate +1 μM 

rotenone; SR3), state 2 respiration (+2 μM oligomycin; Olig.), and maximal uncoupled 

respiration (+4 μM FCCP). Respiratory control ratios (RCR)s were calculated as the state 3 
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respiration rate (succinate + rotenone) / state 4 respiration rates and were used to assess 

mitochondrial integrity. Following experiments, cells were rinsed with PBS, and lysed with 

protein lysis buffer, and total protein content was measured by BCA assay. All respiration 

data were normalized to cell-free wells and total protein content.

In Cell ELISA

HSkMC were rinsed twice in PBS then fixed to culture plates with 4% formalin for 5 min. 

Cells were permeabilized using permeabilization/blocking buffer (0.1% Fraction V BSA, 

5% goat serum, 0.3% Triton X-100, 0.2% sodium azide in PBS) with rotation for 1 hr. After 

rinsing, 1:250 dilution of rabbit anti-AMPK or rabbit anti-phosphorylated AMPK [Thr172] 

in antibody buffer (0.1% Fraction V BSA, 5% goat serum in PBS) were added, then 

incubated overnight at 4°C with rotation. After rinsing. goat anti-rabbit horseradish 

peroxidase (HRP)-conjugated antibody diluted 1:5,000 in antibody buffer was added, then 

incubated at room temperature for 1 hr. Rinsed wells were emptied and blotted dry, HRP 

developing solution was added, and color change was measured at 1 min intervals for 10 min 

at 650 nM. Stable slopes for 5 consecutive minutes were used to quantify the content of 

phosphorylated AMPK relative to total AMPK (phosphorylated AMPK/total AMPK) 

protein.

Pre-diabetic Subjects and Study Design

To study the effects of FENO on in vivo skeletal muscle metabolism, muscle biopsies were 

obtained from individuals (age 18–65 y, BMI 28–38 kg/m2) with pre-diabetes (defined as 

impaired glucose tolerance [IGT; plasma glucose of 140–199 mg/dl 2 h after a 75 g oral 

glucose tolerance test] or impaired fasting glucose [IFG; fasting plasma glucose of 100–126 

mg/dl]) recruited as part of a randomized clinical trial () [21]. All subjects provided written, 

informed consent under a protocol that was approved by the local Institutional Review 

Board. Studies were conducted at the Clinical Research Center at the University of Colorado 

Anschutz Medical Campus.

Subjects with a history of diabetes, renal insufficiency (creatinine >1.4), liver disease (AST 

or ALT> 2x normal), congestive heart failure, or coronary artery disease were excluded, as 

were subjects who were taking medications known to affect inflammation or insulin 

resistance, such as steroids or NSAIDS. Baseline measures included insulin resistance by 

insulin-modified, frequently sampled intravenous glucose tolerance tests (FSIGT) and body 

composition by dual-energy X-ray absorptiometry (DXA) followed by vastus lateralis 

skeletal muscle biopsies (n=11). Subjects then received FENO (145 mg/day) for 10 weeks 

and FSIGT, DXA, and muscle biopsy repeated.

Fasting insulin was measured using an immunochemiluminescent assay (MLT Assay, Wales, 

UK). Plasma glucose was measured in duplicate by a glucose oxidase assay. Insulin 

sensitivity was calculated from the insulin and glucose data using the MinMod Millennium 

program [23].
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Skeletal Muscle Fatty Acid Oxidation

Skeletal muscle FAO was measured as for HSkMC with modification for tissue 

homogenates as previously described [24] (n=3). Tissue homogenates were assayed for total 

protein content by BCA assay for data normalization. All measures were performed in 

quintuplet.

Mitochondrial Enzyme Activity

Mitochondrial-enriched supernatants (post 600 g) were prepared from frozen skeletal muscle 

samples [25]. Supernatants were used to assay activity of respiratory chain enzyme 

complexes I and II+III, and citrate synthase (CS) spectrophotometrically on a Synergy H1 

microplate reader (Biotek, Winooski, VT). For complexes I, II+III, and CS enzyme activities 

were calculated as initial rates (nmol/min). For complex III, enzyme activity was calculated 

as the first-order rate constants derived within 2–3 min of reaction initiation. The protein 

content of each sample was determined by BCA assay. All enzyme activities were 

normalized to the total protein content of each sample and results are expressed relative to 

CS activity.

Quantitative PCR

Total RNA was isolated from skeletal muscle tissue using the Ultraspec RNA kit (Biotecx 

Laboratories, Inc, Houston, TX). cDNA was transcribed from 200 ng total RNA using 

iScript cDNA Synthesis kit (Bio-Rad). qPCR was performed using primer sets for genes of 

interest and RPL13a and ubiquitin C as reference genes and iQ SYBR Supermix (Bio-Rad, 

Hercules, CA) as described [25]. Reactions were run in duplicate on an iQ5 Real-Time PCR 

Detection System (Bio-Rad) along with a no-template control per gene. RNA expression 

data was normalized to reference genes using the comparative threshold cycle method.

Mitochondrial DNA Copy Number

Total cellular DNA was isolated by phenol/chloroform extraction and quantified using the 

PicoGreen DNA quantification kit (Thermo Fisher, Waltham, MA). mtDNA content was 

measured as relative copy number of mtDNA per diploid nuclear genome using quantitative 

PCR with primers specific to β-globin and mtDNA, as described [26,27].

Statistical Analyses

For all characteristic data, independent t-tests were used. For HSkMC comparisons of 

24hFA across body size, repeated measures ANOVA was used to test for effect of BMI, 

effect of treatment, or for interaction. For HSkMC FENO concentration/time course 

experiments, three separate univariate analyses of variance (ANOVAs) were used to compare 

across 24hFA pre-treatments and across FENO concentrations. Bonferroni corrections were 

used for post-hoc analyses. Separate independent t-tests were used to compare 24hFA with 

all other treatments for FENO mechanism experiments. Paired t-tests were used to test 

FENO treatment effects in human skeletal muscle tissue experiments. Statistical difference is 

indicated at p≤0.05. Data are expressed as the mean ± SEM. Statistical analyses were 

performed using SPSS Statistics (SPSS, IBM Corp., Armonk, NY).
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Results

HSkMC subject characteristics

The characteristics of lean and obese subjects for the HSkMC experiments are presented in 

Table 1. By design, the obese group had a higher BMI and body fat percentage. While 

fasting glucose levels were similar between groups, the obese individuals had higher fasting 

insulin levels and HOMA-IR scores (p<0.05), suggesting insulin resistance.

Responses to 24h lipid incubation

FAO increased with 24hFA (p<0.05), though the lean subjects exhibited a 4-fold greater 

response to 24hFA than obese (+40% vs. +9% from CTRL to 24hFA conditions in lean vs. 
obese, respectively; Fig. 1A; p<0.05), indicating greater metabolic flexibility. We did not 

observe differences in mitochondrial content, as estimated by mitochondrial DNA copy 

number (Fig. 1B). To further investigate the pathogenesis of metabolic inflexibility, 

mitochondrial function was evaluated in similar conditions in permeabilized HSkMCs. 

Notably, in permeabilized HSkMC, state 3 respiration supported by palmitoyl carnitine, or 

PCM3, was increased with 24hFA conditions in lean subjects but decreased in HSkMC from 

obese individuals (+34% and −17%, respectively; Fig. 1B, inset; p<0.05). However, 

mitochondrial respiration in all other conditions tested were not different between groups, 

nor did respiration change with 24hFA in either group for SR3, Olig, or FCCP (Fig. 1C). 

Mitochondrial respiratory control ratios (mean = 2.78 ± 0.26) and state 4 respiration (Fig. 

1C) were similar between groups and not altered with 24hFA.

Acute FENO treatment increases FAO

Acute (2h) FENO incubation stimulated a 4 to 5-fold increases in FAO for both the CTRL 

and 24hFA conditions in a dose dependent manner (Fig. 2A; p<0.05). A 12 μM FENO 

treatment also increased FAO to a similar magnitude as the 6 μM FENO, though this 

condition resulted in considerable cell death (data not shown). Longer duration FENO 

incubations were not effective for increasing FAO (Fig. 2B). Longer duration FENO 

incubations were also performed for 3 μM and 12 μM FENO concentrations, with no 

significant increase in FAO (data not shown). Thus, 2h, 6 μM FENO was chosen for 

subsequent experiments.

FENO may act through PPARα and AMPK phosphorylation

To test the specificity of the effect of FENO on FAO, we used GW6471 (a PPARα 
antagonist) or compound C (an AMPK inhibitor). FENO-mediated increases in FAO, were 

abolished with GW6471 co-incubation (Fig. 3A; p<0.05), indicating that FENO-mediated 

increases in FAO depend on PPARα activity. Likewise, co-incubation of FENO with 

Compound C, a competitive inhibitor of AMPK, abolished the effect of FENO on FAO and 

reduced FAO to below basal rates (CTRL or 24hFA alone; Fig. 3A, p<0.05). To corroborate 

these metabolic effects, Fig. 3B shows that AMPK phosphorylation was increased in the 

cells treated with 24hFA + 2h, 6 μM FENO (p<0.05), to a similar extent as observed with 

0.5 μM AICAR (p<0.05). These effects of FENO were eliminated when GW6471 or 

Compound C were added (Fig. 3B).
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Effects of FENO in individuals with pre-diabetes

Baseline characteristics and clinical outcomes of the 10-week FENO treatment in obese, pre-

diabetic patients are summarized in Table 1. As expected, FENO treatment lowered 

triglyceride levels by 45% (p<0.05). However, insulin sensitivity, when measured by either 

HOMA-IR or FSIGT, did not change. There were no differences in citrate synthase activity 

(Fig. 4A), mitochondrial ETS enzyme activity (CI, CII+CIII, or CIV; Fig. 4B), or in mRNA 

content of PPARα-responsive genes (Fig. 4C). Nevertheless, in a subset of subjects, FAO of 

fresh skeletal muscle tissue homogenates increased by 10–80% from Pre- to Post-FENO 

treatment (n=3, Fig. 4D, p<0.05).

Discussion

Metabolic flexibility, defined as the ability to appropriately adjust oxidation to changes in 

nutrient availability, is a hallmark of metabolic health. In skeletal muscle specifically, 

metabolic flexibility is related to higher insulin sensitivity, reduced adiposity, and greater 

cardiovascular fitness [3]. The present data indicate that the ability to increase FAO upon 

exposure to a physiologically relevant lipid mixture (oleate:palmitate) was significantly 

dampened in skeletal muscle cells from obese compared to lean subjects, which was not 

explained by differences in mitochondrial content (Fig. 1B). When measuring mitochondrial 

respiration in permeabilized cells, we did not find differences in basal or maximal 

respiration rates, nor for state 3 respiration supported by succinate + rotenone, which tests 

flux through ETS complex CII (Fig. 1C). These results suggest that lipid metabolic 

inflexibility in HSkMC from obese humans with respect to lipid oxidation does not involve 

deficits in ETS complex function. Therefore, differences in the response to 24hFA likely 

occur either at the tricarboxylic acid or TCA cycle, where the CO2 is produced, or at 

upstream events in fatty acid metabolism. Previous reports in skeletal muscle tissue and cells 

from humans with obesity or type 2 diabetes have also shown normal electron transport 

function, particularly when data are normalized for mitochondrial content[28,29]. Likewise, 

we and others have shown deficits in TCA cycle and fatty acid transport/metabolism 

specifically in humans and animal models of obesity [6,8,30–32].

FENO was used to determine if FAO can be increased in metabolically inflexible HSkMC 

via PPARα activation [14,33]. Results in animal studies have been mixed, with some 

findings suggestive of FENO-induced increases in fatty acid oxidation [34–36] and others 

not [37]. In the present study, we found that short-term exposure to FENO (2h) increased 

FAO in metabolically inflexible HSkMC, indicating that the effects of FENO are fast-acting 

and transient. Based on these findings, we hypothesized that the effects of FENO on FAO 

were independent of PPARα, perhaps acting through a more short-term metabolic activation, 

such as AMPK phosphorylation, which has been previously reported [38,39]. AMPK is 

sensitive to the cellular energy state and is a potent activator of FAO, shifting substrate 

choice to favor lipd over carbohydtates [40]. However, co-incubation of HSkMC with FENO 

and either the PPARα inhibitor GW6471 or the AMPK inhibitor Compound C eliminated 

FENO-mediated increases in FAO (Fig. 3A), suggesting that FENO may be acting through 

both PPARα and AMPK. Several studies have reported increased activity of AMPK by 

FENO [38,39] but the interactions between AMPK and PPARα, and the activation of these 
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proteins themselves, are complex and often contradictory [41–43], including some evidence 

of AMPK inhibition of PPARα [43]. In understanding these interactions, the utility of the 

HSkMC system lies in the ability to incubate human skeletal muscle under conditions which 

would be difficult to replicate in vivo; the finding of FENO functioning through AMPK in 

terms of modulating FAO thus provides important information relative to the PPARα-AMPK 

axis.

Due to the potential effectiveness of the intervention, we investigated whether in vivo FENO 

treatment in individuals with pre-diabetes increased FAO in a manner similar to that in the 

primary muscle cell cultures. While some studies have shown that FENO improves 

peripheral insulin sensitivity in patients with metabolic syndrome [16,17], our findings 

confirm many others in terms of there being no effect [14,18–20]. Neither did we observe 

FENO-induced effects on mRNA content of PPARα-responsive genes or for mitochondrial 

enzyme activity. However, in a subset of subjects, we observed increases in FAO in skeletal 

muscle tissue after FENO treatment (Fig. 4D), which appeared to be induced independently 

of changes in mitochondrial content (as indicated by citrate synthase activity) or the 

expression of PPARα responsive genes. The discrepancy between PPARα response to 

FENO in the patient biopsies versus FENO treatment in the primary muscle cell cultures 

could be the timing of the exposure to FENO as the last dose of FENO was over 24h prior to 

skeletal muscle sample collection. Based on our results in primary muscle cells, the effects 

of FENO are relatively short-lived and, therefore, may not be detected a moreprolonged 

period after administration. However, when isolated mitochondria from these patients were 

metabolically stimulated to oxidize fatty acids, FAO was increased at the Post-FENO 

timepoint, suggesting some residual effect or metabolic adaptation to chronic FENO 

treatment when tested in vivo. Future investigations should aim to clarify the timing of 

sample collection in relation to FENO dosing, as well as the acute vs. chronic effects of 

FENO treatment in humans.

In summary, the current data suggest that lipid metabolic inflexibility observed in HSkMC 

from obese subjects appears not to be a function of differences in electron transport flux, but 

rather to events upstream of electron transport, such as decrements in TCA cycle flux or β-

oxidation. Short-term FENO increased FAO through both PPARα and AMPK activation in 

vitro. Taken together, these novel results suggest that PPARα activators may improve 

metabolic flexibility acutely, but their role in skeletal muscle metabolism in vivo requires 

further investigation.
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Figure 1. 
24hFA exposure increases lipid oxidation in HSkMC from lean but not obese subjects. 

HSkMC from lean (open bars) and obese (filled bars) were incubated with or without 200 

μM fatty acid for 24 h (24hFA) prior to measures of FAO from 14C-labeled palmitate:oleate 

or mitochondrial respiration of permeabilized HSkMC. Complete FAO was increased with 

24hFA treatment in both lean and obese HSkMC, though the response was more robust in 

lean HSkMC (A). There were no differences between groups, nor for 24hFA, in 

mitochondrial DNA Copy number (B). In permeabilized HSkMC, subsequent compound 
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additions in the Seahorse from basal (PCM4; palmitoyl carnitine + malate) were ADP 

(PCM3), succinate + rotenone (SR3), oligomycin, and FCCP (C). Only PCM3 showed 

differences, where a significant ANOVA interaction revealed 24hFA-induced increases in 

PCM3 in HSkMC from lean, and PCM3 decreases in HSkMC from obese subjects (C, inset). 

Data are mean ± SEM. # indicates significant repeated measures ANOVA interaction. * 

indicates significant effect of 24hFA treatment for both lean and obese, combined. § 

indicates significant difference from lean in 24hFA condition.

Boyle et al. Page 13

Horm Metab Res. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Acute FENO treatment increases FAO in HSkMC with lipid metabolic inflexibility. 

Concentration courses of FENO treatment show that 6 μM FENO treatment is most robust 

for increasing 14C labeled palmitate:oleate FAO in obese, metabolically inflexible HSkMC 

(A). More prolonged treatment with 6 μM FENO for acute (2h), prolonged (22h), or acute + 

prolonged (2h + 22h) FENO treatments did not show similar robust increase in FAO (B). 

Data represent metabolically inflexible HSkMC from n=2–4 obese subjects, measured in 

triplicate. Data are mean ± SEM. * indicates significant dose effect for FENO concentration. 

# indicates significant difference from NO FENO for CTRL and 24hFA combined.
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Figure 3. 
FENO may act through PPARα and AMPK phosphorylation. Treatment of obese, 

metabolically inflexible HSkMC with FENO in combination with GW6471, Compound C, 

or AICAR as indicated, show that FENO-induced increases in FAO are inhibited by co-

incubation with PPARα antagonist or AMPK inhibitor, though FENO treatment with AMPK 

activation by AICAR does not increase FAO beyond that of FENO alone (A). Similar 

observations are made for phosphorylated AMPK/Total AMPK protein levels (Thr172) (B). 

Data are mean ± SEM. * indicates significant difference from 24hFA condition.
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Figure 4. 
In vivo FENO treatment does not affect skeletal muscle mitochondrial enzyme activity or 

genes or proteins linked with PPARα. Skeletal muscle citrate synthase activity (A) 

mitochondrial ETS complex enzyme activities (B), mRNA content of genes linked with 

PPARα activation (C) were not different after 10 weeks of FENO treatment, though 

complete FAO from (14C-labeled palmitate) was increased in fresh skeletal muscle tissue 

homogenates of a subset of pre-diabetic patients treated with FENO for 10-weeks (A). Data 

are mean ± SEM. * indicates significant difference from Pre-FENO condition.
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Table 1.

Patient Characteristics for HSkMC and Skeletal Muscle Tissue Experiments

HSkMC Subjects Pre-Diabetic Subjects

Lean
(n=10)

Obese
(n=10)

Pre-FENO
(n=11)

Post-FENO
--

Age (y) 22.4 ± 0.6 24.2 ± 1.1 48.8 ± 3.0 --

Sex (M/F) (10/0) (10/0) 6/5 --

BMI (kg/m2) 21.6 ± 0.7 36.4 ± 1.7* 35.9 ± 1.3 37.0 ± 1.5
#

Body Fat (%) 17.8 ± 3.1 41.1 ± 1.8* 38.1 ± 3.2 38.6 ± 2.7

Glucose (mmol/L) 4.9 ± 0.1 5.0 ± 0.1 5.7 ± 0.3 5.7 ± 0.3

Insulin (μIU/L) 4.6 ± 0.7 16.0 ±1.5* 12.7 ± 2.8 10.9 ± 2.0

HOMA-IR 1.0 ±0.2 3.5 ± 0.3* 3.4 ± 1.0 2.9 ± 0.6

Triglycerides (mg/dL) 103.4 ± 14.2 134.6 ± 23.2 161.8 ± 33.5 92.1 ± 11.8
#

Hemoglobin A1c (%) -- -- 5.8 ±0.2 5.9 ± 0.2

SI (10−4min−1/μU/mL) -- -- 1.5 ± 0.2 1.9 ± 0.3

*
indicates significant difference from Lean.

#
indicates significant difference from Pre-FENO.
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