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CHAPTER 1: Introduction

Partial differential equations are used to model a wide range of physical problems. In

order to solve partial differential equations, many techniques of analysis are employed.

This thesis addresses both issues. The first half discusses various mathematical tech-

niques essential to deriving the solutions to partial differential equations. The second

half discusses three particular partial differential equations - the heat equation, wave

equation, and Laplace’s equation - and the problems associated with them. Our main

focus is to address these problems using the mathematical techniques discussed.

Chapter two introduces concepts from functional analysis that are applied in var-

ious chapters, including the delta function and convolution. The delta function is

used in chapter seven to derive solutions to partial differential equations via convo-

lution with the fundamental solution. Convolution is also used to derive solutions or

validate theorems in second chapter five using the heat kernel. The chapter ends with

a discussion of two convergence theorems essential to integration theory.

Chapter three introduces and examines Fourier series. The context for analysis

of Fourier series is Hilbert spaces, and basic results concerning Hilbert spaces are

introduced. We verify the function space for Fourier series is indeed a Hilbert space

by confirming completion. Afterwards, we discuss the two approaches to Fourier

series, complex and trigonometric, and the advantages of each.

Chapter four introduces another mathematical technique, the Fourier transform,

and explores properties such as inversion and convolution. To show that the Fourier

transform is an isometry, we verify Plancherel’s Theorem. At the end of the chapter,

we examine the Gaussian function and its properties, which are used in the proofs of

Plancherel’s Theorem and inversion of the Fourier transform.

In the last three chapters, we show how to apply the mathematical techniques
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introduced thus far. Each chapter focuses on a particular partial differential equation

and identifies the mathematical techniques that can be used to solve the initial value

problems associated with them.

Chapter five introduces the heat equation. For its general initial value problem,

we specify boundary and initial values of temperature, and what technique can be

used to meet these conditions. The solution to the general initial value problem of the

heat equation uses separation of variables and Fourier series. Separation of variables

is used to meet the boundary conditions, while Fourier series are used to satisfy the

initial temperature distribution. When the domain of an initial value problem is that

of the real line, we introduce another mathematical technique specific to the heat

equation, the heat kernel.

Chapter six introduces the wave equation. Similar to chapter five, we use separa-

tion of variables and Fourier series to meet the boundary values and initial conditions.

For an initial value problem with the real line as a domain, we derive d’Alembert’s

formula for a general solution by applying the Fourier transform from chapter four.

Chapter seven introduces the Laplace equation, both homogeneous and inhomoge-

neous. The solutions to the homogeneous Laplace equations are harmonic functions.

We demonstrate the fundamental solution to the Laplace equation in R2. We repre-

sent the Laplace equation in polar coordinates to explore rotation symmetry. Another

problem explored is the boundary value problem in the disc using the Poisson Kernel.



CHAPTER 2: Functional Analysis

The general definitions and theorems in this chapter can be found in [6], [12], [17],

and [20].

2.1 Distributions

Definition 2.1. A test function is a compactly supported smooth function. The

topology on the set of test functions, denoted D = C∞c (R), is defined so that a

sequence fn → f iff:

1. supp(fn) is contained in a compact set K for all n

2. lim
n→∞

||fn − f ||∞ = 0 for all k ≥ 0

Definition 2.2. A distribution is a linear functional, i.e., a continuous linear map

from D to C. The dual space D′ is the space of continuous linear functionals ϕ : D →

C. We write ϕ(f) = 〈ϕ, f〉 where ϕ ∈ D′ and f ∈ D. The weak topology on D′ is

defined so that

ϕn → ϕ iff 〈ϕn, f〉 → 〈ϕ, f〉

for all f ∈ D.

Example 2.3. Let ϕ be bounded and continuous on R. For f ∈ D, define

〈ϕ, f〉 =

∫
R
ϕ(x)f(x)dx.

Then ϕ is a continuous linear functional on D.

Definition 2.4. The delta “function” is actually a distribution that assigns f(0) to
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the function f . We denote the delta function

〈δ, f〉 =

∫
R
δ(x)f(x)dx = f(0).

Definition 2.5. We define, for an arbitrary ϕ ∈ D′,

〈ϕ′, f〉 = −〈ϕ, f ′〉.

This defines ϕ′. This definition is motivated by the following: If ϕ ∈ C1, then for

f ∈ D

〈ϕ′, f〉 =

∫
ϕ′(x)f(x)dx = −

∫
ϕ(x)f ′(x)dx = −〈ϕ, f ′〉.

Thus, for another example,

〈δ′, f〉 = −〈δ, f ′〉 = −f ′(0).

Definition 2.6. A fundamental solution to a differential operator L is a distribution

E such that

L(E) = δ,

where the derivatives are applied to E in the distribution sense.

2.2 Convolution

Definition 2.7. If f and g are two integrable functions on R, their convolution is

(f ∗ g)(x) =

∫
R
f(x− y)g(y)dy =

∫
R
f(y)g(x− y)dy.

The following properties of convolution hold:
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1. Symmetry: f ∗ g = g ∗ f

2. Bilinearity: f ∗ (ag + bh) = a(f ∗ g) + b(f ∗ h)

3. Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h

4. Delta Function: δ ∗ f = f

5. Support: If f, g ∈ D, then f ∗ g ∈ D and supp(f ∗ g) ⊆ supp(f) + supp(g)

Given a function ϕ and f ∈ D, define fx(y) = f(x− y). Then,

(ϕ ∗ f)(x) =

∫
ϕ(y)f(x− y)dy = 〈ϕ, fx〉.

Thus we can extend convolution to distributions by defining, for ϕ ∈ D′ and

f ∈ D,

(ϕ ∗ f)(x) = 〈ϕ, fx〉.

For example,

(δ ∗ f)(x) = 〈δ, fx〉 = fx(0) = f(x)

Thus,

δ ∗ f = f.

2.3 Integration Results

Theorem 2.8. (Monotone Convergence Theorem) Let {fn} be a sequence of mea-

surable functions on E ⊂ R. If {fn} is non-negative and monotone increasing, then

lim fn exists and

lim

∫
E

fn =

∫
E

lim fn.
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Proof. Let f(x) = sup fn(x). Then fn → f pointwise. By Fatou’s Lemma,

∫
f ≤ lim inf

∫
fn.

Also, fn ≤ f , so
∫
fn ≤

∫
f . Thus

lim sup

∫
fn ≤

∫
f ≤ lim inf

∫
fn.

Hence lim
∫
fn =

∫
f .

Theorem 2.9. (Dominated Convergence Theorem) Let {fn} be a sequence of mea-

surable functions on E with fn → f almost everywhere on E. Suppose there is an

integrable function g on E with |fn| ≤ g on E for all n. Then {fn} and f are

integrable and ∫
f = lim

∫
fn.

Proof. Suppose fn → f everywhere on E. As |fn| ≤ g for all n, |f | ≤ g. Now as g is

integrable, so are {fn} and f . We have |fn| ≤ g which implies −g ≤ fn ≤ g. Thus

g + fn ≥ 0 and g − fn ≥ 0.

Applying Fatou’s Lemma to g + fn yields

∫
E

g +

∫
E

f =

∫
E

g + f ≤ lim inf

∫
E

g + fn =

∫
E

g + lim inf

∫
E

fn.

Thus ∫
E

f ≤ lim inf

∫
E

fn.
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Applying Fatou’s Lemma to g − fn yields

∫
E

g −
∫
E

f =

∫
E

g − f ≤ lim inf

∫
E

g − fn =

∫
E

g − lim sup

∫
E

fn.

Thus ∫
E

f ≥ lim sup

∫
E

fn.

Hence

lim sup

∫
E

fn ≤
∫
E

f ≤ lim inf

∫
E

fn.

By definition,

lim inf

∫
E

fn ≤ lim sup

∫
E

fn,

so

lim inf

∫
E

fn = lim sup

∫
E

fn =

∫
E

f.



CHAPTER 3: Fourier Series

A solution method to the initial value problem for partial differential equations is

the use of Fourier series. The general definitions and theorems in this chapter are

adapted from [2], [13], [15], [17], and [22].

3.1 Hilbert Spaces

The proper setting for Fourier series is in the context of Hilbert spaces.

Definition 3.1. An inner product on a complex vector space V is a map

V × V → C, (v, w) 7→ 〈v, w〉

satisfying the following axioms for vectors u, v, w ∈ V and scalars c ∈ C:

1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

2. 〈cv, w〉 = c〈v, w〉

3. 〈w, v〉 = 〈v, w〉

4. 〈v, v〉 > 0 for v 6= 0

Definition 3.2. A Hilbert space is a complex vector space with an inner product

which is complete with respect to the norm

||v|| =
√
〈v, v〉.

Definition 3.3. Suppose V is an inner product space. Then {v1, v2, v3, . . .} is an

orthonormal system iff

〈vn, vm〉 =

{
1 n = m
0 n 6= m .
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Definition 3.4. Let V be a normed vector space. A sequence {fk} ∈ V converges in

norm to a vector f ∈ V if

||fk − f || → 0 as k →∞.

Given a vector f ∈ V , its generalized Fourier series with respect to an or-

thonormal system {vn} is

f ∼
∞∑
n=1

cnvn

with coefficients

cn = 〈f, vn〉.

The generalized Fourier series converges in norm to f if the partial Fourier sums

fk =
k∑

n=1

cnvn (3.1)

satisfy

||fk − f || → 0 as k →∞.

For a finite orthonormal system, the generalized Fourier series is the best approxima-

tion to f in the space:

Theorem 3.5. Let {v1, v2, . . .} be an orthonormal sequence in V . Define Sk =

span{v1, v2, . . . , vk} ⊂ V to be the subspace spanned by the first k elements of the

orthonormal system. Then the kth term of the partial Fourier sum fk ∈ Sk is the

best approximation to f . This means that p 7→ ||f − p||, for p ∈ Sk, is minimized by

p = fk.
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Proof. Suppose we have an element p ∈ Sk where

p=

k∑
n=1

dnvn.

Its norm is

||p||2 = 〈p, p〉

=

〈
k∑

n=1

dnvn,
k∑

m=1

dmvm

〉

=
k∑

n,m=1

dndm〈vn, vm〉.

Since 〈vn, vm〉 = 0 for n 6= m, we get

||p||2 =
k∑

n=1

|dn|2.

In addition,

||f − p||2 = 〈f − p, f − p〉

= ||f ||2 − 〈f, p〉 − 〈p, f〉+ ||p||2

= ||f ||2 −
k∑

n=1

dn〈vn, f〉 −
k∑

n=1

dn〈f, vn〉+
k∑

n=1

|dn|2

= ||f ||2 −
k∑

n=1

dncn −
k∑

n=1

dncn +
k∑

n=1

|dn|2

= ||f ||2 +
k∑

n=1

|cn − dn|2 −
k∑

n=1

|cn|2.
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We substitute the squared norm of (3.1),

k∑
n=1

|cn|2 = ||fk||2

to get

||f − p||2 = ||f ||2 +
k∑

n=1

|cn − dn|2 − ||fk||2.

On the right hand side, the first and last terms are independent of p ∈ Sk, and the

middle term is non-negative and will only be minimized if cn = dn for all n = 1, 2, . . . k.

Thus ||f − p|| is minimized overall p ∈ Sk iff dn = cn. Hence p = fk.

A very important property of the inner product spaces is the Cauchy-Schwartz

inequality.

Corollary 3.6. (Cauchy-Schwartz Inequality) Given f, g ∈ V ,

|〈f, g〉| ≤ ||f || · ||g||.

Proof. Suppose we have two vectors f, g ∈ V . Without loss of generality, we assume

g 6= 0. Let c ∈ R be arbitrary. Using sesquilinearity, we get

0 ≤ ||f + cg||2 = 〈f + cg, f + cg〉 = ||f ||2 + 2cRe〈f, g〉+ c2||g||2

with equality iff f = −cg. We consider the right hand side as a real-valued function

of c whose minimum occurs at c = − 〈f,g〉||g||2 . We substitute into the right hand side to

get

0 ≤ ||f ||2 − 2
|〈f, g〉|2

||g||2
+
|〈f, g〉|2

||g||2
= ||f ||2 − |〈f, g〉|

2

||g||2
.
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Thus,

|〈f, g〉|2 ≤ ||f ||2||g||2.

Taking the square root of both sides yields

|〈f, g〉| ≤ ||f || · ||g||

as desired.

Theorem 3.7. (Bessel’s Inequality) The sum of the squares of the general Fourier

coefficients of f ∈ V is bounded. In particular,

∞∑
n=1

|cn|2 ≤ ||f ||2.

Proof. Suppose we have the partial Fourier series

fk =
k∑

n=1

cnvn.

By the proof of Theorem 3.5, we have

0 ≤ ||f − fk||2 = ||f ||2 − ||fk||2 = ||f ||2 −
k∑

n=1

|cn|2.

Thus, we have the inequality
k∑

n=1

|cn|2 ≤ ||f ||2

for all k as desired.

Corollary 3.8. (Riemann-Lebesgue Lemma) If
∞∑
n=1

cnvn is the general Fourier series

for f , then

lim
n→∞

cn = 0.
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Definition 3.9. An orthonormal system {vn} ∈ H is complete iff, for every f ∈ H,

its generalized Fourier series converges in norm to f . That is,

||f − fk|| → 0 as k →∞

with fk =
k∑

n=1

cnvn and cn = 〈f, vn〉.

Theorem 3.10. The orthonormal system V is complete iff Plancherel’s formula holds

for every f ∈ V . That is,

||f ||2 =
∞∑
n=1

|cn|2.

Proof. Taking the limit as k →∞ in the proof of Theorem 3.7 yields

lim
k→∞
||f − fk||2 = lim

k→∞
||f ||2 −

k∑
n=1

|cn|2

= ||f ||2 − lim
n→∞

k∑
n=1

|cn|2

= ||f ||2 −
∞∑
n=1

|cn|2.

Thus fk converges in norm to f iff

||f ||2 =
∞∑
n=1

|cn|2.
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3.2 L2 Spaces

Definition 3.11. A function f is square integrable on [−π, π] if it has finite L2 norm

||f ||22 =
1

2π

∫ π

−π
|f(x)|2dx <∞.

The space L2(I), where I = [−π, π] or R, is defined by

Lp(I) =

{
f : I → C :

∫
I

|f |2 <∞
}
.

The inner product of two functions f(x) and g(x) in the complex Hilbert space L2 is

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x)dx,

with

〈f, f〉 = ||f ||22.

We have

|〈f, g〉| ≤ ||f ||2||g||2,

so 〈f, g〉 is well defined.

Theorem 3.12. L2 is complete.

Proof. Suppose that {fn} is a Cauchy sequence in L2. Then there exists a subsequence

{fnk} with

||fnk − fnk−1
||2 <

1

2k
.
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To ease notation, we go to a subsequence and assume that

||fn − fn−1||2 <
1

2n
.

Let f0 = 0. We observe that

fn = (fn − fn−1) + (fn−1 − fn−2) + . . .+ (f2 − f1) + (f1 − f0),

so

||fn||2 ≤
n∑
k=2

||fk − fk−1||2 + ||f1||2 < 1 + ||f1||2 = M.

We define

gn(x) =
n∑
k=1

|fk(x)− fk−1(x)|.

Then {gn} is an increasing sequence of real valued functions, so

g(x) = lim
n→∞

gn(x)

exists for all x. Also,

||gn||2 ≤
n∑
k=1

||fk − fk−1||2 ≤M,

i.e., ∫
|gn|2 ≤M2 for all n.

So by the Monotone Convergence Theorem,

∫
|g|2 ≤M2.
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Thus,

g(x) =
∞∑
k=1

|fk(x)− fk−1(x)|

is finite a.e. So
∞∑
k=1

(fk(x)− fk−1(x))

is absolutely convergent for x a.e. Define

f(x) = lim
n→∞

fn(x)

exists a.e. and

|fn(x)| =

∣∣∣∣∣
n∑
k=1

fk(x)− fk−1(x)

∣∣∣∣∣
≤

n∑
k=1

|fk(x)− fk−1(x)|

= gn(x)

≤ g(x).

So

|f(x)|2 ≤ g(x)2,

hence f 2 is integrable. Thus

|fn − f |2 ≤ (|fn|2 + |f |2) ≤ 2g2.

So ∫
|fn − f |2 → 0
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by the Dominated Convergence Theorem, i.e.,

||fn − f ||2 → 0 so fn → f in L2.

Proposition 3.13. The complex exponentials {einx : n ∈ Z} are an orthonormal

system in L2[−π, π].

Proof. For n,m ∈ Z and n 6= m,

〈einx, eimx〉 =
1

2π

∫ π

−π
einxe−imxdx

=
1

2π

[
eix(n−m)

i(n−m)

]π
−π

=
1

2π

(
eiπ(n−m) − e−iπ(n−m)

i(n−m)

)
= 0.

Thus the einx are orthogonal. For all n ∈ Z,

〈einx, einx〉 =
1

2π

∫ π

−π
einxe−inxdx

=
1

2π

∫ π

−π
dx

=
1

2π
[x]π−π

= 1.

Hence, einx is an orthonormal system in L2[−π, π].

We now discuss completeness of Fourier series for sufficiently smooth functions.
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Proposition 3.14. If f is C2 and 2π-periodic, then its Fourier series converges

absolutely to f,

f(x) =
∞∑

n=−∞

cne
inx.

Proof. Suppose f is C2 and 2π-periodic. Then f(−π) = f(π), f ′(−π) = f ′(π), and

for n 6= 0

cn =
1

2π

∫ π

−π
f(x)e−inxdx

= − 1

2πin

∫ π

−π
f(x)∂x(e

−inx)dx

= − 1

2πin

[
f(x)e−inx

]π
−π +

1

2πin

∫ π

−π
f ′(x)e−inxdx

= − 1

2πn2

∫ π

−π
f ′′(x)e−inxdx

using integration by parts twice. Letting M = 1
2π

max|f ′′|, we obtain

|cn| ≤
M

n2
.
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Now, fix x◦ ∈ [−π, π], and without loss of generality assume that f(x◦) = 0. Then

fN(x◦) =
N∑
−N

cne
inx◦

=
N∑
−N

(
1

2π

∫ π

−π
f(x)e−inxdx

)
einx◦

=
1

2π

∫ π

−π
f(x)

N∑
−N

e−in(x−x◦)dx

=
1

2π

∫ π

−π
f(x+ x◦)

N∑
−N

e−inxdx

=
1

2π

∫ π

−π
f(x+ x◦)

(
eiNx

2N∑
0

e−inx

)
dx

=
1

2π

∫ π

−π
f(x+ x◦)

e−i(N+1)x − eiNx

e−ix − 1
dx

for x 6= 0 (and
∑

= 2N + 1 for x = 0). Since f is continuous and differentiable,

f(x+x◦)
e−ix−1 is continuous on [−π, π], so by the Riemann-Lebesgue Lemma, its Fourier

coefficients go to zero. Thus

lim
N→∞

∫ π

−π

f(x+ x◦)

e−ix − 1
e−i(N+1)xdx = 0

and

lim
N→∞

∫ π

−π

f(x+ x◦)

e−ix − 1
eiNxdx = 0.

Hence fN → f , and the Fourier series converges absolutely,

f(x) =
∞∑

n=−∞

cne
inx.
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Theorem 3.15. The complex exponential functions einx with n ∈ Z form a complete

orthonormal system in L2[−π, π].

Proof. If f is 2π-periodic and C2 on [−π, π], its Fourier series converges absolutely

f =
∞∑

n=−∞

cne
inx.

The same applies to the conjugate f . Therefore,

|f(x)|2 = f(x)f(x) = f(x)
∞∑

n=−∞

cne
−inx =

∞∑
n=−∞

f(x)cne
−inx

which converges uniformly. We integrate both sides from [−π, π],

||f ||22 =
1

2π

∫ π

−π
|f(x)|2dx

=
∞∑

n=−∞

cn
2π

∫ π

−π
f(x)e−inxdx

=
∞∑

n=∞

cncn

=
∞∑

n=−∞

|cn|2.

Hence, Plancherel’s formula holds for any 2π-periodic C2 function, and hence

||fk − f ||2 → 0 for all such f . Since these functions are dense in L2, this validates

Plancherel’s formula for all f ∈ L2. Hence we obtain completeness by Theorem

3.10.

Example 3.16. Let f(x) = x2 on [−π, π]. Since f is C2 and f(π) = f(−π), it has
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an absolutely convergent Fourier series. For n = 0:

c0 =
1

2π

∫ π

−π
x2dx

=
1

2π

(
x3

3

)]π
−π

=
1

2π

(
π3

3
− −π

3

3

)
=
π2

3
.

For n 6= 0:

cn =
1

2π

∫ π

−π
x2e−inxdx.

Integration by parts yields

cn =
1

2π

([
−x2

in
e−inx

]π
−π
−
∫ π

−π

−2x

in
e−inxdx

)
=

1

2π

(
−π2

in
e−inπ +

π2

in
einπ −

∫ π

−π

−2x

in
e−inxdx

)
=

1

2π

(
−π2

in
(e−inπ − einπ)−

∫ π

−π

−2x

in
e−inxdx

)
.

The first term vanishes, and we integrate by parts again:

cn =
1

2inπ

([
−2x

in
e−inx

]π
−π
−
∫ π

−π

−2

in
e−inxdx

)
=

1

2inπ

(
−2π

in
e−inπ − 2π

in
einπ +

[(
2

in

(
−1

in

)
e−inx

)]π
−π

)
=

1

2inπ

(
−2π

in
(e−inπ + einπ) +

2

n2
(e−inπ − einπ)

)
.

Thus

cn =
2(−1)n

n2
.
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We combine both results to obtain the Fourier series

f(x) ∼ π2

3
+
∑
n6=0

2(−1)n

n2
einx

∼ π2

3
+ 2

∞∑
n=1

(−1)n

n2
einx +

(−1)−n

(−n)2
e−inx

∼ π2

3
+ 2

∞∑
n=1

(−1)n

n2
(einx + e−inx)

∼ π2

3
+ 4

∞∑
n=1

(−1)n cos(nx)

n2
.

The series is an absolutely convergent series, so the Fourier series is absolutely con-

vergent and converges pointwise to f . Thus

f(x) =
π2

3
+ 4

∞∑
n=1

(−1)n cos(nx)

n2
.

We can use Fourier series to evaluate familiar infinite sums. For example, setting

x = 0 yields

f(0) =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
= 0,

and we obtain
∞∑
n=1

(−1)n+1

n2
=
π2

12
.

3.3 Trigonometric Fourier Series

There are two approaches to Fourier series. One involves complex exponential func-

tions, while the other involves the trigonometric functions cosine and sine.
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Definition 3.17. An infinite sum of sines and cosines that forms an orthogonal

system over [−π, π], the Fourier series of a function f is

f =
a0
2

+
∞∑
n=1

[an cos(nx) + bn sin(nx)].

One may switch from complex to trigonometric Fourier series using

an = cn + c−n and bn = i(cn − c−n), n = 0, 1, . . .

and vice versa using

cn =
an − ibn

2
and c−n =

an + ibn
2

, n = 0, 1, . . . .

Example 3.18. Let f(x) = x on [−π, π]. The advantage here is that f(x) is an odd

function, so only sine coefficients are non-zero. For n = 0:

a0 =
1

π

∫ π

−π
xdx = 0,

and for n 6= 0, we have an odd function with an even function:

an =
1

π

∫ π

−π
x cos(nx)dx = 0.



24

Thus, the coefficients an vanish. Next, we determine bn for n = 1, 2, . . .,

bn =
1

π

∫ π

−π
x sin(nx)dx

=
2

π

∫ π

0

x sin(nx)dx

=
2

π

([
−x cos(nx)

n

]π
0

−
∫ π

0

− cos(nx)

n
dx

)
=

2

π

(
−π cos(πn)

n
+

[
sin(nx)

n2

]π
0

)
=

2

n
(−1)n+1.

Hence, the Fourier series for f(x) = x on [−π, π] is

x ∼ 2
∞∑
n=1

(−1)n+1

n
sin(nx)

∼ 2

(
sin(x)− sin(2x)

2
+

sin(3x)

3
− sin(4x)

4
+ . . .

)

where
∞∑
n=1

(−1)n+1

n
is conditionally convergent by the alternating series test.

There are cases where only half of the interval is taken into consideration.

Definition 3.19. Suppose we have a function f over [0, π]. We have a half range

Fourier series, and it can be written as either a cosine series or sine series. If evaluated

as a Fourier cosine series,

f =
a0
2

+
∞∑
n=1

an cos(nx)

with coefficients

an =
2

π

∫ π

0

f(x) cos(nx)dx.
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If evaluated as a Fourier sine series,

f =
∞∑
n=1

bn sin(nx)

with coefficients

bn =
2

π

∫ π

0

f(x) sin(nx)dx.



CHAPTER 4: Fourier Transform

The Fourier transform can be used to analyze solutions of partial differential equations

supported on the real line or on Rn. The Fourier transform converts differentiation

into multiplication and vice-versa. The general definitions and theorems of this chap-

ter can be found in [12], [13], [17], [18], and [20].

4.1 Fourier Transform

Definition 4.1. Given f ∈ L1(R), the space consisting of absolute integrable func-

tions, define the Fourier transform

f̂(ξ) =
1√
2π

∫
R
f(x)e−iξxdx = F [f(x)]

where F is denoted as the Fourier transform operator.

The Fourier transform acts linearly on function spaces

F [f(x) + g(x)] = F [f(x)] + F [g(x)] = f̂(ξ) + ĝ(ξ)

and

F [cf(x)] = cF [f(x)] = cf̂(ξ).

For a function f ∈ L1(R), the Fourier transform f̂ is defined for all ξ and is

bounded,

|f̂(ξ)| ≤ 1√
2π
||f ||1.

Lemma 4.2. If f ∈ C∞c (R), then f̂ is in L1 ∩ L2.
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Proof. ∫
R
|f̂(ξ)|dξ =

∫
R

∣∣∣∣ 1√
2π

∫
R
f(x)e−iξxdx

∣∣∣∣ dξ.
We take the second derivative of the exponential with respect to x

f(x)∂2x(e
−iξx) = −f(x)ξ2e−iξx

and have

f(x)e−iξx = − 1

ξ2
f(x)∂2x(e

−iξx).

There is a problem as ξ approaches to zero. We define R = I ∪ Ĩ where I = [−1, 1]

and have ∫
I=[−1,1]

|f̂(ξ)|dξ ≤ 2||f ||1.

For Ĩ, we substitute in for f(x)e−iξx to get

∫
Ĩ

|f̂(ξ)|dξ =

∫
Ĩ

1

ξ2

∣∣∣∣∫
R
f(x)∂2x(e

−iξx)dx

∣∣∣∣ dξ.
On the right hand side, the integral with respect to x is bounded

∣∣∣∣∫
R
f(x)∂2x(e

−inx)dx

∣∣∣∣ =

∣∣∣∣∫
R
f ′′(x)e−inxdx

∣∣∣∣ ≤ ||f ′′||1.
Thus, ∫

Ĩ

|f̂(ξ)|dξ ≤ ||f ′′||1
∫
Ĩ

1

ξ2
dξ <∞.

Likewise, we do the same for L2.

4.2 Plancherel’s Theorem

Our goal is to prove that F can be extended to an isometry from L2(R) to L2(R).



28

Theorem 4.3. (Plancherel’s Theorem) If f ∈ C∞c (R) then f̂ ∈ L2 and

||f̂ ||22 = ||f ||22.

First, we introduce the Gaussian function. For the Gaussian function

ĝt(ξ) =
1√
2π
e−

tξ2

2 ,

its Fourier transform is

ˆ̂gt(x) =
1√
2πt

e−
x2

2t .

(see remark 4.13 below). As t → 0+, e−
tξ2

2 → 1 pointwise and ˆ̂gt → δ weakly, in the

sense that

lim
t→0+

∫
R
f(x)ˆ̂gt(x)dx = f(0).

We prove Plancherel’s theorem.

Proof. For f ∈ C∞c (R), the Fourier transform f̂ is bounded and

||f̂ ||22 = lim
t→0+

∫
R
|f̂(ξ)|2

(√
2πĝt(ξ)

)
dξ

= lim
t→0+

∫
R
|f̂(ξ)|2e−

tξ2

2 dξ

is defined, since f̂ is bounded and e−
tξ2

2 is integrable by the Dominated Convergence

Theorem. Then,

||f̂ ||22 = lim
t→0+

∫
R
f̂(ξ)f̂(ξ)e−

tξ2

2 dξ

= lim
t→0+

∫
R

(
1√
2π

∫
R
f(x)e−ixξdx

)(
1√
2π

∫
R
f(y)eiyξdy

)
e−

tξ2

2 dξ.
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By Fubini’s Theorem,

||f̂ ||22 = lim
t→0+

∫
R
f(x)

∫
R
f(y)

∫
R

1

2π
e−

tξ2

2 e−iξ(x−y)dξdydx.

The integral with respect to ξ is the Fourier transform of the Gaussian function ĝt.

Thus,

||f̂ ||22 = lim
t→0+

∫
R
f(x)

∫
R
f(y)ˆ̂gt(y − x)dydx = lim

t→0+

∫
R
f(y)

∫
R
f(x)ˆ̂gt(y − x)dxdy

and ∫
R
f(x)ˆ̂gt(y − x)dx = (f ∗ ˆ̂gt)(y).

As t→ 0+, ˆ̂gt → δ and

(f ∗ ˆ̂gt)(y)→ f(y).

Hence,

||f̂ ||22 =

∫
R
f(y)f(y)dy = ||f ||22

as desired.

Theorem 4.4. The Fourier transform can be extended to an isometry from L2(R) to

L2(R).

Proof. Given f ∈ L2, there exists a sequence {ϕn} ∈ C∞c (R) such that

ϕn → f in L2,

in the sense that

||ϕn − f ||2 → 0.

Then {ϕn} is a Cauchy sequence in L2. Let ε > 0 be given. There exists N such
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that, for m,n > N ,

||ϕn − ϕm||22 < ε.

Applying the Fourier transform,

||ϕ̂n − ϕ̂m||22 = ||ϕn − ϕm||22,

we see that {ϕ̂n} is a Cauchy sequence. Thus {ϕ̂n} converges in L2, and we define

f̂ = lim
n→∞

ϕ̂n.

This defines the Fourier transform on L2(R), and it is an isometry. That is,

||f̂ ||2 = lim
n→∞

||ϕ̂n||2 = lim
n→∞

||ϕn||2 = ||f ||2.

Note: lim ϕ̂n is independent of the choice of sequence ϕn → f in L2(R).

4.3 Fourier Inversion Formula

Definition 4.5. Define

f̃(x) =
1√
2π

∫
R
f̂(ξ)eiξxdξ

for f ∈ L1(R).

Theorem 4.6. Suppose we have a function f ∈ L1 ∩ L2, and its Fourier transform

f̂ ∈ L2(R). Then

˜̂
f = f(x).
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An issue arises when proving this theorem. For instance,

˜̂
f(x) =

1√
2π

∫
R
f̂(ξ)eiξxdξ

=
1√
2π

∫
R

(
1√
2π

∫
R
f(y)e−iξydy

)
eiξxdξ

6= 1

2π

∫
R
f(y)

∫
R
eiξ(x−y)dξdy,

since the integral with respect to ξ is not finite. Hence, we use the Gaussian function

gt(x) =
1√
2πt

e−
x2

2t

with the following properties:

1.
∫
R gt = 1 for all t

2. gt → δ as t→ 0+ in the sense that

lim
t→0+

∫
R
f(x)gt(x) = f(0).

Its Fourier transform is

ĝt(ξ) =
1√
2π
e−

tξ2

2

(See Section 4.5 for details.) As t→ 0+,

√
2πĝt(ξ) = e−

tξ2

2 → 1 (4.1)

which we use to prove Theorem 4.6.

Proof. Let f ∈ L1 ∩ L2, with the Fourier transform

f̂(ξ) =
1√
2π

∫
R
f(y)e−iξydy.



32

We take the inverse Fourier transform

˜̂
f(x) =

1√
2π

∫
R
f̂(ξ)eiξxdξ

and apply (4.1)

˜̂
f(x) = lim

t→0+

1√
2π

∫
R
f̂(ξ)eiξxe−

tξ2

2 dξ.

We substitute for f̂ ,

˜̂
f(x) = lim

t→0+

1√
2π

∫
R

(
1√
2π

∫
R
f(y)e−iξydy

)
eiξxe−

tξ2

2 dξ

and by Fubini,

˜̂
f(x) = lim

t→0+

1√
2π

∫
R
f(y)

(
1√
2π

∫
R
eiξ(x−y)e−

tξ2

2 dξ

)
dy.

We substitute for (4.1),

˜̂
f(x) = lim

t→0+

∫
R
f(y)

(
1√
2π

∫
R
ĝt(ξ)e

iξ(x−y)dξ

)
dy.

The integral with respect to ξ is the inverse Fourier transform of ĝt,

˜̂
f(x) = lim

t→0+

∫
R
f(y)gt(x− y)dy.

We now have a convolution and evaluating the limit yields

˜̂
f(x) = lim

t→0+
(f ∗ gt)(x) = f(x)

as desired.
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As before, we have

||f̃ ||2 = ||f ||2

for f ∈ L1 ∩ L2, so F−1 extends to an isometry on L2(R).

4.4 Properties of the Fourier Transform

Proposition 4.7. Suppose the Fourier transforms of f, g ∈ L1 ∩L2 are f̂ , ĝ ∈ L2(R)

respectively. Then the Fourier transform of (f ∗ g)(x) is the product
√

2πf̂(ξ)ĝ(ξ).

Proof. Let

h(x) = (f ∗ g)(x) =

∫
R
f(x− y)g(y)dy.

Then,

ĥ(ξ) =
1√
2π

∫
R
(f ∗ g)(x)e−iξxdx

=
1√
2π

∫
R

[∫
R
f(x− y)g(y)dy

]
e−iξxdx

=
1√
2π

∫
R
g(y)

∫
R
f(x− y)e−iξxdxdy.

Let z = x− y and apply the change of variable dx = dz,

ĥ(ξ) =
1√
2π

∫
R
g(y)

[∫
R
f(z)e−iξ(z+y)dz

]
dy

=

[
1√
2π

∫
R
f(z)e−iξzdz

][√
2π√
2π

∫
R
g(y)e−iξydy

]

=
√

2πf̂(ξ)ĝ(ξ).

Thus ĥ(ξ) =
√

2πf̂(ξ)ĝ(ξ) as desired.

We also note that the Fourier transform of the product j(x) = f(x)g(x) is the
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convolution of the Fourier transform f̂(ξ) and ĝ(ξ)

ĵ(ξ) =
1√
2π

(f̂ ∗ ĝ)(ξ) =
1√
2π

∫
R
f̂(ξ − y)ĝ(y)dy.

Lemma 4.8. (Symmetry Principle) Suppose that f ∈ L2(R). Then the Fourier

transform of f̂(ξ) is f(−x).

Proof. Suppose we have a function f ∈ L2(R) and its Fourier transform f̂ ∈ L1 ∩L2.

The Fourier transform of f̂ is

F [f̂(ξ)] =
1√
2π

∫
R
f̂(ξ)e−iξxdξ.

Letting u = −x,

F [f̂(ξ)] =
1√
2π

∫
R
f̂(ξ)eiξudξ,

we have the inverse Fourier transform of f̂ . Thus,

F [f̂(ξ)] = f(u).

Hence

F [f̂(ξ)] = f(−x)

as desired.

Lemma 4.9. The inverse Fourier transform f ∈ C∞c (R) is defined as

f(x) =
1√
2π

∫
R
f̂(ξ)eiξxdξ.
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Its derivative is

f ′(x) =
1√
2π

∫
R
iξf̂(ξ)eiξxdξ.

This implies the Fourier transform of the derivative of f is

F [f ′(x)] = iξf̂(ξ).

Proof. Let f ∈ L2(R) be differentiable. Its derivative has the Fourier transform

F [f ′(x)] =
1√
2π

∫
R
f ′(x)e−ixξdx.

Integration by parts yields

F [f ′(x)] =
1√
2π

([
f(x)e−ixξ

]∞
−∞ −

∫
R
f(x)e−ixξ(−iξ)dx

)
.

The first two terms vanish, and we have

F [f ′(x)] =
iξ√
2π

∫
R
f(x)e−ixξdx.

The right hand side is the Fourier transform of f(x). Thus,

F [f ′(x)] = iξf̂(ξ)

as desired.

It follows that

F [fn(x)] = (iξ)nf̂(ξ).

Lemma 4.10. 〈ĝ, f〉 = 〈g, f̃〉 for f, g ∈ L1 ∩ L2.
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Proof.

〈ĝ, f〉 =

∫
R
ĝ(y)f(y)dy

=

∫
R

(
1√
2π

∫
R
g(ξ)e−iξy

)
f(y)dξdy

=

∫
R
g(ξ)

(
1

2π

∫
R
f(y)e−iξydy

)
dξ

=

∫
R
g(ξ)f̃(ξ)dξ

= 〈g, f̃〉

Theorem 4.11. Suppose we have f, g ∈ L1 ∩ L2. Then

〈f, g〉 = 〈f̂ , ĝ〉

That is ∫
R
f(x)g(x)dx =

∫
R
f̂(ξ)ĝ(ξ)dξ.

Proof. For

〈f̂ , ĝ〉 =

∫
R
f̂(ξ)ĝ(ξ)dξ,

we substitute for f̂ to get

∫
R
f̂(ξ)ĝ(ξ)dξ =

∫
R

(
1√
2π

∫
R
f(x)e−ixξ

)
ĝ(ξ)dxdξ.

By Fubini’s Theorem,

∫
R
f̂(ξ)ĝ(ξ)dξ =

∫
R
f(x)

(
1√
2π

∫
R
ĝ(ξ)eixξdξ

)
dx.
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The integral with respect to ξ is the inverse Fourier transform of ĝ. Thus,

∫
R
f̂(ξ)ĝ(ξ)dξ =

∫
R
f(x)g(x).

Hence,

〈f̂ , ĝ〉 = 〈f, g〉

as desired.

4.5 Gaussian Function

Lemma 4.12. The Gaussian function for t > 0

gt(x) =
1√
2πt

e−
x2

2t

has the Fourier transform

ĝt(ξ) =
1√
2π
e−

tξ2

2 .

Proof. Suppose we have the Gaussian function, gt ∈ L2. Its Fourier transform is

ĝt(ξ) =
1√
2π

∫
R

1√
2πt

e−
x2

2t e−iξxdx.

We apply the change of variable

y =
x√
t

and
√
tdy = dx

to get

ĝt(ξ) =
1√
2π

(
1√
2π

)∫
R
e−

y2

2
−i
√
tξydy.
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Before we continue, we complete the square for the power of the exponential,

−y
2

2
− i
√
tξy = −1

2
(y2 + 2i

√
tξy)

= −1

2
(y2 + 2i

√
tξy − tξ2)− 1

2
tξ2

= −1

2
(y + i

√
tξ)2 − 1

2
tξ2.

Now

ĝt(ξ) =
1√
2π

(
1√
2π

)
e−

tξ2

2

∫
R
e−

1
2
(y+i

√
tξ)2dy.

With the use of a contour integral, the integral with respect to y,

∫
R
e−

1
2
(y+i

√
tξ)2dy =

∫
R
e−

y2

2 dy

(The proof follows in Example 4.14). The Gaussian Fourier transform ĝt is now

ĝt(ξ) =
1√
2π

(
1√
2π

)
e−

tξ2

2

∫
R
e−

y2

2 dy.

Focusing on the integral, let

I =

∫
R
e−

y2

2 dy.

We square both sides to get

I2 =

∫
R
e−

y2

2 dy

∫
R
e−

x2

2 dx

=

∫∫
R
e−

1
2
(x2+y2)dydx.
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Changing to polar coordinates yields

I2 =

∫ 2π

0

∫ ∞
0

e−
r2

2 rdrdθ

=

∫ 2π

0

dθ

∫ ∞
0

re−
r2

2 dr

= 2π
[
−e

r2

2

]∞
0

= 2π.

Thus I =
√

2π and

ĝ(ξ) =
1√
2π
e−

tξ2

2

as desired.

Remark 4.13. The Gaussian function

gt(x) =
1√
2πt

e−
x2

2t

has the Fourier transform

ĝt(ξ) =
1√
2π
e−

tξ2

2 .

By the symmetry principle, the Fourier transform of ĝt is

F [ĝt(ξ)] =
1√
2πt

e−
(−x)2

2t = gt(−x) = gt(x).

Example 4.14. Suppose we have the contour integral

∫
CR
e−

z2

2 dz

where CR is the boundary of the rectangle [−R,R]× [0, α] oriented counterclockwise.
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The function

f(z) = e−
z2

2

is analytic with no singularities inside the interior of the contour CR. Thus, CR is a

simple closed contour and ∫
CR
f(z)dz = 0

by the Cauchy-Goursat Theorem. Since the contour is rectangular, we have CR =

CR
1 + CR

2 − CR
3 − CR

4 where CR
n , n = 1, 2, 3, 4, are the legs of CR. This gives

∫
CR
f(z)dz =

∫
CR1

f(z)dz +

∫
CR2

f(z)dz −
∫
CR3

f(z)dz −
∫
CR4

f(z)dz = 0.

Parameterizing CR
1 as z(w) = w with −R ≤ w ≤ R gives

∫
CR1

f(z)dz =

∫ R

−R
e−

w2

2 dw.

Parameterizing CR
3 as z(w) = w + iα with −R ≤ w ≤ R gives

∫
CR3

f(z)dz =

∫ R

−R
e−

(w+iα)2

2 dw.

This gives

∫ R

−R
e−

w2

2 dw +

∫
CR2

f(z)dz −
∫ R

−R
e−

(w+iα)
2 dw −

∫
CR4

f(z)dz = 0

or ∫ R

−R
e−

w2

2 dw =

∫ R

−R
e−

(w+iα)2

2 dw −
∫
CR2

f(z)dz +

∫
CR4

f(z)dz.
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For points z on CR
2 , we have z = R + iw with 0 ≤ w ≤ α and

−z
2

2
= −(R + iw)2

2
= −R

2

2
− iwR +

w2

2
.

So for all points z = R + iw on CR
2 , we have

|f(z)| =
∣∣∣e− z22 ∣∣∣

=
∣∣∣e−R2

2
−iwR+w2

2

∣∣∣
= e−

R2

2 e
w2

2 |e−iwR|

The modulus of e−iwR is 1, so

|f(z)| = e−
R2

2 e
w2

2 ≤ e−
R2

2 e
α2

2

as 0 ≤ w ≤ α. This gives the estimate,

∣∣∣∣∣
∫
CR2

f(z)dz

∣∣∣∣∣ ≤ e−
R2

2 e
α2

2 × length(CR
2 ) = αe

α2

2 e−
R2

2 .

Likewise, for points z on CR
4 , we have z = −R + iw with 0 ≤ w ≤ α and

−z
2

2
= −(−R + iw)2

2
= −R

2

2
+ iwR +

w2

2
.

So for all points z = −R + iw on CR
4 , we have

|f(z)| = e−
R2

2 e
w2

2 |eiwR| ≤ e−
R2

2 e
α2

2 .



42

This gives the estimate,

∣∣∣∣∣
∫
CR4

f(z)dz

∣∣∣∣∣ ≤ e−
R2

2 e
α2

2 × length(CR
4 ) = αe

α2

2 e−
R2

2 .

As ∣∣∣∣∣
∫
CR2

f(z)dz

∣∣∣∣∣ ≤ αe
α2

2 e−
R2

2

and

lim
R→∞

e−
R2

2 = 0,

we have

lim
R→∞

∫
CR2

f(z)dz = 0.

Similarly,

lim
R→∞

∫
CR4

f(z)dz = 0.

Thus, taking the limit of both side as R→∞,

lim
R→∞

∫ R

−R
e−

w2

2 dw = lim
R→∞

∫ R

−R
e−

(w+iα)2

2 dw − lim
R→∞

∫
CR2

f(z)dz + lim
R→∞

∫
CR4

f(z)dz

= lim
R→∞

∫ R

−R
e−

(w+iα)2

2 dw − 0 + 0

= lim
R→∞

∫ R

−R
e−

(w+iα)2

2 dw

Hence, ∫
R
e−

w2

2 dw =

∫
R
e−

(w+iα)2

2 dw.



CHAPTER 5: Heat Equation

The first of the three partial differential equations discussed is the heat equation in

one dimension. The results in this chapter have been adapted from [5], [9], [15], and

[19].

5.1 Initial Value Problem for the Heat Equation

Definition 5.1. The heat equation is a parabolic partial differential equation pri-

marily focused on the spreading of heat in an object or in space. Its formula,

ut = c2uxx,

derives from three physical principles: conservation law, physical considerations, and

Fourier heat flow. The function u is the temperature at position x at time t. The

constant, c2, is equal to κ
ρσ

where κ is the thermal conductivity, ρ is density, and σ is

the specific heat.

When solving an initial value problem for the heat equation in one spatial dimen-

sion, three conditions must be met:

1) u(x, t) satisfies the heat equation ut = c2uxx with 0 ≤ x ≤ L and t ≥ 0

2) u(x, t) satisfies the boundary condition u(0, t) = u(L, t) = 0

3) u(x, t) satisfies the initial temperature u(x, 0) = h(x).

5.2 Separation of Variables

One solution method to the heat initial value problem is by separation of variables

and Fourier series. Assume that a solution to the partial differential equation is of
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the form

u(x, t) = f(x)g(t). (5.1)

We find the solution by substituting (5.1) into the heat equation, giving

f(x)g′(t) = c2f ′′(x)g(t)

or

g′(t)

c2g(t)
=
f ′′(x)

f(x)
.

Since the left hand side does not depend on x, and the right hand side does not

depend on t, both sides are equal to a constant, λ. We separate both sides into

ordinary differential equations,

g′(t) = λc2g(t) and f ′′(x) = λf(x).

Applying the boundary condition to (5.1) yields

f(0)g(t) = f(L)g(t) = 0.

Assuming g 6≡ 0, we have

f(0) = f(L) = 0.

(If g ≡ 0, the solution would be trivial, i.e., u(x, t) ≡ 0.) Now, we consider three

cases, one of which yields a nontrivial solution.

1. Case 1: λ = 0. Here, we have

f ′′(x) = 0.
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The general solution to this ordinary differential equation is

f(x) = ax+ b, f(0) = f(L) = 0,

hence f = 0, a trivial solution.

2. Case 2: λ > 0. Here, we have

f ′′(x)− λf(x) = 0.

The general solution is

f(x) = c1e
√
λx + c2e

−
√
λx.

Applying the boundary condition yields

f(0) = c1 + c2 = 0.

Thus c1 = −c2, and

f(L) = c1e
√
λL + c2e

−
√
λL

= c1e
√
λL − c1e−

√
λL

= c1

(
e
√
λL − e−

√
λL
)

= 0.

Thus c1 = 0 which means c2 = 0. Hence f = 0 which is a trivial solution.
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3. Case 3: λ < 0. Here, we have

f ′′(x) + ω2f(x) = 0 with ω =
√
−λ.

The general solution corresponds to harmonic motion

f(x) = a cos(ωx) + b sin(ωx).

Applying the boundary condition yields f(0) = 0 which implies a = 0. Thus

f(x) = b sin(ωx), and f(L) = 0 yields b sin(ωL) = 0. Thus, either b = 0 or

sin(ωL) = 0. If b = 0, we have a trivial solution. If sin(ωL) = 0, then ωL = nπ

or ω = nπ
L

where n ∈ Z. We now have

f(x) = b sin
(nπx
L

)
.

Thus, the only nontrivial solutions for f are

f(x) = sin
(nπx
L

)
with λ = −

(nπ
L

)2
, n = 1, 2, . . .

Now that we have the nontrivial solutions for f , we find the corresponding g

satisfying

g′(t) = λc2g(t) = −
(nπ
L

)2
c2g(t).

The general solution is

g(t) = be−(
ncπ
L

)2t.

Hence, the nontrivial product solutions to the heat equation with the given boundary
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conditions are

un(x, t) = sin
(nπx
L

)
e−(

ncπ
L

)2t.

By the principal of superposition, we get

u(x, t) =
∞∑
n=1

bn sin
(nπx
L

)
e−(ncπL )

2
t (5.2)

as a solution to the heat equation.

We now determine the coefficients bn by applying the initial temperature to (5.2):

h(x) = u(x, 0) =
∞∑
n=1

bn sin
(nπx
L

)
.

Using half range Fourier series, we identify the bn’s by evaluating h(x) as a Fourier

sine series. That is,

bn =
2

L

∫ L

0

h(x) sin
(nπx
L

)
dx.

For example, consider the initial-value problem:

1) ut = uxx

2) u(0, t) = u(π, t) = 0

3) u(x, 0) = h(x) = x(π − x)

for 0 ≤ x ≤ π and t ≥ 0. Taking L = π and c = 1 in (5.2) gives

u(x, t) =
∞∑
n=1

bn sin(nx)e−n
2t.

The initial temperature gives us

u(x, 0) =
∞∑
n=1

bn sin(nx) = x(π − x).
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We can identify the coefficients bn by taking the Fourier sine series of h(x) = x(π−x),

bn =
2

π

∫ π

0

x(π − x) sin(nx)dx.

Integration by parts yields

bn =
2

π

([
−(πx− x2) cos(nx)

n

]π
0

−
∫ π

0

−(π − 2x) cos(nx)

n
dx

)
.

The first two terms vanish, which leaves us with the integral,

bn =
2

π

∫ π

0

(π − 2x) cos(nx)

n
dx.

Integration by parts yields

bn =
2

π

([
(π − 2x) sin(nx)

n2

]π
0

−
∫ π

0

−2 sin(nx)

n2
dx

)
.

The first two terms vanish which leaves us the integral

bn =
4

π

∫ π

0

sin(nx)

n2
dx

=
4

π

[
−cos(nx)

n3

]π
0

=
−4

πn3
(cos(nπ)− 1).

Thus,

u(x, 0) =
∞∑
n=1

−4((−1)n − 1)

πn3
sin(nx) = x(π − x).
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Hence,

u(x, t) =
∞∑
n=1

−4((−1)n − 1)

πn3
sin(nx)e−n

2t

=
8

π

∞∑
k=0

sin((2k + 1)x)

(2k + 1)3
e−(2k+1)2t.

5.3 Heat Kernel

Another solution method to the one dimension heat equation is the use of the heat

kernel, used in the case of an infinitely long bar, x ∈ R. Thus, we have the following

conditions:

1) u(x, t) satisfies the heat equation ut = c2uxx with −∞ < x <∞ and t ≥ 0

2) u(x, t) satisfies the initial temperature u(x, 0) = h(x).

We derive the solution by examining a property of the heat equation, scale invariance.

That is, if u(x, t) is a solution, so is u(λx, λ2t) for λ ∈ R. This scaling indicates the

similarity variable x√
t
, and the solution can be expressed as

u(x, t) = v

(
x√
t

)
w(t).

A property of the heat equation we also consider is the conversation of energy. Let u

have the following properties:

∣∣∣∣∫
R
u(x, 0)dx

∣∣∣∣ <∞
and

ux(x, t)→ 0 as x→ ±∞.
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Then

d

dt

∫
R
u(x, t)dx = 0,

and thus “energy” is conserved. That is,

∫
R
u(x, t)dx = C (5.3)

where C ∈ R is a constant. We substitute u(x, t) = v
(
x√
t

)
w(t), to get

w(t)

∫
R
v

(
x√
t

)
dx = C,

and apply the change of variable
√
ty = x to obtain

w(t)
√
t

∫
R
v(y)dy = C.

We take w(t) = 1√
t

to conserve energy in terms of (5.3). Thus,

u(x, t) =
1√
t
v(y) = t−

1
2v
(
t−

1
2x
)
.

Taking the derivative with respect to t yields

ut(x, t) = −1

2
t−

3
2v(y)− x

2
√
t
t−

3
2v′(y).

Taking the derivatives with respect to x yields

ux(x, t) =
1

t
v′(y) and uxx(x, t) = t−

3
2v′′(y).
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Thus, the heat equation is of the form

−1

2
t−

3
2v(y)− x

2
√
t
t−

3
2v′(y) = c2t−

3
2v′′(y)

or

c2v′′(y) +
1

2
yv′(y) +

1

2
v(y) = 0.

We can rewrite it as

c2v′′(y) +
1

2
(yv(y))′ = 0

and take the integral of both sides to obtain

c2v′(y) +
1

2
yv(y) = C.

Set C = 0 to obtain the general solution

v(y) = be−
y2

4c2 .

Converting back to u(x, t), we get

u(x, t) =
b√
t
e−

x2

4c2t .

We choose b so the constant in (5.3) is unity. As

∫
R
e−

x2

4c2tdx =
√

4c2πt,
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we have the fundamental solution of the heat equation

Φ(x, t) =
1√

4c2πt
e−

x2

4c2t for t > 0.

As t → 0, Φ → δ. We take the convolution of Φ(x, t) in the x variable with the

function u(x, 0) = h(x) to get

u(x, t) =
1√

4c2πt

∫
R
e−

(x−y)2

4c2t h(y)dy.

So

lim
t→0

u(x, t) = (δ ∗ h)(x) = h(x),

and the heat kernel is

K(x, y, t) = Φ(x− y, t) =
1√

4c2πt
e−

(x−y)2

4c2t .

Hence, for given initial temperature h(x), the solution is

u(x, t) =

∫
R
K(x, y, t)h(y)dy.

For example, consider the initial-value problem:

1) ut = c2uxx

2) u(x, 0) = e−x

for −∞ < x < ∞ and t ≥ 0. We use the heat kernel to find u(x, t). The solution is
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of the form

u(x, t) =
1√

4c2πt

∫
R
e−

(x−y)2

4c2t e−ydy

=
1√

4c2πt

∫
R
e−

(x2−2xy+y2+4c2ty)

4c2t dy

We compute the square with respect to y in the exponents and add/substract 4c2tx

y2 + 4c2ty + x2 − 2xy = (y2 + 4c2ty + 4c4t2 − 4c2tx− 2xy + x2)− 4c4t2 + 4c2tx

= (y + 2c2t− x)2 − 4c4t2 + 4c2tx.

Thus,

u(x, t) =
1√

4c2πt

∫
R
e−

(y+2c2t−x)2

4c2t
+c2t−xdy.

Set

p =
y + 2c2t− x√

4c2t

and apply change of variable
√

4c2t dp = dy to the solution

u(x, t) =
1√
π

∫
R
e−p

2

ec
2t−xdp = ec

2t−x.

Applying the initial temperature to the solution yields

u(x, 0) = e−x.

Hence, the solution to the heat equation is

u(x, t) = ec
2t−x.



CHAPTER 6: Wave Equation

The second of the three partial differential equations discussed is the wave equation

in one dimension. The results are adapted from [1], [3], [5], [10], [15], [19], and [21].

6.1 Initial Value Problem for the Wave Equation

Definition 6.1. The wave equation is a hyperbolic partial differential equation pri-

marily focused on the vibration of a finite string. Its formula,

utt = c2uxx

derives from the application of Newton’s Second Law to a medium, e.g. the vertical

displacement of a string. The function u is the vertical displacement of a string at

position x at time t. The constant, c2, is equal to T
ρ

where T is tension and ρ is

density.

When solving an initial value problem for the wave equation in one spatial dimen-

sion, four conditions must be met:

1) u(x, t) satisfies the wave equation utt = c2uxx with 0 ≤ x ≤ L and t ≥ 0

2) u(x, t) satisfies the boundary conditions u(0, t) = u(L, t) = 0

3) u(x, t) satisfies the initial position u(x, 0) = h(x)

4) u(x, t) satisfies the initial velocity ut(x, 0) = j(x).
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6.2 Separation of Variables

One solution method to the wave initial value problem is by separation of variables

and Fourier series. A solution to the partial differential equation is of the form

u(x, t) = f(x)g(t). (6.1)

Similar to the heat equation, we reduce to two ordinary differential equations:

g′′(t) = λc2g(t) and f ′′(x) = λf(x).

Applying the boundary condition to (6.1) yields

f(0)g(t) = f(L)g(t) = 0

Assuming g 6≡ 0, we have

f(0) = f(L) = 0.

As before, we are only looking for nontrivial solutions, so g 6≡ 0, λ 6= 0, and λ 6> 0.

We go to the results of Case 3: λ < 0 and find that the nontrivial solutions are

f(x) = sin
(nπx
L

)
with λ = −

(nπ
L

)2
, n = 1, 2, . . .

Now, we find the corresponding g satisfying,

g′′(t)− λc2g(t) = g′′(t) +
(nπ
L

)2
c2g(t) = 0,
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The general solution is

g(t) = a cos

(
ncπt

L

)
+ b sin

(
ncπt

L

)
.

Hence, the nontrivial product solutions to the wave equation with the boundary

condition are

un(x, t) =

[
an cos

(
ncπt

L

)
+ bn sin

(
ncπt

L

)]
sin
(nπx
L

)
.

By the principal of superposition, we get

u(x, t) =
∞∑
n=1

[
an cos

(
ncπt

L

)
+ bn sin

(
ncπt

L

)]
sin
(nπx
L

)
. (6.2)

as a solution to the wave equation.

We determine the coefficients an by applying the initial position to (6.2):

h(x) = u(x, 0) =
∞∑
n=1

an sin
(nπx
L

)
.

Using half range Fourier series, we can identify the an’s by evaluating h(x) as a Fourier

sine series. That is,

an =
2

L

∫ L

0

h(x) sin
(nπx
L

)
dx.

To determine the coefficients bn, we differentiate (6.2) with respect to t, obtaining

ut(x, t) =
∞∑
n=1

[
−ncπ

L
an sin

(
ncπt

L

)
+
ncπ

L
bn cos

(
ncπt

L

)]
sin
(nπx
L

)
(6.3)
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and apply the initial velocity to (6.3):

j(x) = ut(x, 0) =
∞∑
n=1

ncπ

L
bn sin

(nπx
L

)
.

We evaluate j(x) as a Fourier sine series to identify the bn’s:

bn =
2

ncπ

∫ L

0

j(x) sin
(nπx
L

)
.

For example, consider the initial-value problem:

1) utt = uxx

2) u(0, t) = u(π, t) = 0

3) u(x, 0) = h(x) = x(π − x)

4) ut(x, 0) = j(x) = x

for 0 ≤ x ≤ π and t ≥ 0. Taking L = π and c = 1 in (6.2) yields solution

u(x, t) =
∞∑
n=1

[an cos(nt) sin(nx) + bn sin(nt) sin(nx)]

with derivative with respect to t

ut(x, t) =
∞∑
n=1

[−ann sin(nt) sin(nx) + bnn cos(nt) sin(nx)].

The initial position gives us

u(x, 0) =
∞∑
n=1

an sin(nx) = x(π − x).

We can identify the coefficients an by using the Fourier sine series of h(x) = x(π− x)
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from the heat equation’s example,

an =
−4

πn3
(cos(nπ)− 1).

Thus

u(x, t) =
∞∑
n=1

[
−4((−1)n − 1)

πn3
cos(nt) sin(nx) + bn sin(nt) sin(nx)

]

The initial velocity gives us,

ut(x, 0) =
∞∑
n=1

bnn sin(nx) = x.

We can identify the coefficients bn by taking the Fourier sine series of j(x) = x

bn =
2

nπ

∫ π

0

x sin(nx)dx.

Integration by parts yields

bn =
2

nπ

([
−x cos(nx)

n

]π
0

+

∫ π

0

cos(nx)

n
dx

)

The last two terms vanish which leaves

bn =
2

nπ

(
−π cos(nπ)

n

)
=
−2(−1)n

n2
.
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Hence,

u(x, t) =
∞∑
n=1

[
−4((−1)n − 1)

πn3
cos(nt) sin(nx) +

−2(−1)n

n2
sin(nt) sin(nx)

]
.

6.3 Fourier Transform Method

When the domain is the real line, a solution to the one dimension wave equation, using

the Fourier transform, is d’Alembert’s formula. We have the following conditions:

1) u(x, t) satisfies the wave equation utt = c2uxx with −∞ < x <∞ and t ≥ 0

2) u(x, t) satisfies the initial position u(x, 0) = h(x)

3) u(x, t) satisfies the initial velocity ut(x, 0) = j(x).

Fixing t, assuming a reasonable solution u, we take the Fourier transform of u(x, t)

with respect to x,

û(ξ, t) =
1√
2π

∫
R
u(x, t)e−iξxdx.

By Lemma 4.9, the Fourier transform of uxx is −ξ2û(ξ, t). We compute the Fourier

transform of utt:

F [ut] =
1√
2π

∫
R
ute
−iξxdx =

1√
2π

∫
R

[
lim
h→0

u(x, t+ h)− u(x, t)

h

]
e−iξxdx

= lim
h→0

1

h

[
1√
2π

∫
R
u(x, t+ h)e−iξxdx− 1√

2π

∫
R
u(x, t)e−iξxdx

]
= lim

h→0

1

h
(û(ξ, t+ h)− û(ξ, t))

= ût,

so,

F [utt] =
1√
2π

∫
R
utte

−iξxdx =
∂

∂t

1√
2π

∫
R
ute
−iξxdx = ûtt.
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The wave equation is of the form

ûtt = −c2ξ2û.

Fix ξ and write û(ξ, t) = U(t). The wave equation is now

U ′′(t) + c2ξ2U(t) = 0

with the general solution

U(t) = a(ξ)e−iξct + b(ξ)eiξct

where a and b are functions of ξ. We set

f̂ = a and ĝ = b.

Thus,

û(ξ, t) = f̂ e−iξct + ĝeiξct.

We take the inverse Fourier transform to find u(x, t)

u(x, t) =
1√
2π

∫
R
û(ξ, t)eiξxdξ

=
1√
2π

∫
R

(
f̂ e−iξct + ĝeiξct

)
eiξxdξ

=
1√
2π

∫
R
f̂ eiξ(x−ct)dξ +

1√
2π

∫
R
ĝeiξ(x+ct)dξ

= f(x− ct) + g(x+ ct).
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The solution to the wave equation is now of the form

u(x, t) = f(x− ct) + g(x+ ct). (6.4)

Applying the initial position to (6.4) yields

u(x, 0) = f(x) + g(x) = h(x).

We differentiate h(x) and multiply by the constant c to get

ch′(x) = cf ′(x) + cg′(x).

Applying the initial velocity to (6.4) yields

ut(x, 0) = −cf ′(x) + cg′(x) = j(x),

and we add and subtract this with ch′(x) to get

ch′(x) + j(x) = cf ′(x) + cg′(x) + [−cf ′(x) + cg′(x)] = 2cg′(x)

and

ch′(x)− j(x) = cf ′(x) + cg′(x)− [−cf ′(x) + cg′(x)] = 2cf ′(x).

Solving for f and g yields

f(x) =
h(x)

2
− 1

2c

∫ x

x◦

j(y)dy and g(x) =
h(x)

2
+

1

2c

∫ x

x◦

j(y)dy
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for fixed x◦. Substituting both into (6.4) yields

u(x, t) =
h(x− ct)

2
− 1

2c

∫ x−ct

x◦

j(y)dy +
h(x+ ct)

2
+

1

2c

∫ x+ct

x◦

j(y)dy.

Thus, the solution to the initial value problem is d’Alembert’s formula:

u(x, t) =
1

2
[h(x− ct) + h(x+ ct)] +

1

2c

∫ x+ct

x−ct
j(y)dy.

For example, consider the intial-value problem:

1) utt = c2uxx

2) u(x, 0) = 0

3) ut(x, 0) = e−x

for −∞ < x < ∞ and t ≥ 0. Taking h(x) = 0 and j(x) = e−x in d’Alembert’s

formula gives solution

u(x, t) =
1

2c

∫ x+ct

x−ct
e−ydy

=
1

2c

(
e−(x−ct) − e−(x+ct)

)
=
e−x sinh(ct)

2
.



CHAPTER 7: Laplace Equation

The final partial differential equation we consider is the Laplace equation in R2. The

general definitions and theorems discussed here can be found in [4], [5], [7], [8], [11],

[14], [16], [17], and [20].

7.1 Laplace Equation

Definition 7.1. The Laplace equation is an elliptic partial differential equation pri-

marily related to equilibrium equations in a variety of physical systems. Its formula,

in Cartesian coordinates, is

∆u = uxx + uyy = 0

where ∆ = ∂2

∂x2
+ ∂2

∂y2
is the Laplace operator and u is a function. Its solutions are

harmonic functions.

Definition 7.2. The inhomogeneous version of the Laplace equation is the Poisson

equation which arises in theoretical physics. Its formula is

−∆u = f(x, y).

7.2 Properties of Harmonic Functions

Definition 7.3. A function is a harmonic function if u ∈ C2(Ω) and satisfies the

Laplace equation ∆u = 0 in Ω.

Proposition 7.4. (Mean Value Property) Let u ∈ C2 be a harmonic function in an

open domain Ω ⊂ R2. Let z ∈ Ω and consider a disc Br(z) ⊂ Ω. Then the average

value of u on the circle Sr(z) is u(z).
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Proof. By the Divergence Theorem,

∫
Br(z)

∆u =

∫
Sr(x)

∇u · n = r

∫
S1(x)

u′(z + rω) dω = r
∂

∂r

∫
S1(x)

u(z + rω) dω.

Since ∆u = 0, we see that

0 =
1

2πr

∫
Br(z)

∆u =
1

2π

∂

∂r

∫
S1(x)

u(z + rω) dω,

and hence

1

2π

∫
S1(x)

u(z + rω) dω

is independent of r, and approaches u(z) as r → 0.

Proposition 7.5. Let u ∈ C2 be a harmonic function in an open domain Ω ⊂ R2.

Then u is a smooth function in Ω.

Proof. Fix z ∈ Ω, and choose ε > 0 so that Bε(z) ⊂ Ω. Let φ be a smooth, radial

function supported inside |w| < ε with
∫
Bε(0)

φ = 1. Define ψ on Bε(z) by ψ(z+rω) =

φ(r). Then we have the convolution

(u ∗ ψ)(z) =

∫
u(z − w)ψ(w) dw

=

∫
Bε(z)

u(z − w)ψ(w) dw

=

∫ ε

0

∫
Sε(0)

u(z − rω)φ(r)r dwdr

=

∫ ε

0

2πru(z)φ(r) dr

= u(z).

Now we have u = (u ∗ ψ) where ψ is a smooth function, hence u is smooth.
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Theorem 7.6. Let f(z) = u(z) + iv(z) and z◦ = x◦ + iy◦ be a point in the domain

of f . If f is analytic at z◦, then the partial derivatives ux, uy, vx, vy of u and v must

exist at z◦ and satisfy the Cauchy-Riemann equations

ux(z◦) = vy(z◦) and uy(z◦) = −v(z◦).

It follows that the real part u and imaginary part v of the differentiable function f

are solutions of the Laplace equation and are therefore harmonic functions. That is,

∆u = 0 and ∆v = 0.

Proof. Let f(z) = u(z) + iv(z) be analytic at z◦ in the domain of f . Thus

f ′(z) = ux(z◦) + ivx(z◦) = vy(z◦)− iuy(z◦)

which is analytic in the domain of f . We get

uxx(z◦) = −uyy(z◦) and vxx(z◦) = −vyy(z◦).

Thus,

uxx(z◦) + uyy(z◦) = 0

and

vxx(z◦) + vyy(z◦) = 0

as desired.
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Example 7.7. Suppose we have the analytic function

f(z) =
1

z
.

We have the function

f(z) =
1

x+ iy
=

x

x2 + y2
+ i

−y
x2 + y2

= u(z) + iv(z).

The real and imaginary parts are harmonic. Indeed, for the real part

u(z) =
x

x2 + y2
,

the partials with respect to x are

ux =
y2 − x2

(x2 + y2)2

and

uxx =
−2x(x2 + y2)− 4x(y2 − x2)

(x2 + y2)3
,

and the partials with respect to y are

uy =
−2xy

(x2 + y2)2

and

uyy =
−2x(x2 + y2) + 8xy2

(x2 + y2)3
.

Thus,

∆u =
−6xy2 + 2x3

(x2 + y2)3
+
−2x3 + 6xy2

(x2 + y2)3
= 0.
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Likewise, for the imaginary part

v(z) = − y

x2 + y2
,

the second partial with respect to x is

vxx =
2y(x2 + y2)− 8x2y

(x2 + y2)3

and the second partial with respect to y is

vyy =
2y(x2 + y2)− 4y(y2 − x2)

(x2 + y2)3
.

Thus,

∆v =
2y3 − 6x2y

(x2 + y2)3
+

6x2y − 2y3

(x2 + y2)3
= 0.

Hence the real and imaginary parts of f(z) are harmonic.

7.3 Polar Coordinates

One can exploit the rotational symmetry of the Laplace equation by using the polar

coordinate system.

Definition 7.8. Cartesian coordinates can be represented by polar coordiantes

x = r cos θ, y = r sin θ ⇔ r =
√
x2 + y2, θ = tan−1

(y
x

)
.

Note: The transformation to θ only works for x > 0, in the right half plane.
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Lemma 7.9. The Laplace Equation is now

∆u = urr +
ur
r

+
uθθ
r2

= 0

where ∆ = ∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2
.

Proof. By the chain rule,

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ

and

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

Differentiating ∂
∂x

with respect to x yields

∂2

∂x2
= cos2 θ

∂2

∂r2
+
∂2r

∂x2
∂

∂r
− 2 sin θ cos θ

r

∂2

∂r∂θ
+
∂2θ

∂x2
∂

∂θ
+

sin2 θ

r2
∂2

∂θ2
.

Differentiating ∂
∂y

with respect to y yields

∂2

∂y2
= sin2 θ

∂2

∂r2
+
∂2r

∂y2
∂

∂r
+

2 sin θ cos θ

r

∂2

∂r∂θ
+
∂2θ

∂y2
∂

∂θ
+

cos2 θ

r2
∂2

∂θ2
.

Thus

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

as desired.

Definition 7.10. In R2, a vector

z =

[
x
y

]
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is rotated counterclockwise by the rotation matrix

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Definition 7.11. A function u is radial, invariant under rotation, iff u(Rθz) = u(z)

for all θ and z.

Proposition 7.12. If u is radial, then ∆u is radial, and

∆u = urr +
ur
r

=
(rur)r
r

.

Proof. Suppose we have a harmonic function u. We apply rotation to u

(u ◦Rθ)(z) = u(cos θx− sin θy,− sin θx+ cos θy) = u(Rθz).

We want to show that the Laplacian operator is radial. We take the partial derivative

of u with respect to x twice:

∂x(u ◦Rθ)(z) = cos θ∂1u(Rθz) + sin θ∂2u(Rθz)

and

∂2x(u ◦Rθ)(z) = cos2 θ∂21u(Rθz) + 2 cos θ sin θ∂1∂2u(Rθz) + sin2 θ∂22u(Rθz).

We take the partial derivative of u with respect to y twice:

∂y(u ◦Rθ)(z) = − sin θ∂1u(Rθz) + cos θ∂2u(Rθz)
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and

∂2y(u ◦Rθ)(z) = sin2 θ∂21u(Rθz)− 2 cos θ sin θ∂1∂2u(Rθz) + sin2 θ∂22u(Rθz).

We combine ∂2x(u ◦Rθ)(z) and ∂2y(u ◦Rθ)(z)

∆(u ◦Rθ)(z) = cos2 θ∂21u(Rθz) + 2 cos θ sin θ∂1∂2u(Rθz) + sin2 θ∂22u(Rθz)

+ sin2 θ∂21u(Rθz)− 2 cos θ sin θ∂1∂2u(Rθz) + sin2 θ∂22u(Rθz)

= ∂21u(Rθz) + ∂22u(Rθz)

= (∆u)(Rθz).

Thus

∆(u ◦Rθ) = (∆u) ◦Rθ.

If u is radial,

∆u ◦Rθ = ∆(u ◦Rθ) = ∆u,

so ∆u is radial.

7.4 Fundamental Solution

Definition 7.13. Let Γ be defined for z ∈ R2\{0} by

Γ(z) =
1

2π
ln |z|.

We show that the function Γ is the fundamental solution of the Laplace operator. In

polar coordinates

Γ(r, θ) =
1

2π
ln r.
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The function Γ is harmonic in R2\{0}, i.e., ∆Γ = 0 for z 6= 0. We want to show

that ∆Γ = δ. That is,

〈∆Γ, f〉 = 〈Γ,∆f〉 = 〈δ, f〉 = f(0).

Proposition 7.14. Γ satisfies

∆Γ = δ.

That is, for all f ∈ C∞c , ∫
R2

Γ(z)∆f(z)dz = f(0).

Proof. First, assume g is radial and g ∈ C∞c (R2). Then

〈∆g,Γ〉 =

∫
R2

∆g(z)Γ(z)dz

= lim
δ→0

∫ 2π

0

∫ ∞
δ

∆g(r)

[
1

2π
ln(r)

]
rdrdθ

= lim
δ→0

∫ ∞
δ

(g′′(r)r ln(r) + g′(r) ln(r)) dr.

The first term

∫ ∞
δ

g′′(r)r ln(r)dr = [g′(r)r ln(r)]
∞
δ −

∫ ∞
δ

g′(r)(1 + ln(r))dr

by integration by parts. So

〈∆g,Γ〉 = lim
δ→0

(
[g′(r)r ln(r)]

∞
δ −

∫ ∞
δ

g′(r)(1 + ln(r))dr +

∫ ∞
δ

g′(r) ln(r)dr

)
= lim

δ→0
[g′(r)r ln(r)]

∞
δ −

∫ ∞
0

g′(r)dr.
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The first two terms vanish, so

〈∆g,Γ〉 = −
∫ ∞
0

g′(r)dr = g(0).

Now consider f non-radial. Define

fR(z) =
1

2π

∫ 2π

0

f(Rθz)dθ.

Since ∆ commutes with rotations,

∆(fR) = (∆f)R.

Then fR is radial, fR(0) = f(0) and

〈∆Γ, f〉 = 〈Γ,∆f〉

= 〈Γ, (∆f)R〉

= 〈Γ,∆(fR)〉

= fR(0)

= f(0).

Proposition 7.15. For f ∈ C∞c (R2),

∆(Γ ∗ f) = f.
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Proof. For f ∈ C∞c (R) and any g ∈ C∞c (R),

〈∆(Γ ∗ f), g〉 = 〈Γ ∗ f,∆g〉

=

∫
Γ(x− y)f(y)∆g(x)dxdy

=

∫
f(y)

∫
Γ(x)∆g(x+ y)dxdy

=

∫
f(y)g(y)dy

= 〈f, g〉.

7.5 Poisson Kernel

A solution method to the boundary value problem in the circle is the Poisson kernel.

We derive it from the following corollary and its proof.

Corollary 7.16. Let f be at least C2 and continuous on the circle |z| = 1. Then

there is a harmonic function u on |z| < 1 that extends to a continuous function on

|z| ≤ 1 such that u = f on |z| = 1. Namely:

u(z) =
1

2π

∫ 2π

0

f(eiθ)
1− |z|2

|z − eiθ|2
dθ.

Proof. Suppose f is at least C2. Then f has an absolutely convergent Fourier series.

Thus

f(eit) =
∞∑

n=−∞

f̂(n)eint

where

f̂(n) =
1

2π

∫ 2π

0

f(eiθ)e−inθdθ.
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We rewrite f(eit) as a limit of partial sums

f(eit) = lim
N→∞

∑
|n|≤N

f̂(n)eint

= lim
N→∞

∑
|n|≤N

(
1

2π

∫ 2π

0

f(eiθ)e−inθdθ

)
eint

= lim
N→∞

1

2π

∫ 2π

0

f(eiθ)

∑
|n|≤N

e−inθeint

 dθ

= lim
N→∞

1

2π

∫ 2π

0

f(eiθ)

(
N∑
n=0

e−inθeint +
−N∑
n=−1

e−inθeint

)
dθ

= lim
N→∞

1

2π

∫ 2π

0

f(eiθ)

(
N∑
n=0

e−inθeint +
N∑
n=1

einθe−int

)
dθ.

For |z| < 1, define

u(z) = lim
N→∞

1

2π

∫ 2π

0

f(eiθ)

(
N∑
n=0

e−inθzn +
N∑
n=1

einθz̄n

)
dθ

so that u(eit) = f(eit). This is absolutely convergent, and u = f on |z| = 1. So

u(z) = lim
N→∞

1

2π

∫ 2π

0

f(eiθ)

(
1− (ze−iθ)N+1

1− ze−iθ
+
z̄eiθ − (z̄eiθ)N+1

1− z̄eiθ

)
dθ

=
1

2π

∫ 2π

0

f(eiθ)

(
1

1− ze−iθ
+

z̄eiθ

1− z̄eiθ

)
dθ.

This is harmonic, as it is the sum of an anti-holomorphic function and a holomorphic
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function. We use the properties of the complex z to simplify:

1

1− ze−iθ
+

z̄eiθ

1− z̄eiθ
=

1− z̄eiθ

(1− ze−iθ)(1− z̄eiθ)
+

z̄eiθ(1− ze−iθ)
(1− ze−iθ)(1− z̄eiθ)

=
1− z̄eiθ + z̄eiθ − |z|2

|1− ze−iθ|2

=
1− |z|2

|z − eiθ|2
.

Thus the solution is

u(z) =
1

2π

∫ 2π

0

f(eiθ)

(
1− |z|2

|z − eiθ|2

)
dθ

=
1

2π

∫ 2π

0

f(eiθ)P (z, eiθ)dθ

where

P (z, eiθ) =
1− |z|2

|z − eiθ|2

is the Poisson kernel.
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