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DEPARTMENT OF EXERCISE AND SPORTS SCIENCE 

It has been shown that skeletal muscle 5’-AMP-activated protein kinase (AMPK) 

phosphorylation and/or activity is more greatly elevated in response to resistance exercise 

or loading in aged rats, and that eukaryotic elongation factor 2 (eEF2) is more 

phosphorylated with increased AMPK phosphorylation and/or activity, thereby 

potentially decreasing the hypertrophic response of translation elongation with age.  

Increased AMPK phosphorylation has also been shown to occur in old compared to 

young humans following an acute resistance exercise bout.  Thus, we hypothesized that 

AMPK phosphorylation, AMPK activity, and eEF2 phosphorylation would be greater in 

the vastus lateralis muscles of old compared to young men and women within the two 

hours after an acute bout of resisted leg extensions.  Subjects (N=6/age group) performed 

an acute bout of leg extension resistance exercise consisting of 3 working sets.  Muscle 

biopsies were obtained pre-exercise (Pre-Ex), immediately post-exercise (0P), one hour 

post-exercise (1P), and two hours post-exercise (2P).  Phosphorylation of AMPK, acetyl-

CoA carboxylase (ACC; a measure of AMPK activity), and eEF2 were analyzed by 

western blot.  There were no differences in AMPK phosphorylation between age groups 



or over time, while ACC phosphorylation was significantly (P<0.05) increased at 0P and 

1P compared to Pre-Ex for both age groups.  The percent change in phospho-ACC from 

Pre-Ex was significantly higher in old compared to young subjects at all post-exercise 

timepoints.  eEF2 phosphorylation was significantly elevated at 0P, and significantly 

lower at 1P and 2P, regardless of age group.  Furthermore, total eEF2 was significantly 

elevated at 1P and 2P regardless of age group.  These findings suggest that AMPK 

activity may be increased more in old compared to young subjects immediately following 

an acute bout of resistance exercise.  This could lead to lower downstream translational 

signaling in older humans following resistance exercise, although eEF2 may not be a 

translational signaling protein affected by this phenomenon. 
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CHAPTER I:  INTRODUCTION 

 
Sarcopenia 

 According to the Center for Disease Control and Prevention (CDC), as of 2006, 

the average life expectancy in the United States was 77.7 years, showing a steady 

increase since 1900 (CDC, 2007).  With an ever increasing life expectancy and increases 

in medical technology, the number of elderly individuals in society is on a continual rise.  

Approximately 39 million Americans have been reported to be > 65 years old as of 2000 

[reviewed by (Greenlund & Nair, 2003)].  Normal aging is accompanied by a decrease in 

muscle mass and strength (Rogers & Evans, 1993).  Age-related decreases in muscle 

strength occur in both men and women (Hughes et al., 2001).  The loss of muscle protein 

and mass with age is termed sarcopenia; one-third of this muscle protein loss occurs 

between ages 25 and 75 due to sarcopenia (Cohn et al., 1980).   Sarcopenia also leads to a 

decrease in muscle fiber cross-sectional area and isometric force (Korhonen et al., 2006),  

and has been shown to be significantly correlated with increased disability (Janssen, 

Heymsfield, & Ross, 2002).  A lower skeletal muscle index in elderly individuals shows 

increased risk of disability (Janssen, Baumgartner, Ross, Rosenberg, & Roubenoff, 

2004).  As the elderly population loses muscle mass, they lose the ability to perform 

activities of daily living and eventually lose independence.  For instance, per capita 

health care spending has greatly risen between 1966 and 2001 (Altman, Tompkins, Eilat, 

& Glavin, 2003) which can be partially attributable to disability from sarcopenia.  As of 

2001, it is estimated that by 2010, $183 billion will be spent for nursing home stays in the 

U.S. (Greenlund & Nair, 2003). 
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Resistance Training 

 Resistance training is one intervention thought to delay the progression of 

sarcopenia.  Resistance exercise has been shown to increase strength and muscle fiber 

size (Brose, Parise, & Tarnopolsky, 2003; Kryger & Andersen, 2007; Rogers & Evans, 

1993; Trappe et al., 2000);  chronic strength training is proposed to help maintain muscle 

strength with increasing age (Aagaard, Magnusson, Larsson, Kjaer, & Krustrup, 2007; 

Bamman et al., 2003).  However, a decrease in the ability of old skeletal muscle to 

hypertrophy compared to young skeletal muscle has been shown in rats (Degens & 

Alway, 2003), even when exercising under chronic overload conditions (Blough & 

Linderman, 2000).  In humans, inhibition of gains in force production with age have also 

been shown despite resistance exercise (Korhonen et al., 2006).  The age related decrease 

in myosin heavy chain (MHC) synthesis in humans (Balagopal, Rooyackers, Adey, Ades, 

& Nair, 1997) cannot be prevented by resistance exercise alone (Balagopal, Schimke, 

Ades, Adey, & Nair, 2001). 

Protein Synthesis 

 Muscle protein synthesis (MPS) is the formation of proteins within the muscle, 

and leads to an increase in muscle mass and muscle fiber size if MPS is greater than 

protein breakdown.  An age-related decrease in MPS exists at rest (Drummond, Miyazaki 

et al., 2008) and after resistance exercise in rats (Tamaki et al., 2000) and humans 

(Kumar et al., 2009; Sheffield-Moore et al., 2005).  This decrease in MPS could strongly 

affect the increase in age-related atrophy.  With decreased MPS, an imbalance of net 

protein balance may occur between MPS levels and muscle protein breakdown.  Protein 
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synthesis consists of three stages: translation initiation, translation elongation, or 

translation termination.  Of these, the most highly regulated are translation initiation and 

translation elongation. 

 
mRNA Translation into Protein 

 A ribosomal initiation complex is first formed by an initiation t-RNA, an mRNA 

strand, a ribosome, and various eukaryotic initiation factors [as reviewed (Kimball, 

Farrell, & Jefferson, 2002; Nader, Hornberger, & Esser, 2002)].  During the first stage of 

translational initiation, eukaryotic initiation factor 4F (eIF4F) is formed by the 

combination of various initiation factors.  Next, eIF4F binds mRNA thereby forming a 

ternary complex that proceeds to bind a 40s ribosomal subunit to create a preinitiation 

complex.  This 40S complex scans the mRNA strand in the 5’ to 3’ direction until it 

reaches the start codon.  Once the start codon is found, an 80S complex is formed, ready 

for translation elongation. 

 During translation elongation, amino acids are added to a polypeptide chain to 

form a protein.  tRNAs with complimentary anticodon sequences bind to the aminoacyl 

(A) site of the 80S complex, next to the initiator tRNA (Frank, Gao, Sengupta, Gao, & 

Taylor, 2007).  Polypeptide bonds are formed between amino acids as tRNAs are moved 

forward into the peptidyl site allowing new tRNAs to move into the A site (Nierhaus et 

al., 1998).  Eukaryotic elongation factor 2 (eEF2) guides the movement of tRNAs into the 

exit (E) site for removal from the peptide [as reviewed (Browne & Proud, 2002)].  

Inhibition of eEF2 occurs through phosphorylation by eukaryotic elongation factor 2 

kinase (eEF2k), which inhibits translation elongation.  One amino acid is added at a time 
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until a stop codon in the mRNA is reached.  Translation termination then causes the 

release of a polypeptide chain from tRNA and the separation of ribosomal subunits 

(Bolster, Crozier, Kimball, & Jefferson, 2002).   

Upstream Signaling Pathways 

 Both translation initiation and elongation are highly regulated by upstream 

signaling pathways.  The Akt/mammalian target of rapamyacin (mTOR) signaling 

pathway is increased following a bout of resistance exercise (Drummond, Dreyer et al., 

2008) and leads to an increase in skeletal muscle hypertrophy (Bodine et al., 2001) 

through increased protein synthesis (Phillips, Tipton, Aarsland, Wolf, & Wolfe, 1997).  

mTOR is activated partly via phosphorylation by Akt in respect to mechanical loading 

(Inoki, Li, Zhu, Wu, & Guan, 2002).  Phosphorylation of mTOR can be inhibited by the 

tuberous sclerosis complex (TSC2) (Inoki, Li, Zhu, Wu, & Guan, 2002). 

 Downstream, mTOR affects initiation by phosphorylated deactivation of 4E-

binding protein 1 (4E-BP1), which otherwise binds eIF4E and prevents the formation of 

the initiation complex eIF4F.  mTOR can also phosphorylate and activate 70-kDa 

ribosomal protein S6kinase (p70s6k) (Inoki, Li, Zhu, Wu, & Guan, 2002; Kimball, Farrell, 

& Jefferson, 2002), which stimulates translation by recruitment of the 5’ tract of 

pyrimidine (5’TOP) mRNAs to the ribosome.  p70s6k elicits an effect on translation 

elongation by inhibiting eukaryotic elongation factor 2 kinase (eEF2k) from 

phosphorylating and deactivating eEF2 (Horman et al., 2002; Ryazanov, Shestakova, & 

Natapov, 1988) thereby leading to increased translation elongation. 

 



 5 

Translational Signaling Response to Resistance Exercise 

 Downstream signals of mTOR are similarly activated in response to resistance 

exercise (see Upstream Signaling Pathways above).  p70s6k activity has been shown to 

increase in response to resistance exercise in rats.  Increases in p70s6k activity allows for 

increased eEF2 activity by inhibiting eEF2k (Horman et al., 2002).  

AMPK 

 Upstream of mTOR lies 5’-AMP-activated protein kinase (AMPK).  AMPK acts 

as a sensor of energy stores within the body (Winder & Hardie, 1999) and is activated by 

an increase in the AMP/ATP ratio (Carling, 2005; Miranda, Tovar, Palacios, & Torres, 

2007).  Essentially, AMPK acts to increase the production of energy stores within the 

body through processes such as glycolysis and fatty acid oxidation while inhibiting 

energy expensive anabolic processes (Hardie, Hawley, & Scott, 2006).   

 Protein synthesis is one such energy-expensive process (Schmidt, 1999), and thus 

AMPK inhibits protein synthesis in order to conserve energy stores.  AMPK can inhibit 

mTOR through phosphorylation of TSC2 (Inoki, Zhu, & Guan, 2003), and can also act 

more directly on translation elongation by activation of eEF2k (Browne & Proud, 2002).  

AMPK phosphorylation (one mechanism by which AMPK is activated) is negatively 

correlated with chronic overload-induced muscle hypertrophy and has also been shown to 

be more activated in old (O) versus young (Y) rats under overload conditions(Thomson et 

al., 2009; Thomson & Gordon, 2005).  Moreover, AMPK is more highly activated in 

response to resisted contractions in old vs. young rats (Thomson et al., 2009) as well as in 

response to resistance exercise in old vs. young humans (Drummond, Dreyer et al., 
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2008).  The potential mechanism for this occurrence is an elevation of the AMP/ATP 

ratio is old versus young skeletal muscle before and after exercise (Bastien & Sanchez, 

1984). 

Specific AIM 

 Muscle fiber atrophy and a lack of hypertrophy have been shown to increase with 

age (Hortobagyi et al., 1995; Thompson, 1994).  Decreases in translational signaling with 

progressive age both at rest and during exercise (Drummond, Dreyer et al., 2008; Tamaki 

et al., 2000) may explain this lack of muscle maintenance in elderly populations.  AMPK 

phosphorylation and/or activity has been shown to be increased in young and old subjects 

following essential amino acid ingestion after an acute bout of resistance exercise 

(Drummond, Dreyer et al., 2008).  Increased eEF2 phosphorylation has been observed 

with increased AMPK activity in rats (Thomson, Fick, & Gordon, 2008).  However, no 

studies in humans have displayed this increase in eEF2 phosphorylation with increased 

AMPK activity.  Thus the aim of this study was to determine whether AMPK and eEF2 

phosphorylation were higher in skeletal muscle of old versus young humans after an 

acute resistance exercise bout.  We hypothesized that AMPK phosphorylation, AMPK 

activity, and eEF2 phosphorylation would be greater in the vastus lateralis muscles of old 

compared to young men and women within the two hours after an acute bout of resisted 

leg extensions. 



CHAPTER II:  REVIEW OF LITERATURE 

 
Sarcopenia 

The elderly population consists of approximately 20% of the US population 

((CDC), 2007).  There is often clinically significant muscle wasting with age, a condition 

known as “sarcopenia”.  A steady decline in muscle mass is typically observed after age 

45 (Hughes et al., 2001; Tzankoff & Norris, 1977), as well as a decrease in strength with 

progressing age (Balagopal, Rooyackers, Adey, Ades, & Nair, 1997).  Sarcopenia, the 

muscle protein loss during aging, results in as much as 14% muscle loss and 34% muscle 

protein loss between 25-75 years of age (Cohn et al., 1980).   

A greater prevalence of disability is precipitated by this muscle atrophy 

(Baumgartner et al., 1998; Janssen, Heymsfield, & Ross, 2002); as much as 20% of the 

total population >65 years is shown to be disabled as of 1999 (Manton & Gu, 2001).  In 

the United States, the age-related decrease in muscle mass accounts for 85.6% of men 

and 26% of women who are disabled (Janssen, Shepard, Katzmarzyk, & Roubenoff, 

2004).  Elderly populations lose their ability to perform normal daily activities such as 

carrying one’s own groceries or standing from a chair without help.  Moreover as many 

as 13.4% of men and 16.3% of women age 60 and up need help getting out of bed while 

20.3% of men and 30.9% of women within the same age range have difficulty walking 10 

steps;  these percentages only increase with age (Ostchega, Harris, Hirsch, Parsons, & 

Kington, 2000).  Decreases in strength with age, are also related to bone density 

(Jacobson, Beaver, Grubb, Taft, & Talmage, 1984), only compounding the impact of 
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sarcopenia; therefore increased prevalence of disability will occur from osteopenia and 

other bone related diseases due to sarcopenia (Hunter, McCarthy, & Bamman, 2004). 

In 2000, health care costs related to the loss in muscle mass with age were around 

18.5 billion dollars (Janssen, Shepard, Katzmarzyk, & Roubenoff, 2004).  Worse, gross 

expenditure is projected to increase by 23 percent by 2011 from levels observed in the 

year 2000 (Altman, Tompkins, Eilat, & Glavin, 2003).  With such a prevalence of age-

related disability, it is thus important to examine the mechanism(s) underlying muscle 

atrophy with age, as well as potential compensatory methods to increase muscle mass in 

sarcopenic individuals and control for national and individual expenses due to 

dysfunctional status.   

Sarcopenia can occur due to a number of various factors, including inherent 

changes in muscle mass with age, a sedentary lifestyle, or disease status.  The inherent 

loss in muscle mass with age is typically due to both a decrease in muscle fiber size and 

number, which results in losses in whole muscle protein content (Trappe et al., 2003) as 

well as decreases in whole-muscle mass as assessed by cross-sectional area.  Atrophy on 

the single fiber level is mostly confined to fast-twitch (FT) fibers (Korhonen et al., 2006).  

Exercise interventions such as resistance training can increase whole muscle mass to a 

certain extent, but hypertrophy appears limited in elderly individuals and increases in 

muscle mass are attenuated (Thompson, 1994). 

Resistance Training 

Resistance training is one method used to delay the progression of sarcopenia and 

to increase muscle growth.  Resistance training has been shown to cause an increase in 
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cross-sectional area of muscle fibers in elderly individuals (Bamman et al., 2003; Kryger 

& Andersen, 2007) and attenuate the decline of muscle mass with age (Thompson, 1994).  

However, these exercise-induced increases only slow the process of protein loss and do 

not produce a complete reversal (Balagopal, Schimke, Ades, Adey, & Nair, 2001).  The 

loss of effect of resistance training is less pronounced in ST muscle fibers with age 

(Frontera, Meredith, O'Reilly, Knuttgen, & Evans, 1988; Trappe et al., 2000) and elderly 

women show less myofiber hypertrophy and strength gains compared to elderly males 

(Bamman et al., 2003; Brose, Parise, & Tarnopolsky, 2003).  A decreased hypertrophic 

response is also seen in FT muscles of aged rats (Haddad & Adams, 2006; Thomson & 

Gordon, 2005).  The cellular and molecular mechanisms underlying the attenuated ability 

for fiber growth in aged muscle remain to be completely elucidated.   

Protein Synthesis 

A change in the rate of muscle protein synthesis is one potential factor underlying 

the age-related decline in muscle fiber cross-sectional area and perhaps fiber number.  

There is a decrease in resting muscle protein synthesis rate with age (Drummond, 

Miyazaki et al., 2008) as well as decreases in fractional synthesis rate in old compared to 

young individuals after an acute bout of resistance exercise (Sheffield-Moore et al., 2005) 

which may be one factor underlying age-related atrophy.  The protein synthesis response 

appears to be delayed in older individuals (Drummond, Dreyer et al., 2008).  

Hypertrophy occurs through an increase in muscle protein synthesis within a given 

muscle fiber.  An elevation of protein synthesis occurs in response to resistance training 

in young adults (Dreyer et al., 2006; Phillips, Tipton, Aarsland, Wolf, & Wolfe, 1997).  
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However, with age, there is a reduced muscle protein synthesis response to resistance 

training in both humans (Drummond, Dreyer et al., 2008; Welle, Bhatt, & Thornton, 

1996) and rats (Tamaki et al., 2000).  This may contribute to an altered balance in protein 

synthesis and degradation in the elderly.   

There are three components of protein synthesis.  These factors include initiation, 

elongation, and termination.  Rate limiting factors of protein synthesis and thus muscle 

cell growth and maintenance may lie within the intracellular regulation of both initiation 

and elongation.   

Translation Initiation 

During translation initiation, formation of a ribosomal initiation complex occurs 

as reviewed elsewhere (Kimball, Farrell, & Jefferson, 2002; Nader, Hornberger, & Esser, 

2002).  This ternary complex is formed by the initiator tRNA (Met-tRNAi), an mRNA 

strand, a ribosome, and various eukaryotic initiation factors.  First the eukaryotic 

initiation factor 4F (eIF4F) protein complex is formed by other eukaryotic initiation 

factors:  eIF4A, eIF4E, and eIF4G.  In this process, eIF4E availability is the rate limiting 

step, and is regulated by 4E-binding protein 1 (4E-BP1), which binds to eIF4E and 

prevents eIF4E association with eIF4G thereby preventing eIF4F formation and the first 

step of initiation.  Phosphorylation of 4E-BP1 prevents its binding to eIF4E, and this 

phosphorylation step is controlled by factors to be discussed later.  Once formed, eIF4F 

binds mRNA.  A 40S ribosomal subunit next binds this ternary complex to form a 

preinitiation complex.  The initiation factor, eIF3 guides this binding, scanning in the 5’ 

to 3’ direction, the 40S complex scans for the start codon (usually AUG) along an mRNA 
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strand that will match the tRNA anticodon sequence. AUG is a group of three nucleotides 

that code for a single amino acid, methionine.  Once the start codon is coded, a 60S 

subunit joins the 40S initiation complex to yield an 80S complex ready for polypeptide 

elongation.   

Translation Elongation 

Translation elongation is the most energy expensive process within the cell 

(Schmidt, 1999) utilizing 4 GTPs (ATP equivalents) for each amino acid added to the 

polypeptide chain.  With elongation, new tRNAs containing complimentary anticodon 

sequences bind to the aminoacyl (A) site of the 80S complex beside the initiatior tRNA 

that is attached to the peptidyl (P) site of the ribosome (Frank, Gao, Sengupta, Gao, & 

Taylor, 2007).  Polypeptide bonds are formed between the amino acids and subsequent 

tRNAs are moved to the P site (Nierhaus et al., 1998).  Methionine attaches to amino 

acids in the A site releasing tRNA (Frank, Gao, Sengupta, Gao, & Taylor, 2007).  

Eukaryotic elongation factor 2 (eEF2) propels the movement of the ribosome along the 

mRNA to aid in the removal of uncharged tRNAs by facilitating their movement to the 

exit (E) site on the ribosome [as reviewed (Browne & Proud, 2002)].  This leaves behind 

polypeptide chains attached to the tRNA in the adjacent A site.  The initial uncharged 

tRNA is moved to the E site, the second tRNA moves to the P site leaving the A site open 

to bind new tRNA with a complimentary anticodon sequence (Frank, Gao, Sengupta, 

Gao, & Taylor, 2007).  The process continues adding one amino acid at a time.  

Eventually, a stop codon is reached within the assembly and a releasing factor binds.  

Translation termination occurs, releasing a polypeptide chain from the tRNA followed by 
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the separation of the ribosomal subunits (Bolster, Crozier, Kimball, & Jefferson, 2002).  

Although only a few key regulatory factors are mentioned in this review, each step of 

protein synthesis is tightly regulated. 

Control of protein translation via mTOR 

Upstream cellular signaling pathways highly regulate both initiation and 

elongation factors controlling protein synthesis.  One of the most important signaling 

pathways, the Akt/mammalian target of rapamycin (mTOR) pathway, partially controls 

the protein synthesis response to loading and ultimately hypertrophy as well (Bodine et 

al., 2001).  Signaling through this Akt/mTOR pathway has been shown to increase 

(Drummond, Dreyer et al., 2008) after an acute resistance exercise bout which leads to an 

increase in  protein synthesis (Phillips, Tipton, Aarsland, Wolf, & Wolfe, 1997).  

Pharmacological blockade of mTOR signaling inhibits resistance exercise-induced 

protein synthesis in rats (Kubica, Bolster, Farrell, Kimball, & Jefferson, 2005) and 

humans (Drummond, Dreyer et al., 2008) and inhibits chronic overload-induced muscle 

hypertrophy (Bodine et al., 2001).  With mechanical loading of the muscle cell, Akt is 

phosphorylated to activate mTOR through mTOR phosphorylation at Ser2448 (Inoki, Li, 

Zhu, Wu, & Guan, 2002; Reynolds, Bodine, & Lawrence, 2002).  Alternatively, mTOR 

can be deactivated by activation of the tuberous sclerosis complex (TSC) pathway which 

inhibits mTOR phosphorylation at Ser2448 (Inoki, Li, Zhu, Wu, & Guan, 2002; Inoki, Zhu, 

& Guan, 2003).  This TSC2 pathway can also be negatively regulated by Akt, which 

deactivates TSC2, thereby allowing an increase in mTOR activity. 
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Downstream, mTOR stimulates protein translation through various signaling 

proteins mediating both translational initiation and elongation.  mTOR facilitates 

initiation by phosphorylating 4E-BP1, which allows for increased formation of the 

translational initiation complex eIF4F by hindering 4E-BP1 binding to (and deactivation 

of) eIF4E.  mTOR also activates 70-kDa ribosomal protein S6kinase (p70s6k) (Inoki, Li, 

Zhu, Wu, & Guan, 2002; Kimball, Farrell, & Jefferson, 2002), which can have a two-

pronged effect on protein synthesis.  First, p70s6k phosphorylates ribosomal S6 protein 

(rpS6), thereby recruiting 5’-tract of pyrimidine (5’TOP) mRNAs to the ribosome.  

5’TOP mRNAs encode ribosomal proteins that are important for translation (Levy, Avni, 

Hariharan, Perry, & Meyuhas, 1991; Terada et al., 1994) and thus the translational 

mechanism itself is improved.  Second, p70s6k has also been shown to inhibit eukaryotic 

elongation factor 2 kinase (eEF2k), an eEF2 inhibitor (Wang et al., 2001).  eEF2 kinase 

phosphorylates eEF2 at Thr56 (Redpath & Proud, 1993), thereby inactivating eEF2 

(Ryazanov, Shestakova, & Natapov, 1988).  Inactivation of eEF2k, and thus activation of 

eEF2, can lead to increased translational elongation (Horman et al., 2002).  

Phosphorylation of eEF2k on the Ser 366 residue occurs by either p70s6k or by MAPK 

signaling through p90RSK eEF2k activation(Wang et al., 2001).   

AMPK 

5’-AMP-activated protein kinase (AMPK) is another signaling protein mediating 

protein translation and synthesis; however its actions inhibit the process.  AMPK is an 

energy sensor within the cell (Winder & Hardie, 1999), and its actions act to maintain 

energy stores within each cell.  AMPK activation occurs as the AMP/ATP ratio is 
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increased (Carling, 2005; Miranda, Tovar, Palacios, & Torres, 2007; Ponticos et al., 

1998).  AMPK activation occurs during processes that either decrease production of ATP 

or processes within the cell that increase utilization of ATP such as hypoxia or skeletal 

muscle contraction (Hardie, Hawley, & Scott, 2006).  For instance, AMPK activation 

occurs in response to low amounts of glucose within the cell (Salt, Johnson, Ashcroft, & 

Hardie, 1998).  Even at rest, low glycogen and energy levels can activate AMPK 

(Wojtaszewski, 2003).  Once AMPK is activated due to low energy stores, it acts to 

promote ATP production through glycolysis, increasing glucose uptake, fatty acid 

oxidation, and mitochondrial biogenesis, while inhibiting other energy expensive 

processes within the cell (Hardie, Hawley, & Scott, 2006).  AMPK essentially aids in 

preservation of cell life through energy maintenance. 

With protein synthesis being a high energy process (Schmidt, 1999), AMPK acts 

to keep an energy sensitive homeostasis within the cell.  AMPK can inhibit mTOR 

through TSC2 phosphorylation at Thr1227 and Ser1345  and thus cause TSC2 activation 

(Inoki, Zhu, & Guan, 2003) to inhibit protein synthesis and thus prevent a further 

decrease in energy stores within the muscle cell.  In rats, injection with the AMPK 

activator 5-aminoimidazole-4carboxamide-1-beta-D-ribofuranoside (AICAR) inhibits 

protein synthesis as well as reduces the phosphorylation (and presumably activation) of 

the upstream regulators Akt, mTOR, p70 s6k, and 4E-BP1 (Bolster, Crozier, Kimball, & 

Jefferson, 2002).  Additionally, AMPK can activate eEF2k by phosphorylation at Ser398 

(Browne & Proud, 2002) which would decrease translation elongation.  Interestingly, a 

negative correlation between AMPK phosphoylation status and overload-induced muscle 
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hypertrophy was shown by Thomson and Gordon (Thomson & Gordon, 2005), indicating 

that AMPK may play a role in negatively mediating loading-induced muscle growth.   

AMPK activity has been shown to be elevated in aged rat muscle under both 

resting and overloaded conditions (Thomson, Fick, & Gordon, 2008; Thomson & 

Gordon, 2005).  This corresponds with a decrease in translational signaling and growth 

(Thomson & Gordon, 2005).  Although this activation was shown to be elevated in FT 

muscle fibers, AMPK activity was not elevated in ST muscle (Thomson & Gordon, 2005, 

2006).  Following a resistance exercise model, rats show higher AMPK activation in old 

compared to young subjects(Thomson et al., 2009).  AMPK is also elevated in the 

skeletal muscle of older versus younger humans after acute resistance exercise 

(Drummond, Dreyer et al., 2008).  This may be due to energy stores, as aged skeletal 

muscle has an elevated AMP/ATP ratio before and after exercise (Bastien & Sanchez, 

1984; Marcinek, Schenkman, Ciesielski, Lee, & Conley, 2005). Interestingly, translation 

signaling is lower after acute resistance exercise in aged versus younger rats (Funai, 

Parkington, Carambula, & Fielding, 2006; Parkington, LeBrasseur, Siebert, & Fielding, 

2004).  Similarly, aging also results in decreased translation signaling in chronically 

overloaded muscle (Thomson & Gordon, 2006).  Thus, it is postulated that elevated 

AMPK activity may be responsible for diminished translational signaling in response to 

resistance exercise in aged skeletal muscle. 

eEF2 

 eEF2 is an essential component of translational elongation.  After being bound to 

GTP, thereby becoming activated, eEF2 assists in the removal of tRNAs from the 
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polypeptide chain [as reviewed (Browne & Proud, 2002)].  eEF2 is regulated in an energy 

sensitive manner through an mTOR dependent pathway.  Elongation is a high energy 

process and may be affected by situations of high energy demand or low energy supply.  

Regulation and inhibition occurs through phosphorylation by eEF2k as discussed 

previously in translation elongation. 

 eEF2 activity has been shown to be inhibited by AMPK activation with overload 

(Thomson, Fick, & Gordon, 2008).  This inhibition is more pronounced in old compared 

to young rats (Thomson & Gordon, 2006).  Similarly, with AMPK inhibition, eEF2 

phosphorylation was not significantly increased after overload (Thomson & Gordon, 

2006).  In humans, no changes in eEF2 phosphorylation has been seen after essential 

amino acid ingestion, which is known to stimulate mTOR (Drummond, Dreyer et al., 

2008) however, we postulate that changes may develop without a post-exercise 

supplement. 

Specific Aim 

Muscle fiber atrophy and lack of hypertrophy has been shown to be increased with age 

(Hortobagyi et al., 1995; Thompson, 1994).  This may be partly due to a decrease in 

muscle protein synthesis rate and translational signaling with age at both rest and with 

overload (Drummond, Dreyer et al., 2008; Tamaki et al., 2000).  Furthermore, evidence 

of higher skeletal muscle AMPK phosphorylation and/or activity with age has been 

shown in response to resistance exercise in rats (Thomson et al., 2009) and humans 

(Drummond, Dreyer et al., 2008).  eEF2 has been shown to be more phosphorylated (and 

thus theoretically less active) with increased AMPK activity in rats (Thomson, Fick, & 
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Gordon, 2008).  Although one study in humans revealed no difference in eEF2 

phosphorylation after resistance exercise in old vs. young men despite higher AMPK 

phosphorylation in the older group, all subjects had ingested an essential amino acid 

supplement prior to exercise (Drummond, Dreyer et al., 2008).  Essential amino acids, 

particularly, Leucine, stimulate mTOR activity [as reviewed (Drummond & Rasmussen, 

2008)] and thus could have masked downstream signaling differences between young and 

old subjects.  Thus the aim of this study was to determine whether higher AMPK and 

eEF2 phosphorylation occurs in skeletal muscle of old versus young humans after an 

acute resistance exercise bout.  We hypothesized that AMPK phosphorylation, AMPK 

activity, and eEF2 phosphorylation would be greater in the vastus lateralis muscles of old 

compared to young men and women within the two hours after an acute bout of resisted 

leg extensions.   

 



CHAPTER III:  METHODS 

Subjects 

Participants in this study consisted of 6 young subjects (3 male, 3 female) and 6 

old subjects (4 male, 2 female).  Subject characteristics are shown in Table 3.1.  All 

participants were healthy, lean men and women with no subjects reported previous 

cardiovascular disease, diabetes, or hypertension.  Each subject was initially screened on 

the telephone or through e-mail to determine age, height, weight, BMI, medical history 

including medications, and exercise history.  This study was approved by the East 

Carolina University and Medical Institutional Review Board for the use of human 

subjects.   Subjects were recruited through the posting of flyers, word of mouth, and e-

mail to East Carolina University (ECU) faculty and staff. 

 
Table 3.1.  Subject Characteristics. 
 

Young Adults (n=6)     Old Adults (n=6) 

Age (years)   22.17 + 0.79   66.33 + 4.37 

BMI (kg/m2)   23.06 + 0.97   28.29 + 1.07* 

Body Fat (%)   20.94 + 1.77   30.46 + 0.85* 

Fat-Free Mass (kg)  57.82 + 3.90   60.8 + 2.39 

Weight (kg)   73 ± 5.0   88 ± 4.1* 

*=Significantly different between groups.  Data are presented as mean + SEM (standard 
error of the mean).  Old adults were had significantly higher BMI, weight and body fat 
percentage.  There were no significant differences between young and old adults for fat-
free mass.  BMI: body mass index.  Body fat and fat free mass were obtained with the use 
of a four-site Durnin and Womersley skinfold method of measurement (Durnin & 
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Womersley, 1974), which measured skinfolds at the bicep, triceps, subscapular, and 
suprailiac sites.  Body fat and fat free mass were then calculated (Siri, 1961).  A complete 
description of measurements is provided in later in the later Methods section, Initial Visit. 

 

Experimental Design 

 We hypothesized that AMPK phosphorylation, AMPK activity, and eEF2 

phosphorylation would be greater in the vastus lateralis muscles of old compared to 

young men and women within the two hours after an acute bout of resisted leg 

extensions.  The experimental sessions are summarized in Table 3.2.  The first session 

was performed in the Fitness Instruction, Testing, and Training (FITT) building at East 

Carolina University.  This initial visit consisted of an initial screening and baseline 

measurements, familiarization with resistance exercise equipment, and determination of a 

10-repetition maximum (10RM) on the Cybex leg extension machine (Cybex 

International; Serial#: 485097W272216).  One to two weeks following the initial visit, 

subjects came in to Brody School of Medicine after an overnight fast for the experimental 

session.  The 1-2 week waiting period was used as a recovery period to minimize muscle 

soreness or effects of 10RM testing on protein synthesis and breakdown during the 

experimental session.  The 10RM testing was used for the resistance exercise bout in the 

experimental session in an attempt to stimulate AMPK and the downstream eEF2 signal.  

A muscle biopsy was obtained before exercise for pre-exercise measurements, 

immediately post exercise (after completing the final resistance exercise set and 

completion of preparation for the biopsy), one hour after taking the immediately post-

exercise biopsy, and two hours after taking the immediately post-exercise biopsy.  Biopsy 
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time points are based upon the results of Drummond et al. (Drummond, Dreyer et al., 

2008), showing that skeletal muscle AMPK phosphorylation is greater in old versus 

young men by 1 hour post-resistance exercise, and continues until at least 2 hours post 

resistance exercise. 

Initial Visit (non-fasted)

1) Informed consent and medical history

2) Height and weight measurements

3) Skinfold measurements

4) 10-repetition maximum determination

Experimental Session (overnight 
fast)

1) Exercise Session

-bilateral leg extension

-3 warm-up sets (50,70,90% of 
10RM

-3 sets to failure (100% of 10RM

2) Biopsy – alternating legs

-pre-exercise, immediately post, 0 
min, 60 min, 120 min post

Table 3.2.  10-repetition max(10RM) was determined on the leg extension machine in 
the FITT building at East Carolina University.  Warm-up sets consisted of 10 
repetitions, 5-7 repetitions, and 3-5 repetitions for each set (50%, 70%, 90% of the 
estimated 10RM), respectively.  The 0 min time point begins after the completion of 
the last set of resistance exercise. 60 min and 120 min post are obtained 1 and 2 hours 
after the 0 min post biopsy, respectively

 

Initial Visit 

 During the initial visit, subjects filled out an informed consent (Appendix A), 

medical history (Appendix B), and a dietary food log (Appendix C) for a normal day’s 

diet to ensure that there was not an absence of carbohydrate, protein, or fat in the diet.  A 
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low carbohydrate diet can cause decreased muscle water by dehydration; while 

dehydration may attenuate resistance exercise performance (Judelson et al., 2007).  A 

high protein diet could increase availability of amino acids for protein synthesis.  Height 

and weight were then measured.  Next, 4-site skinfold measurements were taken at the 

bicep, tricep, suprailiac, and subclavical.  Body fat density was estimated with the Durnin 

and Womersley skinfold assessment and body density formula ([495/(1.1714 - 0.063 * 

LOG[sum of skinfolds] – 0.000406 * [age]) – 450]) (Durnin & Womersley, 1974; Siri, 

1961). 

The 10-repetition maximum was determined on the Cybex Leg Extension 

machine.  Subjects were first acquainted with the leg extension machine in order to help 

reduce the likelihood of injury or cardiovascular events such as a hypertensive response.  

Proper etiquette, timing, and breathing during resistance exercise were explained and/or 

demonstrated.  Before commencement of the 10-RM testing, subjects were asked to 

predict the maximum amount of weight they could lift 10 times.  Half of this predicted 

weight was used as a warm-up.  After completion of the first set and each subsequent 

step, the weight was increased 5-20 pounds depending upon the performance of the 

individual.  Each set consisted of 10 repetitions followed by a 1-2 minute rest interval.  

Testing was repeated no more than 4 times.  Upon determining the 10RM, subjects were 

unable to complete more than 10 repetitions, thus giving a true determination of the 

10RM. 
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Subjects were given an information sheet which provided guidelines to follow in 

the 7-14 days preceding the experimental session.  During the extent of the study, 

subjects refrained from exercise and donating blood.  For the two days preceding the 

experimental session, subjects were directed to refrain from drinking alcohol, moderate 

the intake of caffeine, and drink 64 ounces of water per day.  Alcohol consumption has 

been shown to decrease protein synthesis (Lang, Kimball, Frost, & Vary, 2001) and 

dehydration may cause decreased performance (Shirreffs, 2005).  Caffeine must be 

controlled for since its ergogenic effects include a reduction in RPE and possible increase 

in contractile force of muscle.  For the day preceding the experimental session, subjects 

were told to refrain from eating at least 12 hours prior to reporting to the laboratory and 

exercising the day before the session.  On the day of the experimental session, subjects 

were to drink 16 oz. of water before reporting to the lab and wear exercise clothing.  

Food diaries were also recorded three days before the experimental session for later use, 

but those data were not analyzed for this report. 

Experimental Session 

 One to two weeks following the initial visit, subjects reported to the Brody School 

of Medicine, room 3S08 after an overnight fast.  Muscle biopsies were taken before 

exercise, directly after exercise, at one hour post exercise and at two hours post exercise.  

The timeline of the experimental sessions are presented in Figure 3.1. 
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Timeline of Experimental Day

-1

Pre-
exercise 
biopsy

0

Exercise 
session

Immediately 
post biopsy

1 Hr

1 hour 
post 

biopsy

2 Hrs

2 hour 
post 

biopsy

Figure 3.1.  Timeline of events for the experimental day for each subject.  -1 consists of 
the period before the exercise session.  0 is the exercise session.  1Hr is one hour 
after the resistance exercise session.  2 Hrs is two hours after the resistance 
exercise session.  

 

 Acute Resistance Exercise 

 The acute resistance exercise bout was performed on the Cybex leg extension 

machine (Cybex VR Leg Extension Model # 4850, Cybex International, Medway, MA) 

after the pre-exercise muscle biopsy was obtained.  Proper etiquette was discussed again 

with subjects in order to prevent injury.  The session began with a warm-up set starting at 

50% of the predetermined 10RM for 10 repetitions.  After a 1.5 minute rest interval, a 

second set of 5-7 repetitions was performed at 70% of the predetermined 10RM.  The 
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final warm-up set began 1.5 minutes after the second set and consisted of 3-5 repetitions 

at 90% of the predetermined 10RM.  After the standard 1.5 minute rest interval, the 

working sets began using the predetermined 10RM.  Each working set was performed 

until failure, with the first and second sets being followed by the 1.5 minute rest interval.  

Upon reaching failure, the subjects were encouraged verbally to complete 1-3 forced 

repetitions with the assistance of the investigator directing the exercise session.  If the 

repetitions performed reached 15 or more, the weight was increased by five to ten pounds 

for the subsequent set. 

Muscle Biopsies 

Skeletal muscle biopsy procedures were explained fully to the subjects before the 

procedure began.  All procedures were performed under aseptic conditions.  The vastus 

lateralis muscle was located, and the area was marked and shaved if necessary.  The area 

was sterilized using iodine swabs and draped with a sterile field.  Cold spray was used to 

numb the area and approximately 5 mL of local anesthetic (1% lidocaine) was injected 

into the biopsy site subcutaneously along the vastus lateralis.  A small incision, 

approximately ¼ inch was made on the skin and through the fascia of the vastus lateralis 

muscle using a No.11 scalpel.  Muscle biopsies were executed using a 5-mm Bergström 

needle using sterile procedure and suction was applied in order to maximize the amount 

of muscle extracted. 

Immediately after each biopsy was taken, direct pressure and ice were applied to 

the site of the procedure.  Once bleeding had ceased, a steri strip bandage was applied to 
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hold the incision site together, followed by a Band aide bandage, a Tegaderm patch, and a 

pressure wrap.  This set-up allowed proper healing and aided in decreasing the likelihood 

of scars.  The Tegaderm patch provided waterproof protection for the site. 

Preparation of the first two biopsy sites occurred prior to exercise.  The initial 

baseline biopsy was alternated between legs among subjects.  Subsequent biopsies were 

obtained from legs in a bilaterally alternating order with the first and third biopsy being 

obtained from the same leg.  After the Pre-exercise (Pre-Ex) biopsy, the subject 

performed the acute resistance exercise session (see Acute Resistance Exercise above).  

Directly after the resistance exercise bout, the subject moved to a bed and the 

immediately post biopsy was taken at time point 0P.  After 60 minutes (1P), a third 

biopsy was taken approximately 5cm proximal from the initial biopsy site.  A final 

biopsy was taken at 120 minutes post-exercise (2P) from the vastus lateralis 

approximately 5cm proximal from the second biopsy site.  New incision sites were made 

for each biopsy in order to reduce the effect of the inflammatory response on the muscle 

being removed for analysis. 

Once removed, muscle tissue was divided.  One portion was immediately oriented 

for cross-sectional alignment and mounted in a mixture of tragcantham gum and OCT 

compound.  After being embedded in the OCT mixture, samples were frozen in 

isopentane chilled in liquid nitrogen.  The frozen oriented muscle section, to be used for 

histochemical analyses, was placed into a cryovial and temporarily stored in liquid 

nitrogen.  The second portion of the muscle biopsy tissue was placed into a cryovial and 
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flash frozen in liquid nitrogen for later, western blot analyses.  Samples were stored at -

80� C until being analyzed. 

Sample Analysis 

Western Blotting Analysis for AMPK, P-AMPK, eEF2, P-eEF2, ACC, and P-ACC 

The western blotting technique was used for signaling protein analyses.  The 

primary antibodies are commercially available:  anti-AMPK [Cell Signaling Technology 

(CST); Danvers, MA; Cat. # 2532], anti-phospho-AMPK (CST; Cat. # 2535), anti-eEF2 

(CST; Cat. # 2332), anti-phospho-eEF2 (CST; Cat. # 2331), anti-acetyl CoA Carboxylase 

(streptavidin-HRP, GE Life Sciences, RPN1231), and anti-phospho-Acetyl CoA 

Carboxylase (Millipore Corporation; Temecula, CA; Cat. # 07-303; Lot#: LV1506382).  

A fraction of each frozen muscle biopsy sample was homogenized using a buffer that 

consisted of 50 mM HEPES (pH 7.4), 0.1% Triton X-100, 4 mM EGTA, 10 mM EDTA, 

15 mM Na4P2O7•10H2O, 100 mM ß-glycerophosphate, 25 mM NaF, 50 µg/ml leupeptin, 

50 µg/ml pepstatin, and 33 µg/ml aprotinin.  A ground glass homogenizer using a 

variable speed motor was used to perform all homogenizations.  Homogenizations were 

performed in ice in order to prevent excessive heat build-up that may denature proteins.  

Assessment of the homogenates for protein concentration was carried out in 

triplicate using a modification of the Lowry procedure (DC Protein Assay, Bio-Rad, 

Hercules, CA, USA).  Total muscle protein homogenates were mixed in a loading buffer 

(50 mM Tris-HCl, pH 6.8, 10% glycerol, 2% SDS, 2% ß-mercaptoethanol, 0.1% 

bromophenol blue) at a dilution of 1 mg/ml and then boiled for 5 min.  Proteins were 

separated by a 4-7.5% gradient sodium dodecyl sulfate-polyacrylamide gel 
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electrophoresis (SDS-PAGE).  Gel electrophoresis occurred for 1.5 hours at 4C on a 

PVDF membrane at 100V in a transfer buffer that contained:  25 mM Tris-base pH~8.3, 

192 mM glycine, and 20% methanol.  Ponceau S, stained the membranes after which they 

were dried and then scanned into a digital image.  The digital image allowed 

measurement of the relative total protein loaded into each label through the gray scale 

integrated optical density of the full length of each individual lane.  Membranes were 

blocked for one hour at room temperature in blocking buffer, consisting of 5% nonfat dry 

milk in TBS-T (20 nM Tri-base, 150 mM NaCL, 0.1% Tween-20) pH 7.5, followed by 

incubation in the primary antibody diluted in1% bovine serum albumin in TBS-T 

overnight at 4C.  Primary antibody dilutions consisted of anti-phospho-AMPK:  1/4000; 

anti-AMPK:  1/1000; anti-phospho-eEF2:  1/2000; anti-eEF2:  1/2000; anti-phospho-

ACC:  1/1000; anti-ACC:  1/1000.  Membranes were washed 4 x 5 minutes per wash in 

TBS-T, incubated in secondary antibody in blocking buffer for an hour while at room 

temperature followed by a 4 x 5 minutes wash period in TBS-T.   

After the last wash period, detection of the HRP activity occurred using a 

chemiluminescence reagent (Amersham, Piscataway, NJ) and exposure to 

autoradiographic film (Classic Blue Sensitive; Midwest Scientific, St Louis, MO, USA).  

The integrated optical densities (IODs) were then quantified by densitometry and 

calculation of the concentration of the antigen present in each muscle as the IOD 

normalized to units of total muscle protein that was initially loaded on the gel.  

Correction for the grayscale IOD of each total lane was evaluated on the image of the 

Ponceau stain that was previously captured.  The HRP-conjugated anti-rabbit secondary 
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antibody was acquired from Amersham.  Due to difficulty in obtaining data for phospho-

AMPK, all analysis of AMPK consisted of 4 subjects per group instead of six subjects 

per group. 

Immunohistochemistry Procedure 

 Fluorescent microscopy was attempted in order to measure phospho-AMPK (Cell 

Signalling; Catalog #:2535) after an acute resistance exercise bout in fast versus slow-

twitch muscle fibers of young and old subjects. 

Ten um serial cross-sections were cut from biopsies of the vastus lateralis muscle 

using a cryostatic microtome at -20� C.  Cross-sections were individually placed on clean, 

uncoated microscope slides, aligned for cross-sectional analysis, and stored at -20� C until 

preparation for staining.  Execution of immunohistochemical steps occurred at room 

temperature unless otherwise stated.   

In preparation for staining, frozen slides were thawed and set to air-dry for 1 hour.  

Sections were fixated for five minutes in methanol followed by 1 minute in acetone.  

Sections were allowed to air dry and were then rehydrated for one minute using 

phosphorous buffered saline (PBS).  Blocking was performed in PBS with 10% horse 

serum for 1.5 hours followed by two 5 minute rinses with PBS.  Samples were then 

incubated in a 1:10 dilution of the primary antibody (phospho-AMPK) overnight at 4� C.  

During the second day of staining slides were rinsed twice for 5 minutes in PBS.  

Incubation of the biotinylated anti-rabbit IgG antibody (Vector Laboratories; Catalog#: 

BA-1000; Lot# U0702) in PBS then occurred in a 1:200 dilution for 45 minutes.  This 

process was followed by the standard 2x5 minute washes using PBS.  Lastly, the sections 
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were incubated for thirty minutes in a 1:400 dilution of Fluorescein Avidin DCS (Vector 

Laboratories; Catalog#: A-2001; Lot#: U0403) diluted in sodium bicarbonate (pH8.2) 

followed by 2x5 minute rinses in PBS.  Slides were allowed to air-dry and were mounted 

with cover slips using Permount.  The biotinylated anti-rabbit IgG and Fluorescein 

Avidin DCS were used to enhance the fluorescent signal obtained from the primary 

antibody.   

Fiber Type Staining 

 Serial cross-sections were histochemically stained for fiber type to enable 

comparison of the phospho-AMPK signal intensities between fiber types.  This staining 

was accomplished by the myosin ATPase method.   

Slides were incubated for 5 min in acid preincubation solution  (1.94g Sodium 

Acetate and 2.94g Sodium Barbital in 100mL distilled water) is prepared at room 

temperature at a pH of 4.54.  Rinse three times with distilled water.  Incubation then 

occurs for 45 min at 37� C in alkalai solution (2.25g Glycine, 2.40g Calcium 

chloride,1.76g Sodium chloride, 1.10g Sodium hydroxide in 300mL distilled water; pH 

9.4).  Rinse three times in distilled water. Incubate for three minutes in 1% calcium 

chloride (in distilled water), followed by three rinses with distilled water.  Next a three 

minute incubation in 2% cobalt chloride (in distilled water) occurs, followed by the 

standard three rinses in distilled water.  Sections are finally incubated in a 1% ammonium 

sulfide solution (in distilled water) for three minutes followed by three rinses in distilled 

water.  Sections are allowed to air dry and mounted using Permount and a coverslip.  

Imaging and Analysis 



 30 

Slides were observed under the Leica DMI 4000 B microscope and images 

captured to computer.  A FITC filter was used to observe fluorescein from the primary 

antibodies, while light microscopy was used to identify fiber types.  Sections stained for 

signaling proteins were directly compared to serial cross-sections stained for fiber type.  

Fluorescent staining intensity was subjectively assessed.  

Statistics 

 An analysis of Variance (ANOVA) with repeated measures was used to analyze 

differences between and within groups over time for all western blot data except the 

percent change data, for which a one-way ANOVA between groups was used.  Fischer’s 

LSD post-hoc test for measurement of post-hoc differences where necessary.  Subject 

characteristic data was analyzed using independent samples t-tests.  Significance was set 

at an alpha level of p < 0.05. 

 



CHAPTER IV:  RESULTS 

 
Subject Strength and Work Volume 

 
 All subjects successfully completed the initial visit and the experimental session.  

Exercise performance was measured by the total and relative exercise volume of each 

group.  Total volume was determined by the multiplying the total amount of weight lifted 

by the number of repetitions for each work set (not warm-up sets) in the experimental 

session.  Relative volume normalized the total volume lifted by individual fat-free mass 

(kg) (Data shown in Table 4.1).  Although the older subjects generally demonstrated 

reduced strength, no significant differences existed between groups for any measure 

 
Table 4.1.  Assessment of Ten-repetition Maximum Strength and Workout Volume 
Between Young and Old Adults 
       

Young Adults (n=6)           Old Adults   (n=6) 

Estimated 10 RM (kg)  97 ± 14   83 ± 9.6  

Total volume   3510 ± 512        2925 ± 589 
(kg resistance x repetitions)    
 
Relative volume   59 ± 4.8   47 ± 7.7 
(kg resistance/kg FFM) 

 

No significant differences were found between groups on the measure of estimated 10 
repetition maximal strength.  Total volume (kg resistance) was calculated to assess the 
absolute amount of weight lifted during the working sets by each subject with the 
equation:  Total volume = [(resistance set 1(kg) x repetitions set 1) +(resistance set 2(kg) x 
repetitions set 2) + (resistance set 3(kg) x repetitions set 3)].  Total volume was normalized to 
fat free mass in order to show the relative amount of weight lifted:  relative volume = 
total volume (kg resistance) / fat free mass (kg).  All data are presented as means + 
SEMs. 
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Western Blotting Analysis 

 The aim of this study was to determine the response of AMPK, ACC, and eEF2 

phosphorylation in the two hours following an acute resistance exercise bout in old and 

young men and women.  Western Blotting analyses were performed to examine 

differences between groups and between time points.   

AMPK 

 For the n of 4/group, no differences in AMPK phosphorylation at Thr172 (Figure 

4.1), total AMPK (Figure 4.2), or the phospho/total AMPK ratio (Figure 4.3) existed 

between age groups, at any time point.  A p-value of 0.14 existed for the main effect of 

age in phospho/total AMPK ratio (Figure 4.3).  Furthermore, there was no effect of 

resistance exercise on AMPK phosphorylation.  No significant effect on the percent 

change in phospho-AMPK at Thr172 (Figure 4.4) or the phospho/total AMPK ratio 

(Figure 4.5) compared to Pre-Ex values existed for either group. 
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Figure 4.1.  Mean +SEM phospho-AMPK at Thr172 in young and old subjects and the 
representative western blots.  Pre-Ex is the pre-exercise muscle biopsy, 0P is the 
immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle biopsy, 
2P is the two hour post-exercise biopsy. Phospho-AMPK was not significantly different 
between age groups or from Pre-Ex at any time point. Significance is set at p <0.05.
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Figure 4.2.  Mean +SEM total AMPK in young and old subjects and the 
representative western blots.  Pre-Ex is the pre-exercise muscle biopsy, 0P is the 
immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle 
biopsy, 2P is the two hour post-exercise biopsy. Total AMPK was not significantly 
different between age groups or from Pre-Ex at any time point. Significance is set at p 
< 0.05.
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Figure 4.3.  Mean +SEM phospho/total AMPK ratio in young and old subjects.  Pre-
Ex is the pre-exercise muscle biopsy, 0P is the immediately post-exercise muscle 
biopsy, 1P is the one hour post-exercise muscle biopsy, 2P is the two hour post-
exercise biopsy. Phospho/Total AMPK was not significantly different between age 
groups (P=0.14 for main effect) or from Pre-Ex at any time point. Significance is set 
at p <0.05.
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Figure 4.4.  Mean +SEM for percent change for phospho-AMPK at Thr172 in young 
and old subjects at all time points from pre-ex. Pre-Ex is the pre-exercise muscle 
biopsy, 0P is the immediately post-exercise muscle biopsy, 1P is the one hour post-
exercise muscle biopsy, 2P is the two hour post-exercise biopsy. No significant 
differences in percent change for phospho-AMPK exist between age groups or from 
pre-exercise at any time point. Significance is set at p <0.05.
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Figure 4.5.  Mean +SEM for percent change of phospho/total AMPK in young and 
old subjects from pre-exercise values. Pre-Ex is the pre-exercise muscle biopsy, 0P is 
the immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle 
biopsy, 2P is the two hour post-exercise biopsy. No significant differences exist 
between age groups for phospho/total AMPK from Pre-Ex at any time point. 
Significance is set at p <0.05.
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ACC 

Acetyl CoA carboxylase (ACC) showed significantly increased phosphorylation 

status at Ser79 immediately post exercise (0P) and at one hour poster exercise (1P) (Graph 

4.6).  However, no significant difference existed between age groups or time points for 

Total ACC (Graph 4.7).  The phospho/total ACC ratio was significantly elevated 

immediately post resistance exercise (Graph 4.8).  The percent change in phosphor-ACC 

at Ser79 (Graph 4.9) and the phospho/total ACC ratio (Graph 4.10) from Pre-Ex were 

significantly elevated in old compared to young subjects, however no differences existed 

between time points.   
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Figure 4.6.  Mean +SEM for phospho-ACC at Ser79 in young and old subjects and the 
representative western blots.  Pre-Ex is the pre-exercise muscle biopsy, 0P is the 
immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle biopsy, 
2P is the two hour post-exercise biopsy.  * = significantly different than the Pre-Ex time 
point.  No difference existed between age groups. However, phospho-ACC was 
significantly higher from Pre-Ex at 0P and 1P. Significance is set at p <0.05.
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Figure 4.7.  Mean +SEM for total ACC in young and old subjects and the 
representative western blots.  Pre-Ex is the pre-exercise muscle biopsy, 0P is the 
immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle 
biopsy, 2P is the two hour post-exercise biopsy. No significant differences exist for 
total ACC between age groups or from Pre-Ex at any time point. Significance is set at 
p <0.05.
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Figure 4.8. Mean +SEM for the phospho/total ACC ratio in young and old.  Pre-Ex is the 
pre-exercise muscle biopsy, 0P is the immediately post-exercise muscle biopsy, 1P is the 
one hour post-exercise muscle biopsy, 2P is the two hour post-exercise biopsy.  * = 
significantly different than the Pre-Ex time point.  The phospho/total ACC ratio was not 
different between age groups, however the phospho/total ACC ratio was significantly 
higher versus Pre-Ex in both Y and O subjects. Significance is set at p <0.05.
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Figure 4.9.  Mean +SEM for the percent change in phospho-ACC at Ser79 in young 
and old subjects from pre-ex.  Pre-Ex is the pre-exercise muscle biopsy, 0P is the 
immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle 
biopsy, 2P is the two hour post-exercise biopsy.  †= significantly different between 
age groups. Old subjects had a significantly higher percent change in phospho-ACC 
versus Pre-Ex at all time points. Significance is set at p <0.05.
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Figure 4.10.  Mean +SEM for percent change in phospho/total ACC in young and old 
subjects from pre-ex. Pre-Ex is the pre-exercise muscle biopsy, 0P is the immediately 
post-exercise muscle biopsy, 1P is the one hour post-exercise muscle biopsy, 2P is the 
two hour post-exercise biopsy.  † = significantly different between age groups.  Old 
subjects had a significantly higher percent change in phospho/total ACC from Pre-Ex 
at all time points. Significance is set at p <0.05.
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eEF2 

eEF2 phosphorylation at Thr56 was not significantly different between age groups, 

however phospho-eEF2 was significantly higher 0P resistance exercise and significantly 

lower 1-2 hours post resistance exercise compared to Pre-Ex (Figure 4.11).  Total eEF2 

was significantly higher from Pre-Ex 1-2 hours post resistance exercise (Figure 4.12).  

Similar to phospho-eEF2, no significant differences existed between age groups in 

phospho/total eEF2 ratio, although the phospho/total eEF2 ratio was significantly higher 

than Pre-Ex at 0P and was significantly lower than Pre-Ex 1-2 hours post resistance 

exercise in both age groups (Figure 4.13).  No significant difference existed between age 

group or time point comparing the percent change in phospho eEF2 at Thr56 to Pre-Ex 

(Figure 4.14) or the percent change in phospho/total eEF2 to Pre-Ex (Figure 4.15). 
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Pre     0P        1P       2P Pre     0P        1P       2P
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Figure 4.11.  Mean +SEM for phospho-eEF2 at Thr56 in young and old subjects and the 
representative western blots.  Pre-Ex is the pre-exercise muscle biopsy, 0P is the 
immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle 
biopsy, 2P is the two hour post-exercise biopsy.  * = significantly different than the Pre-
Ex time point.  Phospho-eEF2 was significantly elevated at 0P and significantly lower at
1P and 2P compared to Pre-Ex. Significance is set at p <0.05.
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Young Old

Figure 4.12.  Mean +SEM for total eEF2 in young and old subjects and the 
representative western blots.  Pre-Ex is the pre-exercise muscle biopsy, 0P is the 
immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle 
biopsy, 2P is the two hour post-exercise biopsy.  * = significantly different than the 
Pre-Ex time point. Total eEF2 was significantly elevated at 1P and 2P compared to 
Pre-Ex. Significance is set at p <0.05.
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Figure 4.13.  Mean +SEM for the phospho/total eEF2 ratio in young and old subjects 
and the representative western blots.  Pre-Ex is the pre-exercise muscle biopsy, 0P is 
the immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle 
biopsy, 2P is the two hour post-exercise biopsy. * = significantly different than the 
Pre-Ex time point.  The phospho/total eEF2 ratio was significantly elevated at 0P and 
1P compared to Pre-Ex. Significance is set at p <0.05.
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Figure 4.14.  Mean +SEM  for the percent change in phospho-eEF2 at Thr56 from 
pre-ex in young and old subjects. Pre-ex is the pre-exercise muscle biopsy, 0P is the 
immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle 
biopsy, 2P is the two hour post-exercise biopsy. † = significantly different between 
age groups.  No significant differences exist between age groups for the percent 
change in phospho-eEF2. Significance is set at p <0.05.
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Figure 4.15.  Mean +SEM for percent change of phospho/total eEF2 from pre-ex in 
young and old subjects. Pre-ex is the pre-exercise muscle biopsy, 0P is the 
immediately post-exercise muscle biopsy, 1P is the one hour post-exercise muscle 
biopsy, 2P is the two hour post-exercise biopsy.  †= significantly different between 
age groups. No significant differences exist between age groups for the percent 
change in Phospho/Total eEF2. Significance is set at p <0.05.
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CHAPTER V:  DISCUSSION 

The aim of this study was to determine whether AMPK and eEF2 phosphorylation 

was higher in skeletal muscle of old versus young humans after an acute resistance 

exercise bout.  We hypothesized that AMPK phosphorylation, AMPK activity, and eEF2 

phosphorylation would be greater in the vastus lateralis muscles of old compared to 

young men and women within the two hours after an acute bout of resisted leg 

extensions.  Although AMPK phosphorylation was not significantly increased after 

resistance exercise in either group, AMPK activity, as measured by phosphorylation of 

the downstream target Acetyl CoA Carboxylase (ACC), was shown to be significantly 

increased immediately post (0P) and one hour post (1P) resistance exercise in both young 

and old subjects.  While neither AMPK phosphorylation nor ACC phosphorylation were 

significantly different between age groups, the percent increase in phosphorylation of 

ACC was significantly higher in old versus young subjects 0P, 1P, and two hours 

following (2P) a resistance exercise bout.  eEF2 phosphorylation was significantly higher 

at 0P and significantly lower at 1P and 2P as compared to before exercise; however there 

was no difference between age groups.   

The current results for AMPK phosphorylation do not agree with previous 

research by Drummond et al. (Drummond, Dreyer et al., 2008).  The previous study 

showed significantly elevated phosphorylation of AMPK in old compared to young men 

at 1 and 3 hours following a resistance exercise bout.  Several differences between 

studies may have contributed to this difference.   
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First, Drummond et al. looked at only men, where as our study included both men 

and women.  However, we observed no differences between genders.  In fact women 

have been shown to have a similar muscle fractional synthesis rate as men, at least under 

basal conditions after normalizing to lean mass (Fujita, Rasmussen, Bell, Cadenas, & 

Volpi, 2007), and the menstrual cycle has been shown to have little effect on skeletal 

muscle protein synthesis [as reviewed (Burd, Tang, Moore, & Phillips, 2009)].   Older 

women, however, have been shown to have a decreased muscle protein synthesis 

response to resistance exercise compared to older men [as reviewed (Burd, Tang, Moore, 

& Phillips, 2009)].  Protein synthesis is an energy expensive process, therefore the 

AMP:ATP ratio may be decreased in old women because of decreased protein synthesis.  

Since the current study used both men and women, the protein synthesis response may 

have been slightly blunted in the older group following resistance exercise, thereby 

altering the phosphorylation of AMPK.   

Drummond et al. also used 8 working sets of leg extension resistance exercise 

compared to 3 sets used in this study, and the increased workload may have elicited a 

higher AMPK response to resistance exercise.  Subjects ingested an essential amino acid 

and carbohydrate supplement after the first hour of recovery post resistance exercise in 

the Drummond et al. study, however, the current study used fasted subjects.  The use of 

non-fasted subjects in the Drummond et al. study may have played a role in affecting the 

AMPK response to exercise since AMPK is partially regulated by energy stores within 

the body (Winder & Hardie, 1999).  Finally the AMPK data from our results consisted of 

only 4 subjects per group, and the difficulty in obtaining data from the remaining subjects 
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may have contributed to a low power in the statistical tests as there was a nonsignificant 

elevation in the older compared to younger subjects for the phospho/total AMPK ratio 

(P= 0.14).   

 ACC is directly phosphorylated by AMPK at Ser79 (Park et al., 2002) and used as 

a marker of in vivo AMPK activity (Hawley et al., 1996).  ACC and AMPK have shown 

a similar phosphorylation response to one week overload conditions in rats (Thomson & 

Gordon, 2005); however ACC phosphorylation does not always reflect AMPK 

phosphorylation because AMP can allosterically activate AMPK independent of 

phosphorylation (Winder & Hardie, 1999).  For instance, Thomson et al. saw a larger 

increase in ACC phosphorylation compared to AMPK phosphorylation in response to a 

high frequency exercise stimulus and AICAR (Thomson et al., 2009). Dreyer et al. 

showed an increase in AMPK activity in response to resistance exercise in young men 

(Dreyer et al., 2008), however another study in the same research group failed to show an 

increase in AMPK phosphorylation in young men (Drummond & Rasmussen, 2008).   

 Dreyer et al. (Dreyer et al., 2006) showed elevated fractional synthesis rate 

immediately after resistance exercise followed by an increase in synthesis at one and two 

hours post resistance exercise, which showed an inverse relationship with eEF2 

phosphorylation.  The current results for eEF2 phosphorylation were similar to those seen 

by Dreyer et al.  Although no differences occurred among age groups, total and phospho 

eEF2 were significantly higher from Pre-Ex values at 0P and significantly lower at 1P 

and 2P following an acute bout of resistance exercise.  Drummond et al. showed a 
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significant decrease in eEF2 phosphorylation from baseline values three hours after a 

resistance exercise bout (Drummond, Dreyer et al., 2008).   

 Dreyer et al. showed that after a resistance exercise bout AMPK activity increased 

inversely with both fractional synthesis rate and eEF2 (Dreyer et al., 2006), however the 

change in AMPK activity appears to be smaller compared to eEF2.  In the current study, 

AMPK and eEF2 phosphorylation respond similarly at all time points following a 

resistance exercise bout regardless of age. 

The response seen by phosphorylation of eEF2 is important when looking at the 

protein synthesis response within the body after resistance exercise.  This phenomenon 

shows a need for the body to decrease protein synthesis during resistance exercise and 

increase protein synthesis during the recovery, which accounts for an energy disturbance 

due to resistance exercise.  The significant increases in total eEF2 at 1P and 2P resistance 

exercise, probably occurs because eEF2 is encoded in the 5’TOP mRNAs, which are 

specifically targeted for translation by p70s6k.  Similarly, Thomson and Gordon showed 

increased total eEF2 with chronic overload in young rats (Thomson & Gordon, 2006).  

This increase in total eEF2 allows for an increase in translational protein signaling.  The 

combination of increased total eEF2 and decreased phospho eEF2 are two mechanisms 

that favor the upregulation of translation elongation. 

 There were no strength differences between young and old subjects.  Values for 

10-RM, total volume, and relative volume, were all insignificant.  Drummond et al. 

(Drummond, Miyazaki et al., 2008) showed significantly greater absolute strength in 

young compared to old subjects, while total work was significantly higher in old 
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compared to young subjects.  All values were insignificant when compared to lean body 

mass, similar to the current data. 

The lack of age differences in the present study could be caused by a number of 

various factors.  For example, the older subjects in the current study may have been more 

healthy and unrepresentative of the normal population.  A lack of differences between 

strength measures could confirm this health effect or show a lack of effort in the young 

group.  Secondly, work done in the fasted state, since fasted conditions are less than 

optimal for the normal protein synthesis response to resistance exercise conditions, may 

have dampened the protein synthesis response (Burd, Tang, Moore, & Phillips, 2009).  

 Fast twitch muscle fibers appear to be affected most by the aging process with 

significant decreases in cross sectional area of the fast-twitch fibers (Hortobagyi et al., 

1995).  No changes are typically observed in Slow-twitch (ST) muscle fiber area.  

Additionally, it has been shown that elderly muscle contains a lower percentage of FT 

fibers compared to muscle of young adults, [as reviewed (Andersen, 2003)] 

corresponding with the steady decline of FT fiber number with age, as ST fibers show 

little change (Kamel, 2003).  In the current study homogenates were used, which may 

mask individual fiber type differences; especially because FT muscle fiber atrophy would 

lead to a decreased effect in old adults due to less representation in the homogenate.  

Immunohistochemistry was reviewed in order to account for fiber type differences within 

the muscle.  Although quantification and analysis was incomplete for the present study, 

results for one subject seemed promising, showing increased AMPK phosphorylation in 

response to exercise as determined by subjective analysis (Figure 5.1). 
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Figure 5.1.  Fluorescent immunohistochemistry of AMPK phosphorylation at Thr172

Pre-exercise and 0 post resistance exercise.  Fast-twitch (FT) muscle fibers showed a 
higher phosphorylation status as determined by objective measures than slow-twitch 
muscle fibers in old compared to young subjects.  No differences occured pre-exercise.
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 Although no differences were seen between young and old subjects in AMPK 

phosphorylation and eEF2 phosphorylation, there is still potential for future 

investigations to determine differences between age groups.  Studying effects of nutrition 

on AMPK further may be beneficial, as differences in AMPK phosphorylation have been 

seen between age groups after ingestion of an essential amino acid and carbohydrate 

supplement (Drummond, Dreyer et al., 2008).  Furthermore, differentiation between fiber 

types may reveal differences in age groups as compared to the muscle homogenate used 

in western blotting. 
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 In summary, AMPK phosphorylation status was unaffected by age group or by 

resistance exercise compared to pre-exercise values.  AMPK activity, measured by ACC, 

after a bout of resistance exercise was increased in the first hour after a bout of resistance 

exercise regardless of age.  Furthermore, the percent change of phospho-ACC and 

phospho/total ACC from Pre-Ex was significantly increased in old compared to young 

individuals.  Increased AMPK inhibition of eEF2 activation within 2hrs post-exercise 

may not be responsible for the diminished hypertrophy response to resistance exercise 

with age.  Additionally future studies are needed to determine if the AMPK signaling 

response may be different beyond the 2 hour time period observed.  Older subjects may 

need to consist of more sarcopenic adults as well.  Finally differences between fiber types 

following an acute bout of resistance exercise in young and old men and women may 

arise. 
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APPENDIX B:  INFORMED CONSENT DOCUMENT 

 
Principal Investigator:  Scott E. Gordon, Ph.D. 
Institution:  Human Performance Laboratory 
Address:  363 Ward Sports Medicine Building 
Telephone #:  (252) 737-2879 
 

This consent form may contain words that you do not understand.  You should ask the 
study doctor or the study coordinator to explain any words or information in this 
consent form that you do not understand. 

 
INTRODUCTION 
 
You have been asked to participate in a research study being conducted by Scott E. 
Gordon, Ph.D. and his associates.  This research is designed to determine the response of 
several molecules in muscle after one resistance exercise (strength training) session, and 
if this response changes with age.  All of these molecules and cells are involved with 
muscle hypertrophy (growth). 

 
We will study 10 younger (18-45 years) and 10 older inactive adults (45-85 years), at rest 
and during and after a resistance exercise session for the legs.  Inactive is defined as not 
having participated in any regular form of exercise for the past six months (less than 30 
minutes per day, one day per week).  Studies will take place in the Human Performance 
Laboratory and Brody School of Medicine at East Carolina University. 
 
PLAN AND PROCEDURES 
 
Prior to any testing, I will report to the Human Performance Laboratory Fitness, 
Instruction, Testing, and Training (FITT) Building to read and sign this Informed 
Consent for research as well as fill out a medical history questionnaire and 3-day food 
record. I will be allowed to complete this process on the day of my first visit. On this day, 
I will undergo determination of my height and body weight, and percent body fat.  I will 
also undergo strength testing and familiarization with the resistance exercise test.  One to 
two weeks later, I will report to the Brody school of Medicine, Room 3S-08 in a fasted 
state for the resistance exercise testing session, four blood samples from a forearm vein, 
and 4 biopsies of the thigh muscles. 
 
The following section is an outline of the experimental visits and the procedures to 
be accomplished on each visit.  Note that more detailed descriptions of each 
procedure immediately follow this section.  There will be 5 visits for a total of 
approximately 8 hours of total participation time spread over approximately 15-20 
days: 
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First Visit (Human Performance Lab FITT Building) (1.5 hours): 

1.) Thorough interview in person for informed consent, health history questionnaire, 
and 3-day food record. 

2.) Determination of height, weight, and skinfold thickness (fat pinch) for percent 
body fat. 

3.) Determination of the maximum weight I can lift 10 times (10 repetition 
maximum, also called a 10 RM) for the seated leg extension exercise. 

 
Second Visit (Brody School of Medicine, Room 3S-08) (7-14 days after initial visit) (3.5 

hours): 
1.) I will report to the Brody SOM, Room 3S-08, in the morning after an overnight 

fast (not having eaten after midnight the night before). 
2.) Four small blood samples will be obtained during this visit from a forearm vein 

(before, and after exercise). 
3.) Four thigh muscle biopsies (tissue samples) will be performed during this session, 

two on each leg. 
4.) A resistance exercise (strength training leg extension) bout of approximately 15 

minutes focused on the thigh muscle group will be performed. The bout will 
consist of 6 sets of leg extension exercise.  

 
Detailed Description of the Procedures to be Used During this Study: 

�  Body composition screening.  My height and weight will be measured on my first 
visit.  My body fat will be estimated by measuring skinfold thicknesses (fat pinch) 
with a skinfold caliper at four sites:  biceps, triceps, back, and waist.  I may feel a 
slight pinch or squeeze from the caliper at the skinfold sites, but no known risks 
are associated with this procedure. 

�  Strength testing.  An exercise test to determine my strength levels and familiarize 
me with the resistance exercise protocol will be performed during my first visit 
(after the informed consent).  As part of my familiarization and subject 
characterization, I will be assessed for maximal strength by 10-repetition 
maximum (10-RM) testing.  This will entail determining the maximum amount of 
weight that I can lift in ten repetitions for the leg extension exercise.  This 
procedure will consist of me initially lifting lighter weights and progressing to the 
heaviest weight that I can lift.  An adequate amount of rest will be provided 
between repetition attempts.  All exercises will be performed on Cybex weight 
machines.  This session will also serve as a familiarization session to make me 
comfortable with the resistance exercise to be performed during the experimental 
session.  I will be examined for proper exercise technique during this session and 
instructions or modifications will be provided if necessary.  During this session, 
my tolerance for the heavy resistance exercise protocol will also be assessed. 
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�  Leg resistance exercise workout.  During my second visit to the laboratory, I will 
perform a 15-minute resistance exercise bout focused on the quadriceps (thigh) 
muscle group.  The bout will consist of 6 sets of leg extension exercise.  The first 
3 sets will be warm-up sets performed at 50% (8 repetitions), 70% (6 repetitions), 
and 90% (4 repetitions) of my previously determined 10-RM weight. The fourth 
through sixth sets will be performed at 100% of the 10 RM weight and will be 
performed until I am no longer able to perform them on my own (approximately 
10 repetitions).  I will rest for 90 seconds between all sets 

�  Fasting blood draws.  I will not have anything to eat 12 hours prior to my second 
visit to the lab so that blood can be drawn from my forearm vein by a needle. 
During the second visit to the lab, blood will be drawn before, and after the 
resistance exercise workout described above.  Four total blood samples of 5 
milliliters each will be obtained during this study.  The total amount of blood 
obtained will be 20 milliliters, which is approximately 1/25 of a pint. 

�  Muscle Biopsies.  I will undergo four muscle biopsies (tissue samples) to 
determine the levels of several molecules in muscle after one resistance exercise 
(strength training) bout.  These biopsies will be obtained immediately before, 
immediately after, and 1 and 2 hours after the resistance exercise bout in visit # 2.  
For this procedure, I will have a small amount of anesthesia (3 cc of 1% 
Lidocaine) injected in a ½ inch area under the skin of my thigh.  A small (1/4 
inch) incision will then be made through the skin, fat and fibrous tissue that lies 
over the muscle.  A biopsy needle (about ½ the width of a pencil) will then be 
inserted ½ to 1 inch into the muscle.  A small piece of muscle (½ the size of an 
eraser on the end of a pencil) will then be clipped out with the biopsy needle.  
The needle will be withdrawn and the muscle sample immediately preserved by 
freezing.  Dr. Robert Hickner, Ph.D. or Dr. Timothy Gavin, Ph.D. will perform 
the muscle biopsies.  These investigators have performed a total of over 500 
muscle biopsies. 

 

POTENTIAL RISKS AND DISCOMFORTS  

 

There are certain risks and discomforts that may be associated with this research, 

including those listed below. 

�  The general performance of muscular exercise and physical effort can entail the 
potential hazards of injury from overexertion and/or accident.  The possibility of 
cardiopulmonary (heart and lung) overexertion is slight.  It will be minimized by 
screening, selection, and monitoring procedures which are designed to anticipate 
and exclude the rare individual for whom exercise might be harmful.  It is 
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questionable whether it is possible to overexert the heart by voluntary physical 
effort unless there is some underlying disease.  Nevertheless, there are a number 
of disorders, some of which can readily escape clinical detection, where strenuous 
exercise may be potentially hazardous or may cause disability.  Some of these, 
such as aneurysms (blood vessel ruptures) in the brain, solitary pulmonary cysts 
(small sacs of fluid in the lung), or alveolar blebs (small lung lesions), are rare 
and not readily diagnosed in the absence of symptoms.  For these disorders, a 
history of tolerance to prior physical effort must suffice.  For other, more common 
conditions such as ischemic heart disease (low blood and oxygen flow to the 
heart), several risk factors can be identified through the preliminary medical 
history and physician screening process. 

�  The risks specifically associated with resistance exercise are very low, and this 
study will be planned to avoid injury to the musculoskeletal (muscle and bone) 
system.  Possible risks include the possibility of strains or pulls of the involved 
muscles, delayed muscle soreness 24 to 48 hours after exercise, muscle spasms 
(cramping), and, in extremely rare instances, muscle tears.  Such risks are very 
low.  Dizziness and fainting may also occur infrequently.  I understand that every 
effort will be made by the researchers to make this investigation safe for my 
participation through proper instruction of the techniques and proper warm-up 
prior to exercise and testing.  Furthermore, risks will be reduced by close 
supervision by experienced personnel to ensure that I utilize proper form. 

�  The total amount of blood drawn (1/25 of a pint) is negligible. There is an 
extremely small risk of local hematoma (bruising) or infection associated with 
insertion of venipuncture needles.  In obtaining blood samples from a vein with a 
needle, the risks to me are of local discomfort, syncope (faintness), and 
hematomas (bruising).  Thrombosis (blood clot in the vein), embolism (a blood 
clot that has come loose and may lodge itself in an artery), and infections are 
potential risks but are of very rare occurrence.  Risks will be reduced or 
eliminated by having investigators who are trained and proficient in phlebotomy 
(puncturing veins with needles) use aseptic techniques.  Furthermore, I will be in 
a seated position while blood is being obtained.  All blood samples will be drawn 
in the laboratory under aseptic conditions with biohazard protection for the 
investigators and myself. 

�  Robert Hickner, Ph.D. or Dr. Timothy Gavin, Ph.D. will perform all biopsies, and 
Dr. Walter Pofahl, M.D. will provide medical coverage for biopsies performed in 
this investigation.  There is a small risk of hematoma (bruising) or infection 
around the biopsy site, as well as muscle cramping, mild muscle tenderness and 
occasional bruising.  The risk will be minimized by using sterile procedures and 
applying pressure to the biopsy site for 10 minutes, or until bleeding has stopped 
if longer than 10 minutes.  A steri-strip (bandage) will be applied over the incision 
and will remain in place for at least 4 days to close the incision during healing.  A 
pressure wrap will be placed around the biopsied thigh and will remain in place 
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for 8 hours following the biopsy.  There is an extremely remote risk of allergic 
reaction to the Lidocaine anesthesia.  This risk will be minimized by using 
subject’s who have had prior exposure to Lidocaine or Novocaine anesthesia.  
This precaution should eliminate this risk.   

�  The procedures and circumstances encompassed by this protocol provide for a 
high degree of safety.  Every attempt will be made by the investigators to 
minimize any risks of this study to me.  This includes familiarization, technique 
instruction and practice, supervision by experienced personnel, screening, and 
individualized testing and monitoring.  The investigators will employ a close 
interaction with the physician in their clinical unit during this study.  My safety 
will be enhanced in this study with individualized supervision during all 
laboratory visits.  I will be asked to immediately alert a member of the research 
team if I have any injury or health problem.  These factors should dramatically 
contribute to a reduction, if not an elimination, of any potential risks associated 
with this study. 

�  To my knowledge, I am not allergic to “caine-type” anesthetics. For example, 
I have not had an allergic reaction to an injection at the dentist’s office. To 
my knowledge, I do not possess any condition which would result in excessive 
bleeding and I do not have known heart disease, i.e., had a heart attack. 

�  I am aware that there are unforeseen risks involved with this and all research 
studies. 

 
POTENTIAL BENEFITS 
 
There are potential benefits to subjects and to society.  The results of this study will help 
to determine the response of several muscle growth-related molecules and cell types in 
muscle after one resistance exercise (strength training) session, and if this response 
changes with age.  The benefits of this study far outweigh the risks. 

I will gain information about my blood sugar (glucose) and insulin levels, which may be 
indicators of health status due to the importance of blood glucose regulation.  I will 
obtain information about my percent body fat and body mass index (BMI, or 
weight/height squared), which is also an important indicator of risk for metabolic 
diseases such as diabetes or heart disease.  I will also gain information on my muscle 
fiber type (slow-twitch or fast-twitch), which is important component of athletic ability 
characteristics. 

 
I will be paid a total of $200.00 compensation upon completion of the entire study. 
 
SUBJECT PRIVACY AND CONFIDENTIALITY OF RECORDS 
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Only the investigators associated with this study will have access to the data obtained.  
The identity of the subjects will be protected by numeric coding.  The data will be stored 
in the office of the Principal Investigator, or in a locked storage room. No identifying 
information will be released. 
 
TERMINATION OF PARTICIPATION 
 
My participation in this research study may be terminated without my consent if the 
investigators believe that these procedures will pose unnecessary risk to myself.  I may 
also be terminated from participation if I do not adhere to the study protocol. 
 
COST AND COMPENSATION 
 
I will be paid $50.00 for my time and inconvenience for each muscle biopsy for a 
maximum of $200 for completion of the entire study. There are no costs to me for 
participation in this study. 
 
The policy of East Carolina University does not provide for compensation or 
medical treatment for subjects because of physical or other injury resulting from 
this research activity.  However, every effort will be made to make the facilities of 
the School of Medicine available for treatment in the event of such physical injury. 
 

VOLUNTARY PARTICIPATION 
 
I understand that my participation in this study is voluntary.  Refusal to participate will 
involve no penalty or loss of benefits to which I am otherwise entitled.  Furthermore, I 
may stop participating at any time I choose without penalty, loss of benefits, or without 
jeopardizing my continuing medical care at this institution. 

 
RESEARCH PARTICIPANT AUTHORIZATION TO USE AND DISCLOSE 
PROTECTED HEALTH INFORMATION  
 
The purpose of the information to be gathered for this research study is to better 
understand the response of several molecules in muscle after one resistance exercise 
(strength training) session, and if this response changes with age.  The individuals who 
will use or disclose your identifiable health information for research purposes include Dr. 
Scott Gordon, Dr. Timothy Gavin, Dr. Robert Hickner, Dr. Walter Pofahl, and Mr. 
Bradley Harper.  Individuals who will receive your identifiable health information for 
research purposes also include Dr. Scott Gordon, Dr. Timothy Gavin, Dr. Robert 
Hickner, Dr. Walter Pofahl, and Mr. Bradley Harper.  The type of information accessed 
for this research study includes 1) general medical history (including family health 
history, medications, nutrition, physical activity levels and body weight history), 2) body 
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composition information, blood levels of insulin, glucose, and other compounds related to 
muscle hypertrophy and metabolism, and 3) muscle fiber type percentage as well as 
growth-related molecules in your thigh muscle.  The information will be used and 
disclosed in such a way as to protect your identity as much as possible; however, 
confidentiality cannot be absolutely guaranteed.  Someone receiving information 
collected under this Authorization could potentially re-disclose it, and therefore it would 
no longer be protected under the HIPAA privacy rules (federal rules that govern the use 
and disclosure of your health information).  There is not an expiration date for this 
Authorization. 
 
You may not participate in this study if you do not sign this Authorization form.  You 
may revoke (withdraw) this Authorization by submitting a request in writing to Dr. Scott 
Gordon.  However, the research team will be able to use any and all of the information 
collected prior to your request to withdraw your Authorization.   
 
To authorize the use and disclosure of your health information for this study in the way 
that has been described in this form, please sign below and date when you signed this 
form.  A signed copy of this Authorization will be given to you for your records. 
 
________________________________________________________________________ 
Participant’s Name (print)                              Signature                                        Date  
 
________________________________________________________________________ 
Authorized Representative Name (print)-----Relationship        Signature             Date  
 
________________________________________________________________________ 
Person Obtaining Authorization                     Signature                                         Date  
 
If you have questions related to the sharing of information, please call Scott Gordon at 
252-737-2879.  You may also telephone the University and Medical Center Institutional 
Review Board at 252-744-2914.  In addition, if you have concerns about confidentiality 
and privacy rights, you may phone the Privacy Officer at Pitt County Memorial Hospital 
at 252-847-6545 or at East Carolina University at 252-744-2030. 
 
PERSONS TO CONTACT WITH QUESTIONS 

 
The investigators will be available to answer any questions concerning this research, now 
or in the future.  I may contact the primary investigators Scott E. Gordon, Ph.D. at 252-
737-2879 (weekdays) or 252-321-7655 (nights and weekends).  Also, if questions arise 
about my rights as a research subject, I may contact the Chairman of the University and 
Medical Center Institutional Review Board at phone number 252-744-2914 (weekdays).  
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CONSENT TO PARTICIPATE  

 
I certify that I have read all of the above, asked questions and received answers 
concerning areas I did not understand, and have received satisfactory answers to these 
questions. I willingly give my consent for participation in this research study.  (A copy of 
this consent form will be given to the person signing as the subject or as the subject’s 
authorized representative.) 
 
_____________________________________________________________ 
Participant’s Name (Print) 
 
_____________________________________________________________ 
Signature of Participant    Date  Time 
 
WITNESS:  I confirm that the contents of this consent document were orally presented, 
the participant or guardian indicates all questions have been answered to his or her 
satisfaction, and the participant or guardian has signed the document.  
 
 
_____________________________________________________________ 
Witness’s Name (Print) 
 
_____________________________________________________________ 
Signature of Witness      Date   
 
 
PERSON ADMINISTERING CONSENT:  I have conducted the consent process and 
orally reviewed the contents of the consent document. I believe the participant 
understands the research. 
 
_____________________________________________________________ 
Person Obtaining Consent (Print) 
 
_____________________________________________________________ 
Signature of Person Obtaining Consent        Date 
 
 
 
_____________________________________________________________ 
Principal Investigator’s Name (Print) 
 
_____________________________________________________________ 
Signature of Principal Investigator          Date 
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FUTURE TESTING OF BLOOD/MUSCLE SAMPLES  

 
Upon termination of this study, the blood and muscle samples collected for this study 
will be stored for up to 7 years to research scientific questions specifically related to age-
related changes in molecules regulating muscle mass in response to resistance exercise.  I 
will continue to be the owner of the samples and retain the right to have the sample 
material destroyed at any time during this study by contacting the study principal 
investigator Scott Gordon, Ph.D. at 252-737-2879.  During this study, the samples will 
be stored with number identifiers only; however, the number identifier will be linked to a 
specific name and will be kept on file in the possession of the principal investigator.  The 
linked file will be stored password protected on the Principal Investigator’s computer 
with CD backup.  No other individuals will have access to these identifying materials 
unless the principal investigator is required by law to provide such identifying 
information.  Data will not be publicly available and participants will not be identified or 
linked to the samples in publication.  If a commercial product is developed from this 
research project, I will not profit financially from such a product.  Furthermore, there are 
no plans for me to profit financially from such a product. 
 

 

CONSENT TO PARTICIPATE IN FUTURE TESTING OF BLOOD/MUSCLE  

SAMPLES  

 
I certify that I have read all of the above, asked questions and received answers 
concerning areas I did not understand, and have received satisfactory answers to these 
questions.  I willingly give my consent for participation in this research study.  (A copy 
of this consent form will be given to the person signing as the subject or as the subject’s 
authorized representative.) 
 
_____________________________________________________________ 
Participant’s Name (Print) 
 
_____________________________________________________________ 
Signature of Participant    Date  Time 
 
WITNESS:  I confirm that the contents of this consent document were orally presented, 
the participant or guardian indicates all questions have been answered to his or her 
satisfaction, and the participant or guardian has signed the document.  
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_____________________________________________________________ 
Witness’s Name (Print) 
 
_____________________________________________________________ 
Signature of Witness      Date   
 
 
PERSON ADMINISTERING CONSENT:  I have conducted the consent process and 
orally reviewed the contents of the consent document. I believe the participant 
understands the research. 
 
_____________________________________________________________ 
Person Obtaining Consent (Print) 
 
_____________________________________________________________ 
Signature of Person Obtaining Consent        Date 
 
 
 
_____________________________________________________________ 
Principal Investigator’s Name (Print) 
 
_____________________________________________________________ 
Signature of Principal Investigator          Date 
 
 



APPENDIX C:  PERSONAL HISTORY FORM 

PERSONAL HISTORY FORM                                                           (version 2-17-09) 
 
Technician _______________________    Contract ________________  ID _________ 
 
   PLEASE PRINT AND FILL OUT  COMPLETELY  
 
1. Name: ______________________________  Date: ___________________ 
 Phone#: (home) ____________________ (work) ________________________ 
 Address: __________________________________________________________ 
 City: _______________________ State ___________  Zip ______________ 
 e-mail address (if available):___________________________________________ 
2. Employer: ________________________________________________________ 
 Occupation: _______________________________________________________ 
 
3. Date of Birth: ________________ Sex: _______   Age: _______ Race:  _______ 
 
4.  General Medical History                    Circle one  
Any medical  complaints presently?    (if yes, explain) ....                                     yes    no 
____________________________________________________________ 
____________________________________________________________ 
____________________________________________________________ 
 
Any major illnesses in the past?  (if yes, explain) ..... (date) ______         yes   no 
____________________________________________________________ 
____________________________________________________________ 
____________________________________________________________ 
 
Any hospitalization or surgery?  (if yes, explain)  ......    (date)  _________          yes    no 
____________________________________________________________ 
____________________________________________________________ 
____________________________________________________________ 
 
Have you ever had an EKG (electrocardiogram) ? ......    (date)  _________         yes    no 
 
 
Are you diabetic?  ....If yes, at what age did you develop diabetes: _________    yes    no 
 
Are you currently taking any medications? .............................          yes    no 
 
Medication  Dosage Reason   Times taken per day 
______________________________________________________________________ 
______________________________________________________________________ 
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5.  Family History  
  Age if    Age of   Cause of 
  alive    death   death 
Father  ______   ________ ____________________ 
Mother  ______   ________ ____________________ 
 
 
 
Do you have a family history of: (Blood relatives only: give age of occurrence if 
applicable)        Relationship  
 Age of 
          
 occurrence 
--High blood pressure ...... yes    no   ______________________________ 
--Heart attack.....................yes    no   ______________________________ 
--By-pass surgery...............yes    no   ______________________________ 
--Stroke..............................yes    no   ______________________________ 
--Diabetes...........................yes    no               ______________________________ 
--Gout.................................yes    no   ______________________________ 
--Obesity.............................yes    no              ______________________________ 
 
6.  Tobacco History  (check one) 
_____   None       Cigarette history 
_____   Quit months/years ago    _____   1-10 daily 
_____   Cigarette      _____    11-20 “ 
_____   Snuff       _____    21-30 “ 
_____   Chewing tobacco      _____    31-40   “ 
_____   Pipe       _____    more than 40 
Total years of tobacco use? _______     
 
Snuff history       Chewing history  
______   < 0.5 cans daily     _____   < 0.5 pouches daily 
______   0.5-2.5 cans  “     _____   0.5-2.5 pouches  “ 
______   > 2.5 cans     “      _____   > 2.5 pouches     “ 
 
7. Weight History  
What do you consider a good weight for you? ________ Weight at age 21? _________ 
Weight since age 21? ________    Weight one year ago? ______ 
Weight now? ________ 
 
8. Cardio-Respiratory History 
 
Any heart disease now?..........................................................................................    yes  no 
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Any heart disease in the past?................................................................................  yes  no 
 
Heart murmur?........................................................................................................ yes  no 
 
Occasional chest pains?........................................................................................    yes  no 
 
Chest pains on exertion?.........................................................................................  yes  no 
 
Fainting?.................................................................................................................  yes  no 
 
Daily coughing?.....................................................................................................  yes  no 
 
Cough that produces sputum?............................................................................... . yes  no 
 
High blood pressure?.............................................................................................  yes  no 
 
Shortness of breath -- 
 at rest.......................................................................................................    yes  no 
 lying down..............................................................................................    yes  no 
 sleeping at night.....................................................................................    yes  no 
 after 2 flights of stairs...........................................................................     yes  no 
 
9.  Muscular  History 
 
Any muscle injuries or illnesses now?................................................................    yes  no 
 
Any muscle injuries in the past?.........................................................................    yes  no 
 
Muscle pain at rest?............................................................................................    yes  no 
 
Muscle pain on exertion?...................................................................................    yes  no 
 
10.  Bone-Joint History 
 
Any bone or joint (including spinal) injuries or illnesses now?........................    yes  no 
 
Any bone or joint (including spinal) injuries or illnesses in the past?..............    yes  no 
 
Ever had painful joints?....................................................................................   yes  no 
 
Ever had swollen joints?..................................................................................    yes  no 
 
Flat feet?...........................................................................................................   yes  no 
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11.  Menstrual History  (Women only) 
 
Are you post-menopausal (e.g., not had menstrual flow for at least one year)? ... yes  no 
 
Have you had a hysterectomy? .............................................................................    yes  no 
 
If you have had a hysterectomy, were the ovaries removed? ………………......    yes  no 
 
If pre-menopausal:  On what date did your last period start (beginning of flow)? 
____________ 

 Are your periods regular? .....................................................    yes  no 
Approximately how many days apart are your periods?      
_____________ 

Are you on any hormonal supplements, such as a birth control pill or 
estrogen replacement therapy? .............................................................................    yes  no 

 If so, what? ________________________________ 
 
12.  Nutritional Survey  
How many times do you usually eat per day?                                                  
 ________ 
 
What time of day do you eat your largest meal?                                              
 ________ 
 
How many times per week do you usually eat...     
 ____ Hamburger ____ Sausage  ____ Bacon 
 ____ Beef  ____ Pork  ____ Cheese 
 ____ Shellfish (shrimp, oysters, scallops, clams, etc.) 
 ____ Fish  ____Poultry  ____ Fried Foods 
 ____ Breads  ____ Cereals  ____ Vegetables 
 ____ Eggs  ____ Desserts  ____ Ice Cream 
 ____ Other 
 
How many servings per week do you usually consume? 
____ Whole milk   ____ Coffee 
____ Low-fat milk (2% milk fat) ____ Tea 
____ Skim milk (non-fat)  ____ Soft drinks 
____ Buttermilk   ____ Other 
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13.  Physical Activity Survey 
a.  Compared to a year ago, how much regular physical activity do you currently get?  
(Check One) 
 ____  much less  ____  somewhat less  ____  about the same 
 ____  somewhat more  ____  much more 
 
b.  For the last three months, have you been exercising on a regular basis?............  yes  no 
 
c.  What type of exercise or physical activity do you currently do or have done regularly 
in the past?   
     (For example:  walking, swimming, weight lifting, gardening, etc.)  
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
 
d.  On the average, how many days per week do you exercise? _______ 
 
e.  How long do you exercise each time?  For how many minutes?  __________________ 
 
f.  How hard do you exercise on a scale from 1 to 5:  with 1 being easy and 5 being very 
hard? 
 ____ 1  ____ 2  ____ 3  ____ 4  ____ 5 
 
g.  Do you ever check your heart rate (pulse) to determine how hard you are exercising? 
 ____ yes ____ no 
 
h.  What aerobic activity or activities would you prefer in a regular exercise program for 
yourself? 
____ Walking and/or running  ____ Tennis   ____ Bicycling 
____ Racquetball   ____ Swimming  ____ Basketball 
____ Aerobic dance   ____ Stationary cycling ____ Soccer  
____ Stair climbing   ____ Rowing   ___________Other 
  
14.  Alcohol History 
Do you ever drink alcoholic beverages?    Yes ____  No ____  
If yes, what is your approximate intake of beverages per week?   
Beer _____ Wine _____ Mixed Drinks _____   
 
15.  Sleeping Habits 
Do you ever experience insomnia (trouble sleeping)? Yes ____ No ____ 
If yes, approximately how 
often?___________________________________________________ 
How many hours of sleep do you usually average per 
night?_____________________________ 
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16.  Education 
Please indicate the highest level of education completed. 
____ Grade School  ____ Junior High  ____ High School  
____ College   ____ Graduate   ____ Postgraduate 
Please indicate degree earned (i.e. B.A., M.S., Ph.D.)_____________________________ 
  
 
17.  Motivation or reason for participating in the testing program? 
____ General health and fitness evaluation 
____ Medical evaluation prior to starting and exercise program 
____ Baseline for weight loss 
____ Required by supervisors or employers 
____ Other ______________________________________________________ 
 
18.  Family Physician 
Name:  _________________________________________________________ 
Address:________________________________________________________ 
Phone:  _________________________ 
Should it be necessary, may we send a copy of your results to your physician? 
 
19.  Insurance  I, _____________________understand that this evaluation is not 
reimbursable under Medicare and the cost of the evaluation must be paid by me. 
 
Signature:  ________________________________ 
Date:  ___________________________________ 

 



APPENDIX D:  DIETARY LOG FOR A TYPICAL DAY 

Date _________________    Subject ID # _____________ 
 

Dietary Log for a Typical Day 
 
Meal Time of 

day 
Serving 
Size 

Food Item Prepared by: 

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
 

Please list all other vitamins, minerals, and supplements that you normally take in a 
day: ___________________________________________________________________ 

_______________________________________________________________________ 



APPENDIX E:  EXPERIMENTAL SESSION INSTRUCTIONS 

Age-related Changes in Skeletal Muscle Signaling after Acute Heavy 
Resistance Exercise 

 
Principal Investigator:  Scott E. Gordon, Ph.D. 
Telephone #:  (252) 737-2879 
Sub Investigator:  Brad Harper 
Telephone #:  (252) 903-9088 

 
EXPERIMENTAL SESSION INSTRUCTIONS 

 
Human Performance Laboratory 

 
 
 
For two full days prior to session (Start Date: ): 

 1. Do not drink alcohol. 

 2. If you consume caffeine, do so only in moderation. 

 3. Drink at least 64 oz. of water per day (i.e., eight 8-oz. glasses). 

  

On day of experimental session (Date: ): 

 1. Drink 16 oz. of water before reporting to the laboratory. 

 2. **Do not eat or drink anything but water for the 12 hours prior to reporting to the 

laboratory!! 

 3. **Do not exercise before the experimental session!! 

 4. Report to the Brody School of Medicine, room 3S08 at _________________.   
 5. Wear exercise clothes, specifically shorts and athletic shoes, to the experimental session. 

 

For the duration of the experiments: 
 1. Do not engage in exercise. 

 2. Do not donate blood or plasma. 

 3. If you begin taking new medications, please notify Brad Harper. 



 


