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CHAPTER 1: Introduction

Partial differential equations are used to model a wide range of physical problems. In
order to solve partial differential equations, many techniques of analysis are employed.
This thesis addresses both issues. The first half discusses various mathematical tech-
niques essential to deriving the solutions to partial differential equations. The second
half discusses three particular partial differential equations - the heat equation, wave
equation, and Laplace’s equation - and the problems associated with them. Our main
focus is to address these problems using the mathematical techniques discussed.

Chapter two introduces concepts from functional analysis that are applied in var-
ious chapters, including the delta function and convolution. The delta function is
used in chapter seven to derive solutions to partial differential equations via convo-
lution with the fundamental solution. Convolution is also used to derive solutions or
validate theorems in second chapter five using the heat kernel. The chapter ends with
a discussion of two convergence theorems essential to integration theory.

Chapter three introduces and examines Fourier series. The context for analysis
of Fourier series is Hilbert spaces, and basic results concerning Hilbert spaces are
introduced. We verify the function space for Fourier series is indeed a Hilbert space
by confirming completion. Afterwards, we discuss the two approaches to Fourier
series, complex and trigonometric, and the advantages of each.

Chapter four introduces another mathematical technique, the Fourier transform,
and explores properties such as inversion and convolution. To show that the Fourier
transform is an isometry, we verify Plancherel’s Theorem. At the end of the chapter,
we examine the Gaussian function and its properties, which are used in the proofs of
Plancherel’s Theorem and inversion of the Fourier transform.

In the last three chapters, we show how to apply the mathematical techniques



introduced thus far. Each chapter focuses on a particular partial differential equation
and identifies the mathematical techniques that can be used to solve the initial value
problems associated with them.

Chapter five introduces the heat equation. For its general initial value problem,
we specify boundary and initial values of temperature, and what technique can be
used to meet these conditions. The solution to the general initial value problem of the
heat equation uses separation of variables and Fourier series. Separation of variables
is used to meet the boundary conditions, while Fourier series are used to satisfy the
initial temperature distribution. When the domain of an initial value problem is that
of the real line, we introduce another mathematical technique specific to the heat
equation, the heat kernel.

Chapter six introduces the wave equation. Similar to chapter five, we use separa-
tion of variables and Fourier series to meet the boundary values and initial conditions.
For an initial value problem with the real line as a domain, we derive d’Alembert’s
formula for a general solution by applying the Fourier transform from chapter four.

Chapter seven introduces the Laplace equation, both homogeneous and inhomoge-
neous. The solutions to the homogeneous Laplace equations are harmonic functions.
We demonstrate the fundamental solution to the Laplace equation in R?. We repre-
sent the Laplace equation in polar coordinates to explore rotation symmetry. Another

problem explored is the boundary value problem in the disc using the Poisson Kernel.



CHAPTER 2: Functional Analysis

The general definitions and theorems in this chapter can be found in [6], [12], [17],
and [20].

2.1 Distributions

Definition 2.1. A test function is a compactly supported smooth function. The
topology on the set of test functions, denoted D = C°(R), is defined so that a

sequence f, — f iff:
1. supp(f,) is contained in a compact set K for all n
2. lim ||f, — fllo=0forall k >0
n—oo

Definition 2.2. A distribution is a linear functional, i.e., a continuous linear map
from D to C. The dual space D’ is the space of continuous linear functionals ¢ : D —
C. We write p(f) = (¢, f) where ¢ € D' and f € D. The weak topology on D’ is

defined so that

on =@ it (pn, f) = (o, f)
for all f € D.

Example 2.3. Let ¢ be bounded and continuous on R. For f € D, define

(o, f) —/RQO(I)f(I)dI.

Then ¢ is a continuous linear functional on D.

Definition 2.4. The delta “function” is actually a distribution that assigns f(0) to



the function f. We denote the delta function

6.4 = [ s fa)da = f10)
Definition 2.5. We define, for an arbitrary ¢ € D',
(¢, f) ==, [).
This defines ¢’. This definition is motivated by the following: If ¢ € C!, then for

feD

Thus, for another example,

<5/7f> = _<57 f/> = —f/(O)

Definition 2.6. A fundamental solution to a differential operator L is a distribution

FE such that

where the derivatives are applied to F in the distribution sense.

2.2 Convolution

Definition 2.7. If f and g are two integrable functions on R, their convolution is

(fxg)(z) = /Rf(w —y)g(y)dy = /Rf(y)g(x —y)dy.

The following properties of convolution hold:



1. Symmetry: fxg=gx f
2. Bilinearity: f * (ag + bh) = a(f * g) + b(f * h)
3. Associativity: f* (gxh) = (f*g)xh

4. Delta Function: § x f = f

(S48

. Support: If f,g € D, then f x g € D and supp(f * g) C supp(f) + supp(g)

Given a function ¢ and f € D, define f,(y) = f(x — y). Then,

(p* f)(z) = /so(y)f(:r —y)dy = (¢, fa)-

Thus we can extend convolution to distributions by defining, for ¢ € D’ and
feD,
(o x f)(z) = (¢, fz).

For example,

(0 f)(x) = (6, fa) = f2(0) = f(x)

Thus,
ox f=f.

2.3 Integration Results

Theorem 2.8. (Monotone Convergence Theorem) Let {f.} be a sequence of mea-

surable functions on E C R. If {f,} is non-negative and monotone increasing, then

lim/Efn - /Elimfn.

lim f, exists and



Proof. Let f(x) =sup f,(x). Then f, — f pointwise. By Fatou’s Lemma,

/fgliminf/fn.

Also, f, < f,so [ f, < [ f. Thus

limsup/fng/fgliminf/fn.

Hence lim [ f,, = [ f. O

Theorem 2.9. (Dominated Convergence Theorem) Let {f,} be a sequence of mea-
surable functions on E with f, — f almost everywhere on E. Suppose there is an

integrable function g on E with |f,| < g on E for all n. Then {f,} and f are

/f:hm/fn.

Proof. Suppose f, — f everywhere on E. As |f,| < g for all n, |f| < g. Now as g is

integrable and

integrable, so are {f,} and f. We have |f,| < ¢ which implies —g < f,, < g. Thus
g+ f, =20 and g—f, >0.

Applying Fatou’s Lemma to g + f,, yields

/EgjL/Ef:/Eg%—fSliminf/Eg+fn:/Egjtliminf/Efn.
/Efgliminf/Efn.

Thus



Applying Fatou’s Lemma to g — f,, yields

/Jﬂg—lﬂfz/lﬂg—féliminf/Eg—fnZ/Eg—limsup/Efn-

/Eleimsup/Efn-
limsup/Efng/Efgliminf/Efn.

liminf/ fn < limsup/ [
E E

liminf/Efn:hmsup/Efn:/Ef.

Thus

Hence

By definition,

SO



CHAPTER 3: Fourier Series

A solution method to the initial value problem for partial differential equations is
the use of Fourier series. The general definitions and theorems in this chapter are

adapted from [2], [13], [15], [17], and [22].

3.1 Hilbert Spaces

The proper setting for Fourier series is in the context of Hilbert spaces.

Definition 3.1. An inner product on a complex vector space V is a map

VxV—=C, (v,w)— (v,w)

satisfying the following axioms for vectors u,v,w € V and scalars ¢ € C:

L. (u+v,w) = {(u,w) + (v, w)
2. (cv,w) = c{v, w)

3. (w,v) = (v, w)

4. (v,v) >0 for v #0

Definition 3.2. A Hilbert space is a complex vector space with an inner product

which is complete with respect to the norm

[|v]] = v/ (v, v).

Definition 3.3. Suppose V' is an inner product space. Then {vq,v9,vs,...} is an

orthonormal system iff

o) =4 § 7



Definition 3.4. Let V' be a normed vector space. A sequence {fx} € V converges in

norm to a vector f € V if
fi — fll =0 ask — oc.

Given a vector f € V, its generalized Fourier series with respect to an or-

thonormal system {v,} is
o0
F~Y o entn
n=1
with coeflicients

cn = {f,vn).

The generalized Fourier series converges in norm to f if the partial Fourier sums

fe=>_catn (3.1)

satisfy

fe — fIl = 0 as k — oo.

For a finite orthonormal system, the generalized Fourier series is the best approxima-

tion to f in the space:

Theorem 3.5. Let {vy,vs,...} be an orthonormal sequence in V. Define Sy =
span{vy, va, ..., v}t C V to be the subspace spanned by the first k elements of the
orthonormal system. Then the k'™ term of the partial Fourier sum fi € Sy is the
best approximation to f. This means that p — ||f — p||, for p € Sk, is minimized by

p=fr



Proof. Suppose we have an element p € S, where

k
p— Z dy V.
n=1

Its norm is

IpII* = (. p)
k k
- <Z dnvna Z dmvm>
n=1 m=1

k
= Z Ay (U, U )

n,m=1

Since (v, V) = 0 for n # m, we get

k
Il = lda].
n=1

In addition,

f=pl>={f—p.f—p)
=|fII> = (f,p) — (p, ) + lIpI|?

k k k
=117 = dulon, £) = > dulfrva) + > ld|?
n;I . fl . n=1
=17 =D dnt =Y dnen+ Y |dnl?
n:l n=1 . n=1
= Hf”z + Z |en — dn‘z - Z |Cn‘2'
n=1 n=1

10
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We substitute the squared norm of (3.1),

k
> lenl® = 11l
n=1
to get
k
1F =2l = AIP+ D lea = dal* = 1l
n=1

On the right hand side, the first and last terms are independent of p € Si, and the
middle term is non-negative and will only be minimized if ¢, = d,, foralln =1,2,... k.

Thus ||f — p|| is minimized overall p € Sy iff d,, = ¢,. Hence p = f;. H

A very important property of the inner product spaces is the Cauchy-Schwartz

inequality.

Corollary 3.6. (Cauchy-Schwartz Inequality) Given f,g € V,

[(Fo ) < I Mgl

Proof. Suppose we have two vectors f,g € V. Without loss of generality, we assume

g # 0. Let ¢ € R be arbitrary. Using sesquilinearity, we get

0 <|If +cgll® = (f +cg. f+cg) =||fII> +2cRe(f, g) + | |g|I

with equality iff f = —cg. We consider the right hand side as a real-valued function

of ¢ whose minimum occurs at ¢ = — |<|]; ﬁg We substitute into the right hand side to

get

0 < f -2l LOE L WEAE e IS9P

_l’_
llglf? llglf? [lgl[?
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Thus,
[(f. )P < IIfI1Pllgll

Taking the square root of both sides yields

[(F L < (1A Tlgl]

as desired. [

Theorem 3.7. (Bessel’s Inequality) The sum of the squares of the general Fourier

coefficients of f € V' is bounded. In particular,

[e%S)
D el <P
n=1

Proof. Suppose we have the partial Fourier series

k
fk = Z CnUp.
n=1

By the proof of Theorem 3.5, we have

k
0 <|If = el ? = AP = £l = 111 =D leal”
n=1
Thus, we have the inequality
k

> el < IfIP

n=1
for all £ as desired. O]

Corollary 3.8. (Riemann-Lebesque Lemma) If > c v, is the general Fourier series
n=1

for f, then

lim ¢, = 0.
n—ro0
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Definition 3.9. An orthonormal system {v,} € H is complete iff, for every f € H,

its generalized Fourier series converges in norm to f. That is,
lf—=fell =0 ask— o0

k
with fr = > ¢ v, and ¢, = (f, v,).
n=1

Theorem 3.10. The orthonormal system V' is complete iff Plancherel’s formula holds

for every f € V. That is,
1P =D leal®
n=1
Proof. Taking the limit as & — oo in the proof of Theorem 3.7 yields
k
. _ 2 — . 2 o 2
Jim [ = fil[* = lim [|£]] Z el
k
_ 2 _ 2
=[I£]l ggo;\cn\

o0
=117 =D leal*.
n=1

Thus f; converges in norm to f iff

oo

AP =D leal.

n=1
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3.2 L? Spaces

Definition 3.11. A function f is square integrable on [—, 7] if it has finite L? norm

1 i
115 = gf |f(2)]2dz < oo,

—T

The space L*(I), where I = [—7, 7] or R, is defined by

LP(I):{f:I—MC:/I\f\?<oo}.

The inner product of two functions f(x) and g(z) in the complex Hilbert space L? is

9= 5 | S

with

() =111

We have
1 o) < (I f2lgl]2,

so (f,g) is well defined.

Theorem 3.12. L? is complete.

Proof. Suppose that { f,,} is a Cauchy sequence in L. Then there exists a subsequence

{fn,} with

1

ank - fnk71||2 < 2_k



To ease notation, we go to a subsequence and assume that

1
an - fnleZ < on

Let fo = 0. We observe that

fn = (fn - fnfl) + (fnfl - fan) +...+ (fQ - fl) + (fl - fO)a

SO

1 falla <) e = focalle + [1Alla < T+ (1 fulla = M.

k=2

We define
(@) =) | ful@) = froa(@)].

Then {g,} is an increasing sequence of real valued functions, so

g(x) = lim g,(z)

n—oo

exists for all x. Also,

gnllz <D I1fe = faalla < M,
k=1

ie.,

/]gn\Q < M?* for all n.

So by the Monotone Convergence Theorem,

/Igl2 < M2
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Thus,
g(x) =Y |ful@) = fur(2)]

is finite a.e. So
o

> (ful@) = fema()

k=1

is absolutely convergent for x a.e. Define

flz) = lim fo(z)

n—o0

exists a.e. and

So
|f(2)]* < g(x)?,

hence f? is integrable. Thus

[fo = FI7 < (1fal* + 117) < 26%.

So
/Ifn—f|2—>0
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by the Dominated Convergence Theorem, i.e.,
[fo—fllo—0 so f,— fin L

]

Proposition 3.13. The complex exponentials {e™* : n € Z} are an orthonormal

system in L*|—m, 7).

Proof. For n,m € Z and n # m,

ina: zmx
(e =

/ emx —zmxdl,

|: zr(n m) :|

( i ( _ —wr(n m))
m)

S’IH S’IH S’IH

Thus the e are orthogonal. For all n € Z,

) . 1 L )
<61//LJ)’ e’LTLJJ> - eZTLJ}e mx da:,
—T

2m
% ’ dx
%mu
=1.
Hence, €™ is an orthonormal system in L*[—, 7. O

We now discuss completeness of Fourier series for sufficiently smooth functions.
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Proposition 3.14. If f is C? and 27n-periodic, then its Fourier series converges

absolutely to f,

[ee]
— E Cn ezn:p

n=—oo

Proof. Suppose f is C? and 27-periodic. Then f(—7) = f(n), f'(—=7) = f'(r), and

forn #0
1 [ .
Cp = —/ f(x)e "™ dx
B 27Tm / f(@ )
— _ —inT —znmd
2min [f(x)e } 2mn/ f v
1 " —inT

= _27m2/ " (z)e " dx

using integration by parts twice. Letting M = —max\ f"|, we obtain

M
’Cn| S F
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Now, fix x, € [—m, 7], and without loss of generality assume that f(z,) = 0. Then

N

fN(ﬂfo) _ chein:co
—-N
N

= Z (% /_7r f(x)eimdx> ginee

—N

1 [T il
_ —in(z—zo)
—Qﬁ/ﬂf(x)Ze dx
_N
1 [" ol
N
1 ON
_ iNx —inT
-5 [ e ( 2. )dx

e—i(N—l—l)a: — eilNz

1 ™
—%/_Wf(:z+xo) g dx

for x # 0 (and ) = 2N + 1 for x = 0). Since f is continuous and differentiable,

f(ztao)

e~w—1

is continuous on [—7, 7], so by the Riemann-Lebesgue Lemma, its Fourier

coefficients go to zero. Thus

lim i Me*i(NH)xdx =0
N—oo [__ e~ — 1

and

f(l’ + IO) eiNxd$ =0.

lim .
N—oo [_ e~ — 1

Hence fy — f, and the Fourier series converges absolutely,
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nT

Theorem 3.15. The complex exponential functions €™ with n € Z form a complete

orthonormal system in L?|—7, .

Proof. If f is 27-periodic and C? on [—7, 7|, its Fourier series converges absolutely

o0

f= Z cne™.

n=—oo

The same applies to the conjugate f. Therefore,

[f@)]? = f2)f(x) = fe) D e ™ = Y fla)ee ™

n=—oo n=—oo

which converges uniformly. We integrate both sides from [—m, 7],

1718 = 5 / (o)

n=—0oo

= E CnCn

n=oo

[e.e]
=2 el

n=—0o0

Hence, Plancherel’s formula holds for any 27-periodic C? function, and hence
|fe = fll2 = 0 for all such f. Since these functions are dense in L?, this validates
Plancherel’s formula for all f € L?. Hence we obtain completeness by Theorem

3.10. n

Example 3.16. Let f(z) = 2% on [—m, 7. Since f is C? and f(7) = f(—m), it has



an absolutely convergent Fourier series. For n = 0:

For n # 0:
1 T ,
Cp = —/ x2e My,

Integration by parts yields

The first term vanishes, and we integrate by parts again:

1 —2x —inx " " =2 —inx
Cp = — —e — —e dx
2inm m . _pin
1 —27 —inT 27 inmT 2 —1 —inx "
= = —e€ ——e " + —|— e
2inmt \ 1n n n \ in .

1 _27T( —inm + in7r) + 2 ( —inm
= — (e e —(e™"" —
mn n?

Thus

).

21
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We combine both results to obtain the Fourier series

2
n
n#0

w? S (_1)71 inx (_1)771 —inx
~ ? -+ 22 76 + — ¢

n=1
7T2 S (_1)71 inz —inT
2 = (=1)"cos(nx)
~— 44
P

The series is an absolutely convergent series, so the Fourier series is absolutely con-

vergent and converges pointwise to f. Thus

(—1)" cos(nx)

flz) = %2 +4)
n=1

n2

We can use Fourier series to evaluate familiar infinite sums. For example, setting

x =0 yields

2 X 1\n
o) =T a4y
n=1

and we obtain
i (_1)n+1 B 2
e P

3.3 Trigonometric Fourier Series

There are two approaches to Fourier series. One involves complex exponential func-

tions, while the other involves the trigonometric functions cosine and sine.
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Definition 3.17. An infinite sum of sines and cosines that forms an orthogonal

system over [—, 7|, the Fourier series of a function f is
oo
)
=5 Z a, cos(nz) + b, sin(nz)].
One may switch from complex to trigonometric Fourier series using
an=cp+c_, and b, =1i(c, —c_,), n=01,...

and vice versa using

Example 3.18. Let f(z) = 2 on [—m, 7]. The advantage here is that f(z) is an odd

function, so only sine coefficients are non-zero. For n = 0:

1 ™
aoz—/ xdr =0,
7

—T

and for n # 0, we have an odd function with an even function:

1 ™
an = —/ x cos(nz)dz = 0.

T™J -z
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Thus, the coefficients a,, vanish. Next, we determine b, for n =1,2, ...,

1 ™
b, = —/ xsin(nz)dz

™ J—m

_ % /0 " sin(na)dx
(] )
B % ( m(:(m) N [Sinégx)]:)
=2

Hence, the Fourier series for f(z) =z on [—m, 7] is

n+1

:ENQZ sin(nx)

~ 2 (sin(x) - Sm(; z) + Sm(;)x) - Smfx) +.. )

S n
where > % is conditionally convergent by the alternating series test.
n=1

There are cases where only half of the interval is taken into consideration.

Definition 3.19. Suppose we have a function f over [0,7]. We have a half range
Fourier series, and it can be written as either a cosine series or sine series. If evaluated

as a Fourier cosine series,
oo

ZEO—FZCL”COS nx

n=1

with coeflicients

™

a, = — /O7r f(z) cos(nx)dx.



If evaluated as a Fourier sine series,

f= i by, sin(nx)
n=1

with coeflicients

by = = /O " fa) sin(nz)dz.

25



CHAPTER 4: Fourier Transform

The Fourier transform can be used to analyze solutions of partial differential equations
supported on the real line or on R™. The Fourier transform converts differentiation
into multiplication and vice-versa. The general definitions and theorems of this chap-

ter can be found in [12], [13], [17], [18], and [20].

4.1 Fourier Transform

Definition 4.1. Given f € L'(R), the space consisting of absolute integrable func-

tions, define the Fourier transform

¢ 1 —ifx _
f@%ézﬁéf@kgdx—ﬂﬂﬂ]

where F is denoted as the Fourier transform operator.

The Fourier transform acts linearly on function spaces

Flf(x) + g(@)] = FIf (2)] + Flg(2)] = f(€) + (&)

and

Flef(z)] = cF[f(z)] = cf(£).

For a function f € LY(R), the Fourier transform f is defined for all £ and is

bounded,

7€) < —=Iflh.

Lemma 4.2. If f € C®(R), then f is in L' N L2
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Proof.
dg.

1t = [ | [ o

We take the second derivative of the exponential with respect to x
F@) () =~ f(r)ge

and have

ﬂmf@=—§<m%@%w

There is a problem as & approaches to zero. We define R = I U T where I = [—1,1]

and have

L/ F(©)lde < 2|1
I=[-1,1]

For I, we substitute in for f(z)e %" to get

ik = [ &

On the right hand side, the integral with respect to = is bounded

de.

Aﬂﬁﬂﬂ%w

Aﬂmmwmm

/]R (@) da

<1l

Thus,
¢ 1/ i
J1©lde <1l [ e <o

Likewise, we do the same for L?. O

4.2 Plancherel’s Theorem

Our goal is to prove that F can be extended to an isometry from L*(R) to L*(R).
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Theorem 4.3. (Plancherel’s Theorem) If f € C°(R) then f € L* and

17115 = [1£1[5-

First, we introduce the Gaussian function. For the Gaussian function

its Fourier transform is

2 ~
(see remark 4.13 below). Ast — 0T, e 1 pointwise and g; — ¢ weakly, in the

sense that
tim [ f@)ia)de = £0).

We prove Plancherel’s theorem.

Proof. For f € C*(R), the Fourier transform f is bounded and

171 = tim [ 1FOF (Vamane)) de

= li 2**61
Jim [ 17 a

A 2
is defined, since f is bounded and e~ % is integrable by the Dominated Convergence

Theorem. Then,

H%iﬁfﬂH
1

_m [ (AL Jemirtdz | [ —— _zya) 1l
o (e ) (s 1)
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By Fubini’s Theorem,

. _ 1 w2
2 _ )i / / / L ity ,
171l = Jfim [ f(x) | J(y) | 5o *e dedyda

The integral with respect to £ is the Fourier transform of the Gaussian function g,.

Thus,

171 = tim [ #6e) [ Flinty = e)ddz = lims [ ) [ )ity - a)dody

and
Ast— 0%, § — 6 and

Hence,

Hsz—/f y)dy = ||f]12

as desired. O

Theorem 4.4. The Fourier transform can be extended to an isometry from L*(R) to

L2(R).

Proof. Given f € L?, there exists a sequence {p,} € C°(R) such that
pn — fin L,

in the sense that

||90n_f||2 — 0.

Then {p,} is a Cauchy sequence in L?. Let ¢ > 0 be given. There exists N such
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that, for m,n > N,

||90n - @mH% <E&.

Applying the Fourier transform,

160 = Gillz = lln — @mll3,

we see that {,} is a Cauchy sequence. Thus {4, } converges in L?, and we define

f= lim g,

n—o0

This defines the Fourier transform on L*(R), and it is an isometry. That is,

11l = Tim [[gulle = lim o]l = [If1lo
Note: lim ¢, is independent of the choice of sequence ¢, — f in L?(R). m

4.3 Fourier Inversion Formula

Definition 4.5. Define

for f € LY(R).

Theorem 4.6. Suppose we have a function f € L' N L?, and its Fourier transform
f e L*R). Then
f=f).
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An issue arises when proving this theorem. For instance,

f(a) = J% /R f()eisede
- ¢12—7r / ( ¢127 /R f(y)effydy) e d
# o [ 1) [ s agay

since the integral with respect to £ is not finite. Hence, we use the Gaussian function

with the following properties:
1. ngt =1 forall ¢

2. g — 0 ast — 0T in the sense that

lim / f(@)gu(x) = £(0).

t—0t

Its Fourier transform is

(See Section 4.5 for details.) As t — 0T,

te2

VaTg(§) = e % =1 (4.1)

which we use to prove Theorem 4.6.

Proof. Let f € L' N L?, with the Fourier transform

f(6) = %27 / f(y)e vy,



We take the inverse Fourier transform

X B 1 ~ it
and apply (4.1)

¢ - zfx
Fla) = Jim —= [ fopereac

We substitute for f ,

¢ _ —i8y €x —%
jor= i 7= [ (s [0 o) e

and by Fubini,

We substitute for (4.1),

o) = tim [ 100 (5= [ ad@ese ) ay.

The integral with respect to £ is the inverse Fourier transform of g,

t—0t

o= . [ st

We now have a convolution and evaluating the limit yields

F(z) = lim (f # g,)(2) = f(2)

t—0t

as desired.

32
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As before, we have
[1£1l2 = 11112

for f € L' N L2 so F~! extends to an isometry on L*(R).

4.4 Properties of the Fourier Transform

Proposition 4.7. Suppose the Fourier transforms of f,g € L*N L2 are f,§ € L2(R)

respectively. Then the Fourier transform of (f % g)(z) is the product / 27rf(§)§7(£).

Proof. Let
W) = (f * g)(x) = / £ — v)g()dy.

Then,

he) = —= [ (f + g)(@)e S da
V2 e
- [ [ - y)g(y)dy] et dy
== [ ot [ s = ppe day.

Let z = x — y and apply the change of variable dx = dz,

A~

) = = [ o) [ / f<z>eif<z+y>dz} dy

1 —i€z \/% —ily
- [ [ [W LI ”y]
= V21 f(€)3().
Thus k(&) = v2r f(£)§(€) as desired. O

We also note that the Fourier transform of the product j(z) = f(x)g(z) is the



34

convolution of the Fourier transform f (&) and (&)

) = <= (F )0 = —= [ f(e=its)an.

Lemma 4.8. (Symmetry Principle) Suppose that f € L*(R). Then the Fourier
transform of f({) is f(—x).

Proof. Suppose we have a function f € L?*(R) and its Fourier transform f e L'nL~

The Fourier transform of f is

FUE) = == [ Feae

Letting u = —x,

FUE) = —= [ Feae,

we have the inverse Fourier transform of f. Thus,

Hence

as desired. [

Lemma 4.9. The inverse Fourier transform f € C(R) is defined as

1 £ i€x
) = <= /R f(e)ecrde.
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Its derivative 1s

f'(z) v / iEf(&)e e de.

This implies the Fourier transform of the derivative of f is

Proof. Let f € L*(R) be differentiable. Its derivative has the Fourier transform

FU@) = o= | e e

Integration by parts yields

ﬂf’(x)]—\/%—ﬂof )7, ~ [ @es-ig d:c)

The first two terms vanish, and we have

/x fmﬁdx
\/27r/f

The right hand side is the Fourier transform of f(z). Thus,

Ff'(@)] = i€ f (&)

as desired. O

It follows that
FIf"@)] = (i€)" f(£).

Lemma 4.10. (§, ) = (g, f) for f,g € L' N L%,
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Proof.

I
—— —

I
P
K
Kﬁk
~

Theorem 4.11. Suppose we have f,g € L* N L?. Then

(f,9)=(f.9)

That s
Proof. For

we substitute for f to get

/R F(€)5€)de = /R (# /R f<:c>e“f) 3(E)dude.

By Fubini’s Theorem,

[ [ e )



The integral with respect to € is the inverse Fourier transform of §. Thus,

f©a&)de = | fla)g(x).

R R

Hence,

(f.9)=(f.9)

as desired.

4.5 Gaussian Function

Lemma 4.12. The Gaussian function fort > 0

has the Fourier transform
I e
2

Proof. Suppose we have the Gaussian function, ¢, € L?. Its Fourier transform is

e — L [

e e %y,
We apply the change of variable
and Vitdy = dx

to get

1 1 2
P R (N 5 —ivVigy g,
3:(§) 27r( /_27r)/R€ y

37



Before we continue, we complete the square for the power of the exponential,

———Z\fﬁy— (y + 2iVtey)
—%(?f + 20ty — &) — %%2
1 1
—§(y +iVte)? — 51552.

Now

1 1 t§2 2
A e s —L(y+ivie) d
= e~ e
9:(§) o ( %) /R y.

With the use of a contour integral, the integral with respect to vy,

/e;(yJFi\/if)Qdy:/ey;dy
R R

(The proof follows in Example 4.14). The Gaussian Fourier transform §; is now

oo L (N, [

Focusing on the integral, let

~
I
%\
ml
w“ﬁo
IS
<

We square both sides to get

38



Changing to polar coordinates yields

27 oo 2
I? :/ / e 2z rdrdf
0 0
27 o) 2
:/ d@/ re 2 dr
0 0

T2 oo
=27 [—67]
0
=27
Thus [ = /27 and
) 1 w2
9(§) = e 2

as desired.

Remark 4.13. The Gaussian function

has the Fourier transform

1 (—=)?

Flg:()] = e 2 = g(—m)

V27t

Example 4.14. Suppose we have the contour integral

z2
e 2dz
CR

39

where C¥ is the boundary of the rectangle [~ R, R] x [0, a] oriented counterclockwise.
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The function

N

z

f)=e%

is analytic with no singularities inside the interior of the contour C*. Thus, C¥ is a

simple closed contour and

f(z)dz=0
CR

by the Cauchy-Goursat Theorem. Since the contour is rectangular, we have O =

CE+ CE — CF — CF where CE, n=1,2,3,4, are the legs of Cf. This gives

f(z)dz = f(z)dz + (2)dz — f(z)dz — (z)dz = 0.
CR CF cr

f f
o of

Parameterizing CF as z(w) = w with —R < w < R gives

R,
(2)dz —/ e 2 dw.
cE -R

Parameterizing CF as z(w) = w + ia with —R < w < R gives

. (w+ia)2

dz = T2 dw.
Cgf(z) z /_Re w

This gives

R w? R (wtia)
/ e 2 dw +/ f(z)dz — / e 2 dw— / f(z)dz=0
—R cFt -R cR

or

R w2 R (w+io¢)2
/ ez dw = / ez dw-— / f(z)dz + f(z)dz.
-R -R cl CR
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For points z on C§, we have z = R + jw with 0 < w < o and

22 (R + iw)? R* w?
Ty T g Ty it

So for all points z = R + iw on C£, we have

@ =e >
—= ‘6_ 2 ZwR—'—T
The modulus of e=™# is 1, so
2 2 2 2
R =e e <ee

as 0 < w < «. This gives the estimate,

R2 (12 a2 R2
(2)dz| < e 7e? xlength(CH) =aeze 7.
cyt
Likewise, for points z on CI*, we have z = —R + iw with 0 < w < « and
22 (—R + iw)? R? w?
—— = = —— 4+ wR+ —.
5 7 5 + 1w+ 5
So for all points z = —R + jw on Cf, we have
R RrRZ o2



This gives the estimate,

R2 o2 R o2
<e zez Xxlength(C)') =aeze 2.

f(2)dz
cf
As
2 R2
f(z)dz| <aeze =
cy
and
R2
lim e” 2 =0,
R—o0
we have
lim f(z)dz = 0.
R—o0 C’f
Similarly,
lim (2)dz = 0.
R—o0 CR
4
Thus, taking the limit of both side as R — oo,
R w2 R (w+ia)2
lim e 2 dw= lim e” 2 dw— lim
R—o0 R R—o00 R R—o00 Cf
R . \2
. _ (wti)?
= lim e E dw—04+0
R—o0 _R
. _ (w+ia)?
= lim e 2 w
R—o00 _R
Hence,

/Re

w? _ (wtia)?
2 dw:/e 2 dw.
R

R2

(z)dz + lim

R—o00

f
oy

(z)dz
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CHAPTER 5: Heat Equation

The first of the three partial differential equations discussed is the heat equation in
one dimension. The results in this chapter have been adapted from [5], [9], [15], and

[19].

5.1 Initial Value Problem for the Heat Equation

Definition 5.1. The heat equation is a parabolic partial differential equation pri-

marily focused on the spreading of heat in an object or in space. Its formula,
U = Py,

derives from three physical principles: conservation law, physical considerations, and
Fourier heat flow. The function w is the temperature at position = at time ¢. The
constant, c2, is equal to pio_ where k is the thermal conductivity, p is density, and o is

the specific heat.

When solving an initial value problem for the heat equation in one spatial dimen-
sion, three conditions must be met:

1) u(z,t) satisfies the heat equation u; = c*uy, with 0 <z < L and ¢t > 0

2) u(z,t) satisfies the boundary condition u(0,t) = u(L,t) =0

3) u(z,t) satisfies the initial temperature u(z,0) = h(x).

5.2 Separation of Variables

One solution method to the heat initial value problem is by separation of variables

and Fourier series. Assume that a solution to the partial differential equation is of
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the form

u(x,t) = f(x)g(t). (5.1)

We find the solution by substituting (5.1) into the heat equation, giving

f@)g'(t) = c*f"(x)g(t)

g _ '@
1)~ Jla)

Since the left hand side does not depend on z, and the right hand side does not

depend on t, both sides are equal to a constant, A\. We separate both sides into

ordinary differential equations,

gdt) = Xg(t) and f"(z) = \f(x).

Applying the boundary condition to (5.1) yields

Assuming g # 0, we have

(If g = 0, the solution would be trivial, i.e., u(z,t) = 0.) Now, we consider three

cases, one of which yields a nontrivial solution.

1. Case 1: A = 0. Here, we have
f"(x) =0.



The general solution to this ordinary differential equation is

flx) =ax+b, f(0)=f(L)=0,

hence f = 0, a trivial solution.

. Case 2: A > 0. Here, we have
f'(@) = Af(x) = 0.
The general solution is
fz) = 16V 4 cpe VA,
Applying the boundary condition yields
f(0)=c1 4+ =0.
Thus ¢; = —c9, and

f(L) = c1e¥V 4 ey VAL
VAL

= cie —ce

VAL

= ¢ <eﬁL _ e—ﬁL)

= 0.

Thus ¢; = 0 which means ¢, = 0. Hence f = 0 which is a trivial solution.

45
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3. Case 3: A < 0. Here, we have
(@) + W f(z) =0 with w = v—=\.
The general solution corresponds to harmonic motion
f(z) = acos(wzx) + bsin(wx).

Applying the boundary condition yields f(0) = 0 which implies @ = 0. Thus
f(x) = bsin(wz), and f(L) = 0 yields bsin(wL) = 0. Thus, either b = 0 or
sin(wL) = 0. If b = 0, we have a trivial solution. If sin(wL) = 0, then wL = nw

or w = % where n € Z. We now have

nmx

f(z) = bsin (T) :

Thus, the only nontrivial solutions for f are

nm

f(a:)zsin(?) with)\:—(fy, n=12...

Now that we have the nontrivial solutions for f, we find the corresponding g¢
satisfying

g (0) = A(t) = — (°F) 0

The general solution is

g(t) = be T,

Hence, the nontrivial product solutions to the heat equation with the given boundary
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conditions are

(1) = sin (77 ) U,

By the principal of superposition, we get

u(z,t) = ibn sin (?) ()t (5.2)

as a solution to the heat equation.

We now determine the coefficients b,, by applying the initial temperature to (5.2):

h(z) = u(z,0) = ibn sin <?) .

Using half range Fourier series, we identify the b,’s by evaluating h(x) as a Fourier

sine series. That is,

For example, consider the initial-value problem:
1) up = Ugy
2) u(0,t) = u(m,t) =0
3) u(x,0) = h(z) = z(r — x)

for 0 <z <mandt>0. Taking L = 7 and ¢ = 1 in (5.2) gives
u(z,t) = Z b, sin(nz)e ™",
n=1
The initial temperature gives us

u(z,0) = Z b, sin(nz) = x(m — x).

n=1
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We can identify the coefficients b,, by taking the Fourier sine series of h(x) = z(7 —x),

by = = /O " (7 — 2) sin(nz)dz.

Integration by parts yields

b o2 ({_ (mz — xZ)cosmx)r - /0 (7 — 2z) cos(nx) dx) |

n n

0

The first two terms vanish, which leaves us with the integral,

n

b — %/ (m — 2x) cos(nx)dx.
0

Integration by parts yields

- % <{(7T—2122Sin(na:)];r —/j—%ﬁ"l‘)das).

The first two terms vanish which leaves us the integral

Thus,
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Hence,

—4((-1)"=1) . 02t

3 sin(nx)e
™m

S\
u&
=

I
K

n=1
S )x)

. §Zsin 2k’+1 e_(2k+1)2t
o — (2k+1)° '

5.3 Heat Kernel

Another solution method to the one dimension heat equation is the use of the heat
kernel, used in the case of an infinitely long bar, € R. Thus, we have the following
conditions:

1) u(z,t) satisfies the heat equation u; = c*u,, with —oco <z < oo and t >0

2) u(z,t) satisfies the initial temperature u(z,0) = h(x).
We derive the solution by examining a property of the heat equation, scale invariance.
That is, if u(z,t) is a solution, so is u(Ax, \*t) for A € R. This scaling indicates the

similarity variable %, and the solution can be expressed as

u(z,t) = v (%) w(t).

A property of the heat equation we also consider is the conversation of energy. Let u

have the following properties:

< o0

/]R u(w, 0)dx

and

ug(x,t) >0 asz — +oo.
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Then

= Ru(m,t)dx =0,

and thus “energy” is conserved. That is,

/u(x,t)d:v =C (5.3)

where C' € R is a constant. We substitute u(z,t) = v (%) w(t), to get

w(t) /RU (%) dz = C,

and apply the change of variable v/ty = z to obtain

w(t)x/%/Rv(y)dy =C.

We take w(t) = \/% to conserve energy in terms of (5.3). Thus,

Taking the derivatives with respect to x yields

1
us(,t) = S0/ (y) and upa(at) = 720" (y).
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Thus, the heat equation is of the form

1 3 X 3
—t7a(y) — ——=t"20 (1) = At 20"
) (y) Wi (y) (y)
or
/A 1 /
v (y) + 5yv'(y) + Su(y) =0

We can rewrite it as

1
" (y) + 5 (yo(y) =0
and take the integral of both sides to obtain

o1
' (y) + Syvly) = C.

Set C' = 0 to obtain the general solution

y2
c

v(y) = be 12

Converting back to u(x,t), we get

b 22
u(z,t) = %e*m_

We choose b so the constant in (5.3) is unity. As

922
/ezxc%d:c = Vicrt,
R
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we have the fundamental solution of the heat equation

1 22
O(z,t) = = te*m for ¢ > 0.
A

Ast — 0, ® — 6. We take the convolution of ®(x,t) in the = variable with the

function u(x,0) = h(z) to get

1 _(a—y)?
u(z,t) = M/Re w2 h(y)dy.

So
limu(z,t) = (§ x h)(x) = h(x),

t—0

and the heat kernel is

1 _(z—p)?

e 4c2t
VAt

K(z,y,t) = ®(x —y,t) =
Hence, for given initial temperature h(z), the solution is

u(x,t) :/RK(:);,y,t)h(y)dy.

For example, consider the initial-value problem:
1) up = gy
2) u(z,0) =e®

for —oo < & < 0o and t > 0. We use the heat kernel to find u(z,t). The solution is
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of the form

_ (z—y)?

12 e Ydy

u(z,t) =

V 402
_ (1272®y+y2+462ty)
= (& 4c4t y
Vdcrnt Jr

We compute the square with respect to y in the exponents and add/substract 4c*tx

y? 4 4ty + 2 — 22y = (Y + 4cPty + 4ctt? — AcPte — 2xy + 2%) — 4 + At

= (y + 2%t — x)? — 4c*t* + 4c’ta.

Thus,

(y+2c +2c?t-2)2 | o
121 +c“t— wdy

u(z,t) =

VAt

Set
oyt 2c% — o

Vact

and apply change of variable v/4c?t dp = dy to the solution
u(z,t) = = / e e dp = et
VT e '
Applying the initial temperature to the solution yields
u(z,0) =e".
Hence, the solution to the heat equation is

u(z,t) = et



CHAPTER 6: Wave Equation

The second of the three partial differential equations discussed is the wave equation

in one dimension. The results are adapted from [1], [3], [5], [10], [15], [19], and [21].

6.1 Initial Value Problem for the Wave Equation

Definition 6.1. The wave equation is a hyperbolic partial differential equation pri-

marily focused on the vibration of a finite string. Its formula,
Ut = C2uzm

derives from the application of Newton’s Second Law to a medium, e.g. the vertical
displacement of a string. The function u is the vertical displacement of a string at
position z at time t. The constant, ¢?, is equal to % where T is tension and p is

density.

When solving an initial value problem for the wave equation in one spatial dimen-

sion, four conditions must be met:

—_

u(x,t) satisfies the wave equation uy = c*ug, with 0 <2 < L and t > 0

w N

)

u(z,t) satisfies the boundary conditions u(0,t) = u(L,t) =0
)
)

) u(
) u(
) u(z,t) satisfies the initial position u(z,0) = h(x)
) u(

W

u(z,t) satisfies the initial velocity u:(z,0) = j(x).
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6.2 Separation of Variables

One solution method to the wave initial value problem is by separation of variables

and Fourier series. A solution to the partial differential equation is of the form
u(z,t) = f(x)g(t). (6.1)
Similar to the heat equation, we reduce to two ordinary differential equations:
g'(t) = Ag(t) and f"(z) = Af(2).

Applying the boundary condition to (6.1) yields

Assuming g # 0, we have

As before, we are only looking for nontrivial solutions, so g Z 0, A # 0, and A % 0.

We go to the results of Case 3: A < 0 and find that the nontrivial solutions are

f(:r)zSin(?) WithAZ—(%)z, n=12...

Now, we find the corresponding ¢ satisfying,

g'() ~ Ag(t) = g"(1) + (") lr) = 0,
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The general solution is

(t) - nert + bsin nert
g(t) = acos 7 S 7 .

Hence, the nontrivial product solutions to the wave equation with the boundary

condition are

Up(z,t) = [an coS (nsz) + b, sin (nzwt)} sin <?> .

By the principal of superposition, we get

0= 3 faweos (") vusin (") Jon (U55). @2

n=1

as a solution to the wave equation.

We determine the coefficients a,, by applying the initial position to (6.2):

h(z) = ian sin (nﬂgj) :

n=1

Using half range Fourier series, we can identify the a,’s by evaluating h(x) as a Fourier

2 [k . (nTT
a, = z/o h(z) sin <T) dx.

To determine the coefficients b, we differentiate (6.2) with respect to ¢, obtaining

> nemw . nemt nemw nent . nmwe
Z [ ——a, sin ( 7 ) + Tb" cos ( 7 )} sin (T) (6.3)

n=1

sine series. That is,
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and apply the initial velocity to (6.3):
. >\ ner, . /nAx
](ﬂj) = ut(l', O) = nél Tbn Sin (T) .

We evaluate j(z) as a Fourier sine series to identify the b,’s:

b, = 2 Lj(:c) sin (?) .

nem Jo

For example, consider the initial-value problem:

for 0 <x <mandt>0. Taking L = 7 and ¢ =1 in (6.2) yields solution

u(z,t) = i[an cos(nt) sin(nx) + by, sin(nt) sin(nz)]
n=1
with derivative with respect to ¢
w(z,t) = i[—ann sin(nt) sin(nx) + b,n cos(nt) sin(nz)).
n=1
The initial position gives us
u(z,0) = f: an sin(nx) = z(m — x).

n=1

We can identify the coefficients a,, by using the Fourier sine series of h(x) = z(m — z)



from the heat equation’s example,

—4
Ay = %(cos(mr) —1).

Thus

u(z,t) = Z {_4«;2: —b cos(nt) sin(nx) + by, sin(nt) sin(nx)

n=1

The initial velocity gives us,

u(x,0) = Z b,nsin(nx) = x.
n=1

We can identify the coefficients b,, by taking the Fourier sine series of j(z) = z

2 s
b, = — [ xsin(nx)dx.
nt Jo

Integration by parts yields

- % ([—xcc:<na:)l+ /0 cos;nx) dw)

The last two terms vanish which leaves

b2 <—mos(m))

nw n
—2(=1)"
n2

58
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u(z,t) = Z [_4((_1)71 ) cos(nt) sin(nx) + Z21 sin(nt) sin(nx)

n2
6.3 Fourier Transform Method

When the domain is the real line, a solution to the one dimension wave equation, using
the Fourier transform, is d’Alembert’s formula. We have the following conditions:

1) u(x,t) satisfies the wave equation uy = c*u,, with —oo <z < oo and ¢ > 0

2) u(x,t) satisfies the initial position u(z,0) = h(x)

3) u(z,t) satisfies the initial velocity u;(z,0) = j(z).
Fixing ¢, assuming a reasonable solution u, we take the Fourier transform of u(z,1)

with respect to z,

(e, 1) = \/LQ_W /R w(z, e dg.

By Lemma 4.9, the Fourier transform of wu,, is —&2a(€,t). We compute the Fourier

transform of w:

w(z,t+ h) —u(z,t)

—r g, T —ilx
Flu] = N / ue” “dr = / ngx(l) Y ]e dx

- —ilx o —iéx
}lL h[\/_/ (x,t+ h)e "“*dx / (x,t)e dm}

= hr%l( (& t+h)—au(t))

SO,



The wave equation is of the form
ly = —c2E%.
Fix £ and write u(&,t) = U(t). The wave equation is now
U'(t) + 22U (t) =0
with the general solution
U(t) = a(§)e™™*" +b()e"™

where a and b are functions of £&. We set

Thus,

(€, 1) = fe o + gets.

We take the inverse Fourier transform to find u(z,t)

wmwzj%/h@wﬂwg
R
/%(fe—zfct +§6i§ct> ei{xdé-
1

- = Aeif(m—ct)d +
V2T /R d .

= f(x —ct) + g(x + ct).

1
B \ 2T

g€i§($+ct)d€

vl
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The solution to the wave equation is now of the form
u(z,t) = f(x —ct) + g(x + ct). (6.4)
Applying the initial position to (6.4) yields
u(z,0) = f(z) + g(x) = h(z).
We differentiate h(x) and multiply by the constant ¢ to get
ch/(z) = cf'(z) + c¢g'(z).
Applying the initial velocity to (6.4) yields
u(2,0) = —cf'(x) + g (x) = j(x),
and we add and subtract this with ch/(z) to get
ch(x) + j(x) = cf'(x) + cg' () + [=cf'(x) + g ()] = 2cg/(2)

and
ch(z) = j(x) = cf'(x) + cf () = [=cf'(z) + cg' ()] = 2¢f'(=).
Solving for f and ¢ yields

fay =" [ty ana o) =" [ iy
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for fixed .. Substituting both into (6.4) yields

h(x — ct 1 [t h(x + ct 1 [Eret
U(w,t)Z%—;C/ J(y)dy+¥+2—c/ J(y)dy.

Thus, the solution to the initial value problem is d’Alembert’s formula:

x+ct

() = %[h(m o) + bz + ob)] + 210 / i(y)dy.

ct

For example, consider the intial-value problem:
1) uy = gy
2) u(z,0) =0
3) uy(x,0) = e
for —oo < # < oo and t > 0. Taking h(x) = 0 and j(z) = e * in d’Alembert’s

formula gives solution

u(z,t) =

x+ct
/ e Ydy

(6 (z—ct) e (erct))

1
2¢

1
2¢
e

T sinh(ct)
5 :



CHAPTER 7: Laplace Equation

The final partial differential equation we consider is the Laplace equation in R?. The
general definitions and theorems discussed here can be found in [4], [5], [7], [8], [11],

[14], [16], [17], and [20].

7.1 Laplace Equation

Definition 7.1. The Laplace equation is an elliptic partial differential equation pri-
marily related to equilibrium equations in a variety of physical systems. Its formula,
in Cartesian coordinates, is

Au = Ugy + Uy, =0

where A = 8‘9—;2 + 66—52 is the Laplace operator and u is a function. Its solutions are

harmonic functions.

Definition 7.2. The inhomogeneous version of the Laplace equation is the Poisson

equation which arises in theoretical physics. Its formula is

—Au = f($vy)'

7.2 Properties of Harmonic Functions

Definition 7.3. A function is a harmonic function if u € C?*(2) and satisfies the

Laplace equation Au = 0 in 2.

Proposition 7.4. (Mean Value Property) Let u € C? be a harmonic function in an
open domain Q C R2. Let z € Q and consider a disc B.(z) C Q. Then the average

value of u on the circle S,(z) is u(z).
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Proof. By the Divergence Theorem,

0
/ Au = Vu-n:r/ u'(z 4 rw) dw =r— u(z + rw) dw.
B,() 5r(@) 51(2) or

Since Au = 0, we see that

1 1 0
0=— Au———/ u(z + rw) dw,
2rr B, (2) 2T 37’ S1(x)

and hence

1

— u(z 4+ rw) dw

2 Sy (x)
is independent of r, and approaches u(z) as r — 0. O

Proposition 7.5. Let u € C? be a harmonic function in an open domain € C R2.

Then u is a smooth function in €.

Proof. Fix z € €, and choose € > 0 so that B.(z) C €. Let ¢ be a smooth, radial
function supported inside |w| < € with fBE(O) ¢ = 1. Define ¢ on B.(z) by ¥(z+rw) =

¢(r). Then we have the convolution

(ux9)(2) = /u(z W) dw

- /Bg@ u(z —w)i(w) dw
/05 / gy =)o) duwdr
/06 2rru(z)é(r) dr

Now we have u = (u * 1) where v is a smooth function, hence u is smooth. O
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Theorem 7.6. Let f(z) = u(z) +iv(z) and zo = x, + iy, be a point in the domain
of f. If f is analytic at z,, then the partial derivatives g, u,y, Vg, vy of u and v must

exist at z, and satisfy the Cauchy-Riemann equations

Up(20) = vy(20)  and  uy(2,) = —v(2).

It follows that the real part w and imaginary part v of the differentiable function f

are solutions of the Laplace equation and are therefore harmonic functions. That is,

Au=0 and Av=0.

Proof. Let f(z) = u(z) + iv(2) be analytic at z, in the domain of f. Thus

f'(2) = ua(20) 4 i02(20) = vy(20) — iy (20)

which is analytic in the domain of f. We get

Usa(20) = —Uyy(20)  and  ve(20) = —vyy(20).

Thus,

Uz (20) + Uyy(20) = 0

and

Uz (%) + Vyy(20) = 0

as desired. [



Example 7.7. Suppose we have the analytic function

fe) =1,

We have the function

1 x .Y
r+iy 22 +y? x? 492

f(z) = u(z) +iv(2).

The real and imaginary parts are harmonic. Indeed, for the real part

x
u(z) = ————
()= mrm
the partials with respect to = are
2 2
Uy = 2 — T
(2% + y2)?
and
—2z(2? + y?) — da(y* — 2?)
Upyr = )
(1'2 + y2)3
and the partials with respect to y are
—2zy

Uy = (xQ 4 y2)2

and
_ —2x(2® 4+ y?) + 8ay?
Uy = (22 + y?)° :

Thus,

A —62y? 4+ 22 —22° + 6ay?

u = =
(22 + y2)° (22 + y2)°
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Likewise, for the imaginary part

the second partial with respect to x is

o 2y(z? + y?) — 8x?y
rT T (x2 + y2)3

and the second partial with respect to y is

2y(2® +y*) — dy(y® — 2°)

Uyy = (22 + y2)°

Thus,
362ty 62y — 27

2
Av = Y + =0

($2 + y2)3 (fEQ + y2)3

Hence the real and imaginary parts of f(z) are harmonic.

7.3 Polar Coordinates
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One can exploit the rotational symmetry of the Laplace equation by using the polar

coordinate system.

Definition 7.8. Cartesian coordinates can be represented by polar coordiantes

x=rcosl, y=rsinf < r= /22+1y? taan_1<
x

Note: The transformation to 6 only works for x > 0, in the right half plane.



Lemma 7.9. The Laplace Equation is now

Au:uw—i—&—l—u—?:()
r r
where A = 25 + 12 4 L0
Proof. By the chain rule,
0 0 sind 0
— =cosf— — —
ar  Var T 1 o9
and
. 08 cos@ O
— =sinf— —
dy or r 00

Differentiating a% with respect to x yields

o 298_2+8_27”2_281n90089 0? +829£+Sin208_2
0z~ " Vorz T aazor v orod ' 0x200 ' 12 o2
Differentiating a% with respect to y yields
0? . 2982 +827’8 +2rsin00089 0? +8268 +cos29 0?
— =sin®f=— + —— —_—
a2 " Va2 T a2 o r 0rof | 0y200 ' 12 06
Thus
L¢P 10 1
oz  Oy:  Or2  ror  r20p?
as desired.

Definition 7.10. In R?, a vector

68
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is rotated counterclockwise by the rotation matrix

cosf) —sinb
Ry = {sin@ cos@}'

Definition 7.11. A function w is radial, invariant under rotation, iff u(Ryz) = u(z)

for all 8 and z.

Proposition 7.12. If u is radial, then Au is radial, and

Au = Upy + % _ (TVU/F>T‘
r r

Proof. Suppose we have a harmonic function u. We apply rotation to u
(uo Ry)(z) = u(cos bz — sin Oy, — sin Oz + cos Oy) = u(Ryz).

We want to show that the Laplacian operator is radial. We take the partial derivative

of u with respect to x twice:
O.(uo Rp)(2) = cos 001u(Rgz) + sin 00u( Ryz)
and
02(u o Ry)(z) = cos® 00u(Ryz) + 2 cos 0 sin 00,0,u( Rpz) + sin? 005u(Ryz).
We take the partial derivative of v with respect to y twice:

Oy(uo Ry)(z) = —sin001u(Ryz) + cos 00su(Rpz)
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and
02(u o Ry)(2) = sin® 607 u(Rgz) — 2 cos O sin 001 0ru(Ryz) + sin® 005u(Ryz).
We combine 03 (u o Ry)(z) and 02 (u o Ry)(z)

A(uo Ry)(z) = cos® §07u(Rpz) + 2 cos 0 sin 00,0u(Rgz) + sin® 005u(Rgz)
+ sin® 007u(Rgz) — 2 cos 0 sin 00,0u(Rgz) + sin® 005u(Ryz)
= 0ju(Rgz) + O3u(Rpz)

= (Au)(Ryz).
Thus
A(uo Ry) = (Au) o Ry.

If u is radial,

Auo Ry = A(uo Ry) = Au,

so Aw is radial. ]

7.4 Fundamental Solution
Definition 7.13. Let ' be defined for z € R*\{0} by

1
['(z) = %ln|z|.

We show that the function I" is the fundamental solution of the Laplace operator. In

polar coordinates

I(r,0) = 2i Inr.

™
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The function T is harmonic in R*\{0}, i.e., AT' = 0 for z # 0. We want to show
that AI' = 4. That is,

(AL, f) = (T, Af) = (6, f) = (0).

Proposition 7.14. T" satisfies
AT = 0.

That is, for all f € C,
/R T()Af(2)dz = £(0).

Proof. First, assume g is radial and g € C>°(R?). Then
(30.) = [ Age)T ()
. 2w ) 1
= %iir(l]/o /5 Ag(r) {% ln(r)} rdrdd

=l [ (¢"()rIn(r) + /() In(r)) dr.
1

The first term

/00 g"(r)rn(r)dr = [¢'(r)rn(r)]y — /OO g (r)(1 + In(r))dr
5 5

by integration by parts. So

—0

= lim [¢(r)r In(r)]5" — /000 g (r)dr.

(Ag,T) = (lsim <[g’(r)rln(r)]§° — /:O g (r)(1+1In(r))dr + /500 q'(r) ln(r)dr)

6—0



The first two terms vanish, so

(Ag,T') = — /OOO g'(r)dr = g(0).

Now consider f non-radial. Define

1 2
= — de.
) = 3= [ rRe)
Since A commutes with rotations,
A(fr) = (Af)r.
Then fg is radial, fg(0) = f(0) and

(AL, f) = (I, Af)
=T (Af)r)
= <F7 A(fR))

Proposition 7.15. For f € C°(R?),

AT+ ) = f.

72
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Proof. For f € C*(R) and any g € C*(R),

(AT f),g9) = (U= f,Ag)
~ [t - 5w ag@dsdy

/f / z)Ag(z + y)dzdy
- [ 1)

=(f,9).

7.5 Poisson Kernel

A solution method to the boundary value problem in the circle is the Poisson kernel.

We derive it from the following corollary and its proof.

Corollary 7.16. Let f be at least C? and continuous on the circle |z| = 1. Then
there is a harmonic function u on |z| < 1 that extends to a continuous function on

|z| <1 such that w= f on |z| = 1. Namely:

249 Z|2
———db.
277' / f ez9|2

Proof. Suppose f is at least C?. Then f has an absolutely convergent Fourier series.

Thus
=3 fme

where

A~ 271' . .
fWZ%AfWW%w
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We rewrite f(e") as a limit of partial sums

In|<N
= lim < / f(e?) —mﬁde)
N~>oo| =
L[ .
= i . 7 —inb _int de
Nooo 2 Jo J(e") Z ©
|n|<N
1 o 0 0 0
_—r o 7 —in znt —in znt
Nlﬂlo%/o Fe) Ze +nz_:16

. 1 o 10 —inb _int ind —int
:]\}1_1)1;0%/0 f(e*) ;e e +;e e df

: 1 o 0 - —inf n inf n
u(z) —J\}l_lrgo% i (") (Z —i—Z df

n=0

so that u(e®) = f(e). This is absolutely convergent, and u = f on |z| = 1. So

2 (ye—iO\N+L 50 (5 i0\N+1
u(z) = lim L f(e?) (1 (ze”) + = (e ) ) df
0

1— ze i 1 — ze
= — ' , — | df
27 Jo /(") (1 - 26’9>

This is harmonic, as it is the sum of an anti-holomorphic function and a holomorphic
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function. We use the properties of the complex z to simplify:

1 ze 1— ze® ze?(1 — ze™ )

1 — ze™ Tz zeil (1 —ze= ) (1 — ze?) = (1 — ze~)(1 — zei)

1 —ze" + ze? — |z)?

|1 — ze—|2
1=z
- |z _ 61’9'2'

Thus the solution is

Y N A
=), 100 (=)

1 21

= f(e®)P(z,e")do

2m J,

where
1—|z|?

P(z, ei(’) — —]z —cp

is the Poisson kernel. O
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