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Abstract 

 

Studies of physical activity behaviours have increasingly shown the importance of 

heritable factors such as genetic variation. Non-synonymous polymorphisms of alpha-

actinin 3 (ACTN3) and the β-adrenergic receptors 1 and 3 (ADRB) have been previously 

associated with exercise capacity and cardiometabolic health. We thus hypothesized that 

these polymorphisms are also related to physical activity behaviors in young adults. To 

test this hypothesis we examined relationships between ACTN3 (R577X), ARDB1 

(Arg389Gly) and ADRB3 (Trp64Arg), and physical activity behaviors in university 

students. We stratified for student enrollment in kinesiology degree programs compared 

to non-majors as we previously found this to be a predictor of physical activity. We did 

not identify novel associations between physical activity and ACTN3. However, the 

minor alleles of ADRB1 and ADRB3 were significantly underrepresented in kinesiology 

students compared to non-majors. Furthermore, carriers of the ADRB1 minor allele 

reported reduced participation in moderate physical activity and increased afternoon 

fatigue compared to ancestral allele homozygotes. Together, these findings suggest that 

the heritability of physical activity behaviours in young adults may be linked to non-

synonymous polymorphisms within β-adrenergic receptors.  
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Introduction   

Inactivity and sedentary behaviors contribute to ~5.3 million deaths annually 

(Katzmarzyk and Janssen 2004; Lee et al. 2015; Ogden et al. 2014; Rao et al. 2015). A 

significant proportion of these deaths are due to complications from type 2 diabetes 

(T2D) and the insulin resistance syndrome that precedes it (Cowie et al. 2006). Regular 

physical activity is the most effective intervention for the prevention of insulin resistance 

and T2D (Fiuza-Luces et al. 2013). However, significant variability exists in both the 

effectiveness of and adherence to prescribed physical activity for health and fitness (de 

Geus et al. 2014; Houmard et al. 2004; Johnson et al. 2004). Since some of this 

variability can be attributed to polymorphisms within exercise-related genes, a precision 

medicine approach is warranted to manage the burden of inactivity-related disease 

(Bouchard et al. 2011; Bray et al. 2016; de Geus et al. 2014; Lee et al. 2015).  

Previous research from our laboratory has identified significant effects of genetics 

(Deschamps et al. 2015), educational setting and social/geographical factors (Many et al. 

2016) on parameters of cardiometabolic fitness (Myslicki et al. 2014) and physical 

activity behaviors in healthy young university students. For instance, we have recently 

shown that the common 577X stop-codon mutation within the gene encoding sarcomeric 

alpha-actinin 3 (ACTN3) is associated with lower cardiovascular fitness (peak VO2), 

increased body fat and an atherogenic metabolite profile relative to carriers of the R577 

ancestral allele (Deschamps et al. 2015). These findings support a large body of 

published research linking the ACTN3 “sports gene” to exercise capacity in both elite and 

amateur athletes (Chan et al. 2008; Clarkson et al. 2005; Delmonico et al. 2007; Eynon et 

al. 2014; MacArthur and North 2004; Mills et al. 2001; Norman et al. 2014). In this same 
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cohort we determined that students enrolled in accredited kinesiology degree programs in 

Canada and the United States display improved parameters of insulin sensitivity and 

increased physical activity levels relative to non-kinesiology majors (Many et al. 2016). 

Given the significant heritability of physical activity behaviors in young adults (~84%), 

our kinesiology cohort represents a novel population of convenience for investigating the 

relationship between genetics and physical activity (de Geus et al. 2014; Nedovic et al. 

2016).   

  The β-adrenergic receptors encoded by the ADRB genes, are catecholamine-

sensitive, G-coupled transmembrane proteins that are expressed in variety of tissues, 

including heart, skeletal and smooth muscle, adipose and the brain (Burguete-Garcia et 

al. 2014; Clement et al. 1995; Numajiri et al. 2012; Snyder et al. 2006; Wagoner et al. 

2002; Walston et al. 1995; Widen et al. 1995). Like ACTN3 (Deschamps and Hittel 

2016), non-synonymous (amino acid changing) variants of the β-adrenergic receptors 

genes ARDB1 (Arg389Gly) and ADRB3 (Trp64Arg) have been associated with both 

insulin resistance and athletic performance (Burguete-Garcia et al. 2014; Clement et al. 

1995; Walston et al. 1995; Widen et al. 1995). Although the mechanisms are not well 

established as ACTN3, ADRB receptors in the brain have been shown to modulate 

anxiolytic (anxiety reducing) behaviours (Stemmelin et al. 2008) and thus may influence 

the perception of exercise as a means to reduce anxiety (Pedersen and Saltin 2015).  

To test this hypothesis we examined ACTN3, ADRB1 and ADRB3 gene variants in 

relation to physical activity behaviors in a population of healthy young university 

students. Findings from this study may be of importance for identifying genetic markers 
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associated with physical activity that can be used for targeting physical activity 

interventions in at risk individuals.  

 

Methods and Materials 

Participants 

All participants were a part of the Assessing Inherited Markers of Metabolic 

Syndrome in the Young (AIMMY) study described previously (Deschamps et al. 2015; 

Karlos et al. 2013; Klein et al. 2014; Many et al. 2016). University students were enrolled 

at three recruiting sites: (UC) University of Calgary (n=197, Calgary, Canada), (ECU) 

East Carolina University (n=91, Greenville, NC) and (UM) University of Massachusetts 

(n=207, Amherst, MA). This study was approved by the Conjoint Health Research Ethics 

Board at the University of Calgary (Ethics ID: E23521) and is registered under 

the clinicaltrials.gov identifier NCT00966407. Written informed consent for genetic and 

all other testing was obtained from all subjects before participation and was conducted 

under the provisions of the Declaration of Helsinki. Subjects were: (1) between the ages 

of 18 and 35 years; (2) had completed puberty; and (3) willing and able to provide 

informed consent. At all sites, recruitment occurred on-campus using posters, information 

on campus-wide monitors, brief classroom sessions and the university’s website. All 

eligible, consenting participants were considered to be healthy at the time of enrolment. 

Health was defined as an absence of: (1) evidence of clinically relevant systemic disease 

associated with metabolic disorders ; (2) chronic use of glucocorticoid or appetite 

suppressants; (3) the use of drugs that alter glucose metabolism or other medications 

known to alter blood levels being tested in this study; (4) previous diagnosis or treatment 
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for any hematologic-oncologic disorder; (5) history or current treatment for an eating 

disorder; (6) current treatment for weight loss; (7) history of bariatric surgery; (8) history 

of neurosurgical procedure. 

 Clinical Blood Measures 

Blood samples were collected in de-identified tubes after an 8–12 hour, overnight 

fast. Blood for lipoprotein assays (LDL-C, High-Density Lipoprotein Cholesterol (HDL-

C), Total Cholesterol (TC), and Triglycerides (TG)) as well as insulin, glucose and 

HbA1c was collected using serum stopper tubes containing a clot activator and a silicon 

gel separator. After collection, samples were spun at 3000 rpm for 10 minute and stored 

at 2–8°C until being transported to Calgary Lab Services (Calgary, AB) or Quest 

Diagnostics (Madison, NJ) for analysis as described previously (Deschamps et al. 2015; 

Karlos et al. 2013; Many et al. 2016). 

Genotyping 

Genomic DNA for genetic analysis was isolated from peripheral blood as 

described previously. Blood samples were collected in tubes containing an ethylene 

diamine tetra-ascetic acid (EDTA) anticoagulant and were stored at 2–8°C for a 

maximum of one week before being sent to the Children’s National Medical Centre 

(CNMC) in Washington, DC without subject identification. The ACTN3 R577X    

(rs1815739), ADRB1 Arg389Gly (rs1801253) and ADRB3 Trp64Arg single nucleotide 

polymorphisms (SNPs) (rs4994) were identified using TaqMan allele discrimination 

assay (Deschamps et al. 2015).   
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Fitness Assessment 

Seated resting blood pressure and heart rate measures were taken 3 times over 2 

separate visits using an automated monitor cuff. Grip strength was assessed using an 

Almedic 100kg hand grip dynamometer (Almedic, Montreal, QC, Canada). Body mass 

index (BMI) was calculated by dividing the subjects height in meters by their weight in 

kg
2
. Percent body fat (%BF) and bone mineral density (BMD) was measured using a 

dual-energy x-ray absorptiometry scan (DXA) (Hologic QDR 4500A scanner, Hologic 

Inc, Walthan, MA.). VO2peak was assessed using the Bruce treadmill protocol as an 

indicator of cardiovascular fitness. Oxygen consumption was assessed with a Hans 

Rudolph nonbreathing 2-way valve mouthpiece and a ParvoMedics TrueOne 2400 

metabolic cart (ParvoMedics, Sandy, UT) (Shah 2013).  

Questionnaires  

Family history, ethnicity, diet and physical activity levels were recorded by self-

report using secure online questionnaires and an iPad as described previously (Many et 

al. 2016). Self-reported physical activity was assessed via a 12-month Paffenbarger 

physical activity survey from which, weekly energy expenditure was calculated from the 

time and energy (metabolic equivalents [METs]) spent participating in leisure and non-

leisure physical activities (Simpson et al. 2015). Further, subjects were asked to divide 

the time spent engaging in light, moderate, and vigorous-intensity physical activity as 

well as sitting and exercise intensity over a typical 24-hour weekday and weekend (Many 

et al. 2016). To assess exercise intensity specifically we used the Borg Category Ratio 0-

10 (Borg CR-10) rate of perceived exertion (RPE) scale where 0 means "rest" and 10 

means "maximal exertion” (Irving et al. 2006). The Epworth Sleepiness Scale (ESS) was 
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used to assess daytime sleepiness (Johns 1991). Finally, students at the University of 

Calgary and East Carolina University recruitment sites (n=288) were asked to report their 

college major (kinesiology vs non-kinesiology major) as described previously (Many et 

al. 2016).  

 

Statistical Analysis   

Unless otherwise stated, all statistical analyses were performed using SPSS 

Statistics, version 20 (IBM). All data are presented as mean ± SEM. To test for 

homogeneity of ACTN3, ADRB1 and ADRB3 genotype frequencies between kinesiology 

students and non-majors χ
2
 values were estimated using genotype numbers as described 

previously (MacArthur and North 2004).  

 We used a dominant genetic model for all genotype associations. Age and sex  

were used as covariates except for when sexes were being compared. Analysis of 

covariance (ANCOVA) with the Sidak method for post-hoc multiple comparisons 

adjustment was used for post-hoc multiple comparisons adjustment of P values (Lee et al. 

2015). All resulting adjusted means are shown as transformed values as those are the 

numbers used for statistical models.  

Results 

AIMMY Subject Characteristics 

Of the 288 participants enrolled in AIMMY from the UC and ECU sites, 150 

(52%) subjects were female and 138 (48%) were male with a mean age of 22.4 ± 2.8 (age 

range 18-35, Table 1). Among AIMMY participants, 223 (77.4%) self-identified as 

Caucasian, 27 (9.4%) as Asian, 19 (6.6%) as African American, 11 (3.8%) as Other or 

Page 8 of 30

https://mc06.manuscriptcentral.com/apnm-pubs

Applied Physiology, Nutrition, and Metabolism



Draft

not-specified and 8 (2.8%) as Hispanic or Latino. Kinesiology (KNES) majors exhibited 

significantly lower total body fat, lower fasting insulin levels, HOMA-IR and a higher 

VO2peak (Table 1) compared to non-majors (NON). KNES majors also reported 

significantly higher physical activity levels compared to NON-majors and self-reported 

“regular” exercise to be at a higher intensity as captured by the Borg CR-10 scale (Table 

2). Additional physical activity and dietary data from this cohort have been published 

previously (Deschamps et al. 2015; Many et al. 2016). 

  For population verification and further genetic analyses, an additional 207 

University of Massachusetts students without faculty information (KNES vs NON) were 

added to the original AIMMY cohort creating a combined cohort of 495 individuals, 229 

(46.3%) Female, 266 (53.7%) Male).   

Genetic Analysis 

As a means of ensuring genotyping accuracy we determined that the ACTN3 

rs1815739 Minor Allele Frequency (MAF) was in Hardy-Weinberg Equilibrium (HWE) 

in both KNES majors (MAF =37, p=0.99) and NON-majors (MAF=45, p=0.60) in our 

combined cohort. Further, there were no significant differences in the distribution of 

ACTN3 genotypes (P=0.423) (Figure 1), nor were there any additional associations with 

cardiometabolic or fitness traits other than those reported previously by our lab (Peak 

VO2, Systolic & Diastolic Blood Pressure and % Body Fat) (Deschamps et al. 2015).  

Similarly, we determined that ADRB1 rs1801253 (MAF = 32%, p=0.17) and 

ADRB3 rs4994 (MAF = 7.4%, p=0.31) loci were also in HWE in the combined AIMMY 

cohort. However a Pearson's χ
2
 test identified significant differences in the distribution of 

ADRB1 CC, CG and GG genotypes (P=0.004) and ADRB3 AA, AG and GG genotypes 
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(P=0.018) between kinesiology students and non-major sub-populations (Figure 1). In the 

case of ADRB1, 32% (32) kinesiology students carried one or more copies of the minor 

G/Arg389Gly allele compared to 52% (98) non-majors. For ADRB3, 7% (7) of 

kinesiology students carried one or more copies of the minor G/Trp64Arg allele 

compared to 14% (26) non-majors. Taken together these findings inspired a deeper 

investigation of the relationship between ADRB genotypes, cardiometabolic and fitness 

characteristics of our AIMMY cohort (Tables 1 and 2) that may underlie differences in 

the population structure of kinesiology students (Many et al. 2016). The observed MAFs 

were within the range of population genetics data from the 1000 genomes (Kuehn 2012) 

and NIH Exome Sequencing Project cohorts (Auer et al. 2012) for ACTN3 (37.2 %) 

ARDB1 (30.0%) and ARDB3 (11.5%).  

In the original (n=288, Table 3A), verification (n=207, Table 3B) and combined 

(n=495, Table 3C) AIMMY cohorts, ADRB1 CG/GG individuals reported significantly 

fewer calories expended during moderate-type physical activity. Whereas ADRB1 

CG/GG genotypes in the original cohort reported increased “afternoon fatigue” (P=0.04)  

compared to CC homozygotes (Table 3A) these differences persisted below the threshold 

for statistical significance in the verification (p=0.06, Table 3B) and combined (p=0.057, 

Table 3C) AIMMY cohorts. ADRB1 CG/GG individuals also exhibited significantly 

lower peak VO2 in our combined AIMMY cohort (Table 3C) that was not apparent in the 

smaller cohorts. Taken together, these findings indicate a role for ARDB1 genotype in 

voluntary exercise that supports previous associations with exercise capacity (Wagoner et 

al. 2002). Because the mean values for both ADRB1 heterozygotes (CG) and 
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homozygotes (GG) were similar and because of the relatively low numbers of risk allele 

homozygotes we used a dominant genetic model to calculate associations.    

In our original cohort, individuals with ADRB3 AG/GG genotypes scored 

significantly lower on the Borg CR10 RPE scale when asked to assess their “normal” 

intensity level during exercise (Table 3A). Although these differences were not 

significant in the verification cohort (p=0.07, Table 3B) they were apparent in female 

subjects in the combined larger cohort (p=0.05, n=229).  We also identified significant 

associations between ADRB3 genotype, fasting triglyceride levels and HOMA-IR in 

female subjects only wherein possession of 1 or more copy of the G allele was associated 

with higher triglycerides and HOMA-IR (Table 3C). These findings are consistent with 

the role of beta-adrenergic receptors in the regulation of lipolysis and thermogenesis in 

white and brown adipose tissue(Chang et al. 2012; Ueta et al. 2012). These findings also 

support previous research linking the ADRB3 Trp64Arg polymorphism with increased 

susceptibility to insulin resistance and type 2 diabetes (Sakane et al. 2016) (Fujisawa et 

al. 1996).  

Finally, the associations of ADRB3 genotypes with the perception of exercise 

intensity and ADRB1 with afternoon fatigue were only significant in NON-majors 

(n=198)  (data not shown). Although these associations may be due to reduced statistical 

power in the smaller KNES cohort (n=99), they may also indicate that educational 

setting/environment can override genotype-associated physical activity behaviors.  

Discussion 

We have discovered that common polymorphisms of the β-adrenergic receptors 1 

and 3 are significantly underrepresented in a population of healthy young university 
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students enrolled in kinesiology degree programs. Carriers of the ADRB1 G allele 

expended on average, 776 fewer kilocalories per week participating in moderate-intensity 

physical activities, experienced greater afternoon fatigue and exhibited lower 

cardiovascular fitness (peak VO2) compared to homozygous carriers of the ancestral C 

allele. Similarly, individuals with one or more copy of the ADRB3 G allele reported lower 

exertion levels during regular exercise, higher fasting triglycerides and higher HOMA-IR 

values (in females) indicating lower sensitivity to insulin. Three of these characteristics 

(Moderate Sports, HOMA-IR and Peak VO2) were also different in comparing 

kinesiology with non-major cohorts (Tables 1 and 2) suggesting that β-adrenergic 

receptor genetics play a role in determining the population structure of our kinesiology 

cohort. By way of contrast, ACTN3 R577X alleles were equally distributed between 

kinesiology students and non-majors despite the many associations of this well-

characterized “exercise performance” gene with cardiometabolic and muscle strength 

characteristics (Deschamps et al. 2015). Taken together, these convergent lines of 

experimental evidence indicate that ARDB1 and ADRB3 polymorphisms influence 

voluntary participation in physical activity. As with many energy conserving or “thrifty” 

genes, this may explain their association with obesity and insulin resistance in multiple 

ethnic groups (Burguete-Garcia et al. 2014; Deschamps and Hittel 2016; Kim et al. 2010; 

Sakane et al. 2016; Takenaka et al. 2012; Wagoner et al. 2002; Widen et al. 1995).  

Associations between physical activity behaviours and adrenergic receptor 

genotypes underscores the influence of genetics on behaviour (de Geus et al. 2014; Lee et 

al. 2015; Perusse et al. 1989; Stubbe et al. 2006). For instance, researchers from the 

Social Science Genetics Association Consortium (SSGAC) have recently identified a 
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connection between the genetic components of cognition and years of formal education 

(Kovas and Malykh 2016). Therefore, given the unique focus on exercise and athletics 

encapsulated by the modern kinesiology student, it follows that individuals with an 

innately higher drive towards exercise would be drawn to such programs (Many et al. 

2016).   

Despite their primary roles in the sympathetic control of cardiac output and 

lipolysis, β1 and β3-adrenergic receptors are also localized to neuronal synapses in the 

basolateral amygdala where they modulate anxiolytic (anxiety reducing) and other 

behaviours (Stemmelin et al. 2008). Indeed, recent published research supports a role for 

the ADRB1 Arg389Gly polymorphism in both the perception of pain (Wei et al. 2015) 

and the psychological trait of persistence as assessed by the temperament and character 

inventory (Numajiri et al. 2012). In addition, β3-adrenergic receptor agonists such as 

SR58611A (amibegron) have proven to be an effective treatment strategy for anxiety and 

depressive disorders (Stemmelin et al. 2008). Because both ADRB1 Arg389Gly and 

ADRB3 Trp64Arg polymorphisms decrease agonist mediated coupling of activated 

receptors to adenylate cyclase activity (Fujisawa et al. 1996), it is conceivable that these 

polymorphisms may alter the perception and/or enjoyment of habitual exercise. Given the 

poorly understood role of the adrenergic system in the brain our findings provide a 

plausible experimental framework for testing the effect adrenergic receptor 

polymorphisms on the perception of exercise intensity and fatigue.  

The effect of β-adrenergic receptor function on cardiovascular physiology has 

also been well studied (Kim et al. 2010; Snyder et al. 2006; Twentyman et al. 1981; 

Wagoner et al. 2002). As we observed in our AIMMY cohort, heart failure patients 
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homozygous for the ADRB1 389Gly polymorphism had significantly lower peak VO2 

compared with those with one or more copy of the Arg389 receptor (Wagoner et al. 

2002). Similarly, associations of the ADRB3 Trp64Arg polymorphism with elite 

endurance performance in Spanish cyclists and Korean volleyball players suggests a role 

for this gene in regulating the cardiovascular response to exercise (Santiago et al. 2011). 

As such, it is also possible that the higher levels of physical activity associated with 

ancestral ADRB1 and ADRB3 genotypes may attributable to a more efficient 

cardiovascular and metabolic response to exercise. As such, increased cardiometabolic 

efficiency may influence perception of exercise difficulty and thus influence participation 

(Oliver 2012).   

Freshman university students are an ideal population to target education about 

lifelong fitness habits that will shape future health (Many et al. 2016). This is particularly 

true for female carriers of ADRB3 Trp64Arg polymorphism in our AIMMY cohort who 

exhibit elevated triglycerides and HOMA-IR at a relatively young age (Table 3B). 

Furthermore, ADRB3 Trp64Arg has been designated as a risk allele based on research 

linking it to weight gain and an early risk for developing cardiovascular disease in 

women (Clement et al. 1995; Kumar et al. 2014). On the other hand, high fitness levels in 

carriers of the ADRB3 Trp64Arg polymorphism have been shown to eliminate the 

increased risk of atherosclerosis associated with this common variant (Iemitsu et al. 

2014). This is consistent with our observation that associations between ADRB3 and RPE 

and ADRB1 with fatigue were only significant in non-majors compared to kinesiology 

students. This suggests that possession of one or more ADRB risk loci is not deterministic 

in regards to cardiometabolic risk and lends strength to our argument that physical 
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activity may be the mechanistic bridge between polymorphisms in the beta-adrenergic 

receptor and the development of obesity and insulin resistance. These findings may 

indicate that an accredited kinesiology curriculum, which includes courses in exercise 

physiology, motor learning and sports psychology can potentially overcome genotype-

associated limitations on physical activity.  

 Whereas once we held a dichotomous view of nature (genes) vs nurture 

(environment), a more nuanced model is emerging wherein gene-environment 

interactions affect our perceptions and choice of educational setting (Okbay et al. 2016).   

Although significant limitations of this study include the realtively small sample size and 

post-hoc nature of our analysis, it is of future interest to our laboratory to examine the 

genomic characteristics of a significantly larger cohort of kinesiology students (Nedovic 

et al. 2016).  Apart from these findings, there are many fascinating research directions 

that may be explored involving the application of our research. For instance, individuals 

who are polymorphic for ADRB1 and 3 risk alleles may need extra assistance (personal 

trainer or feedback from a wearable fitness monitor or app) to adhere to prescribed 

exercise program, not because they are lazy or unmotivated, rather that exercise is 

perceived as harder for them. In addition, exercise behavior and aptitude genes could be 

used in Mendelian randomization studies proxies for physical activity to better discern 

the effects of environmental and social factors on cardiometabolic health (Burgess and 

Harshfield 2016). Findings from this study are also of importance for identifying and 

removing barriers to physical activity given the strong association of sedentary behavior 

with all-cause morbidity (Deforche et al. 2015; Friedenreich et al. 2006). 
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Table 1. ANCOVA comparisons of original AIMMY cohort characteristics between 

kinesiology (KNES) and non-kinesiology majors (NON). Data are mean values +/- SEM. 

Significant P values ≤0.05 are shaded and NS indicates non-significant differences.  

 

 

 

 

 

All models were adjusted for recruitment location, age and sex using a one-way analysis of 

covariance (ANCOVA). The Sidak method was used post-hoc to account for multiple 

comparisons. BMI = body mass index; HDL= high-density lipoprotein cholesterol; LDL = low-

density lipoprotein cholesterol; HOMA-IR = homeostatic model assessment for insulin resistance. 

Subject Characteristics KNES Majors 

n=99 

Non-Majors 

n=189 

P-Value 

Age (y) 22.09 ± 0.34 22.24 ± 0.33 NS 

Height (cm) 171.93 ± 0.95 172.31 ± 0.76 NS 
Weight (kg) 70.85 ± 0.95 72.45 ± 0.76 NS 
BMI 23.31 ± 0.29 23.71 ± 0.31 NS 

% Body Fat 19.20 ± 0.94 23.83 ± 0.92 0.002 

Hip (cm) 98.00 ± 0.74 99.40 ± 0.77 NS 

Triglycerides (mg/dL) 80.31 ± 4.03 85.51 ± 2.98 NS 

Cholesterol (mg/dL) 158.61 ± 3.41 162.18 ± 2.45 NS 

HDL (mg/dL) 62.07 ± 2.13 60.37 ± 1.23 NS 

LDL (mg/dL) 83.41 ± 2.96 84.63 ± 1.75 NS 

Glucose (mg/dL) 80.56 ± 0.68 83.37 ± 0.47 NS 

Insulin (uIU/ml) 5.34 ± 0.30 6.56 ± 0.28 0.007 

% HbA1c 5.48 ± 0.03 5.48 ± 0.02 NS 

HOMA-IR 1.08 ± 0.07 1.32 ± 0.07 0.013 

CRP (mg/L) 1.19 ± 0.24 2.16 ± 0.58 NS 

Grip Strength (kg) 45.11 ± 1.31 42.51 ± 1.15 NS 

BP-Systolic 114.04 ± 0.24 112.56 ± 0.24 NS 

BP-Diastolic 67.67 ± 0.24 68.98 ± 0.24 NS 

VO2 (ml/kg/min) 48.26 ± 0.24 46.21 ± 0.24 0.026 
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Table 2. ANCOVA comparisons of original AIMMY cohort physical activity survey data 

between kinesiology (KNES) and non-kinesiology majors (NON). Data are mean values 

+/- SEM. Significant P values ≤0.05 are shaded and NS indicates non-significant 

differences. 

 

 

 

 

All models were adjusted for recruitment location, age and sex using a one-way analysis of 

covariance (ANCOVA). The Sidak method was used post-hoc to account for multiple 

comparisons. RPE = Rate perceived exertion. 

 

 

 

 

 

 

 

 

 

  

 

Selected Physical Activity 

Participation and Perception Scores 

KNES-Majors 

n=99 

NON-Majors 

n=189 
P-Value 

Walking (kcal/week) 1067.46 ± 116.21  844.07 ± 54.49 NS 

Stair Climbing (kcal/week) 398.91 ± 62.81  299.52 ± 24.99 NS 
Combined (kcal/week) 1466.37 ± 145.06  1143.59 ± 63.84 NS   
Light Sports (kcal/week) 391.06 ± 59.98  370.01 ± 78.97 NS 

Moderate Sports (kcal/week) 4043.86 ± 483 2873.77 ± 287 0.029 

Vigorous Sports (kcal/week) 5070.25 ± 865 2582.02 ± 242 0.0004 

Total Sports (kcal/week) 9505.17 ± 1192 5854.85 ± 442 0.0004 

Total Physical Activity (kcal/week) 10971.54 ± 1271 6998.44 ± 454 0.0005 

Sitting Time (hours/week) 42.03 ± 1.99 44.76 ± 1.34 NS 

Borg CR-10 RPE (0-10) 6.90 ± 0.16 6.30 ± 0.13 0.004 

Epworth Afternoon Fatigue (1-3) 1.96 ± 0.10 1.99 ± 0.07 NS 
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Table 3. Significant associations of ADRB1 and ADRB3 genotypes with subject 

characteristics and physical activity patterns in our original (A) verification (B) and 

combined AIMMY cohorts. Shown are numbers for each genotype (N), adjusted mean 

values +/- SEM, and genotype P values. 

 

A. 

 

B.  

 

C. 

 

 

We used a dominant genetic model for genotype association with age and sex as possible 

covariates with the exception of B, where sexes were compared. All comparisons were made with 

1-way analysis of covariance (ANCOVA) with the Sidak method for post-hoc multiple 

comparisons adjustment.  

SNP Cohort Phenotype P-Value N; Adjusted Mean ± SEM 

ADRB1 

(rs1801253) 

AIMMY 

(n=207) 

Moderate 

Sports    
0.020 

CC (79; 3910.9 ± 22.3) 

CG/GG (128; 3161.6 ± 39.1)  

ADRB3 

(rs4994) 

AIMMY 

(n=207) 
Borg CR10 0.070 

AA (158; 6.3± 0.1) 

AG/GG (49; 5.8 ± 0.1) 

ADRB1 

(rs1801253) 

AIMMY 

(n=207)  

Epworth 

Fatigue 
0.060 

CC (79; 1.8 ± 0.1) 

CG/GG (128; 2.0± 0.1) 

SNP Cohort Phenotype P-Value N; Adjusted Mean ± SEM 

ADRB1 

(rs1801253) 

AIMMY 

(n=288) 

Moderate 

Sports    
0.040 

CC (158; 3314.2 ± 42.4) 

CG/GG (130; 2141.3 ± 69.7)  

ADRB3 

(rs4994) 

AIMMY 

(n=288) 
Borg CR10 0.008 

AA (255; 6.6 ± 0.1) 

AG/GG (33; 5.8 ± 0.3) 

ADRB1 

(rs1801253) 

AIMMY 

(n=288)  

Epworth 

Fatigue 
0.050 

CC (158; 1.9 ± 0.1) 

CG/GG (130; 2.2± 0.1) 

SNP Cohort Phenotype P-Value N; Adjusted Mean ± SEM 

ADRB1 

(rs1801253) 

AIMMY 

(n=495) 

Moderate 

Sports   
0.030 

CC (237; 3512.8 ± 49.7) 

CG/GG (258; 2736.8 ± 42.4) 

ADRB3 

(rs4994) 

Females 

(n=229) 
Borg CR10 0.050 

AA (188; 6.4 ± 0.1) 

AG/GG (41; 5.8 ± 0.1) 

ADRB1 

(rs1801253) 

 AIMMY 

(n=495) 

Epworth 

Fatigue 0.057 
CC (237; 1.9 ± 0.1) 

CG/GG (258; 2.1± 0.1) 

ADRB1 

(rs1801253) 

AIMMY 

(n=495) 
VO2 max   0.040  

CC (237; 43.1 ± 0.9) 

CG/GG (258; 39.8 ± 1.3) 

ADRB3 

(rs4994) 

Females 

(n=229) 
Triglycerides   0.011 

AA (188; 85.2 ± 2.9) 

AG/GG (41;101.5 ± 8.9) 

ADRB3 

(rs4994) 

Females 

(n=229) 
HOMA-IR 0.047 

AA (188; 1.2 ± 0.1) 

AG/GG (41; 1.5 ± 0.2) 
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Figure 1. Genotype distributions of ACTN3, ADRB1 and ADRB 3 gene variants in 

kinesiology majors (KNES) and non-majors (NON) from our AIMMY cohort of 

healthy young college students.    
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