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Abstract

The terpene compounds represent the largest and most diverse class of plant secondary metabolites which are important in
plant growth and development. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC 1.1.1.34) is one of the
key enzymes contributed to terpene biosynthesis. To better understand the basic characteristics and evolutionary history of
the HMGR gene family in plants, a genome-wide analysis of HMGR genes from 20 representative species was carried out. A
total of 56 HMGR genes in the 14 land plant genomes were identified, but no genes were found in all 6 algal genomes. The
gene structure and protein architecture of all plant HMGR genes were highly conserved. The phylogenetic analysis revealed
that the plant HMGRs were derived from one ancestor gene and finally developed into four distinct groups, two in the
monocot plants and two in dicot plants. Species-specific gene duplications, caused mainly by segmental duplication, led to
the limited expansion of HMGR genes in Zea mays, Gossypium raimondii, Populus trichocarpa and Glycine max after the
species diverged. The analysis of Ka/Ks ratios and expression profiles indicated that functional divergence after the gene
duplications was restricted. The results suggested that the function and evolution of HMGR gene family were dramatically
conserved throughout the plant kingdom.
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Introduction

Plants produce thousands of secondary metabolites that play

important roles in numerous biological processes. Structurally and

functionally different terpenes represent the largest and most

diverse class of secondary metabolites [1]. In addition to their

physiological functions in photosynthesis, respiration, and growth

and development, many specialized terpenes also have ecological

roles in mediating plant interactions with various biotic and abiotic

factors [2]. For example, terpenes can serve as phytoalexins in

defense against phytopathogens and herbivores [3,4,5,6], and low-

molecular-weight terpene compounds may released as odors that

attract pollinators or induce defense responses in neighboring

plants [7,8].

In plant cells, two distinct pathways are responsible for the

biosynthesis of terpene compounds, the cytosolic mevalonate

pathway (MVA pathway) and the plastidial 2-C-methyl-D-

erythritol-4-phosphate pathway (MEP pathway) [9]. The reaction

catalyzed by the enzyme 3-hydroxy-3-methylglutaryl coenzyme A

reductase (HMGR) is the first committed step in the MVA

pathway [10]. The gene encoding HMGR has been found that

widely present in eukaryotes and prokaryotes, and well studied in

mammals due to its critical role in mediating cholesterol

biosynthesis [11]. In plants, the HMGR genes also have been

extensively cloned and characterized from a number of species

including Arabidopsis thaliana [12,13], Oryza sativa [14], Triticum

aestivum [15], Gossypium hirsutum [16], Solanum tuberosum [17], Cucumis

melo [18], Hevea brasiliensis [19] and some medicinal plants

[20,21,22]. Additionally, HMGR is considered as a key enzyme

for biotechnological purposes and can be utilized to increase

terpenes content in plants. As a result, up-regulation of HMGR

genes could improve terpenes productivities in the transgenic

plants [23,24,25,26,27]. Furthermore, it was reported that

transgenic tomato plants that constitutively expressed a heterol-

ogous HMGR gene from melon showed a significant increase in

fruit size [28].

HMGR protein is comprised of three domains, i.e., the

transmembrane domains with changeable number in N-terminal

region, the highly divergent linker domain, and the long and

conserved catalytic domain in C-terminus. Within the catalytic

domain, subdomains have been defined as the small helical N-

terminal domain, the large and central L-domain harboring two

HMG-CoA binding motifs and an NADP(H) binding motif, and

the smallest S-domain harboring an NADP(H) binding motif. The

two HMG-CoA binding motifs, EMPVGYVQIP and

TTEGCLVA, and two NADP(H) binding motifs, DAMGMNM

and GTVGGGT, are functionally important and thus highly

conserved in all HMGR proteins [29,30].

Although HMGR genes have been systematically analyzed in

Gramineae plants [30], little is known about their features in the

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e94172

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0094172&domain=pdf


genome-wide level in plant kingdom. Thus, a comprehensive

investigation about the basic characteristics and evolutionary

history of this gene family is necessary in plants. Fortunately, the

recent availability of whole genome sequences of various plant

species in public databases offers an opportunity to identify the

complete set of HMGR genes in many species. In present study,

an extensive survey of HMGR families in 20 species ranging from

unicellular algae to higher plants was conducted. Subsequently,

the distribution, protein architecture, exon/intron organization,

phylogenetic relationship and expansion pattern of this gene

family were assessed, and the expression profiles of HMGR genes

in Zea mays and Glycine max using published transcriptome data

were analyzed as well.

Materials and Methods

Identification and verification of HMGRs in different plant
genomes

The amino acid sequences of Arabidopsis thaliana HMGR genes

[2] were retrieved from The Arabidopsis Information Resource

(TAIR, http://www.arabidopsis.org) and used as queries to search

against other plant genome databases with BlastP and tBlastN

programs (default parameters). The 20 completely sequenced

genomes of species from unicellular green algae to multicellular

higher plants were used in this study (Table 1 and Table S1).

Subsequently, all hits considered as candidate sequences were

submitted to Pfam database (http://pfam.sanger.ac.uk/) to

confirm the presence of the conserved domain (PF00368).

Protein motif and gene structure analysis
The conserved motifs encoded by each HMGR gene were

identified using the program of Multiple Em for Motif Elicitation

(MEME; version 4.9.0) [31] at the website (http://meme.nbcr.

net/meme/cgi-bin/meme.cgi). The analysis was performed with a

set of parameters as follows: number of repetitions, any; minimum

width for each motif, 6; maximum width for each motif, 100; and

maximum number of motifs to be found, 5. All obtained motifs

were searched in the InterPro database with InterProScan [32].

The exon/intron structures of HMGR genes were obtained by

comparing the genomic sequences and their predicted coding

sequences (CDS) using GSDS (http://gsds.cbi.pku.edu.cn/) [33].

Multiple sequence alignment and phylogenetic
reconstruction

Multiple sequence alignments of the full-length protein

sequences were performed by Clustal X version 2.0 program

[34] with default parameters. The neighbor-joining (NJ) phyloge-

netic tree was constructed using MEGA 5.2 [35] with pairwise

deletion option. The reliability of obtained phylogenetic tree was

tested using bootstrapping with 1000 replicates.

Chromosomal mapping and gene duplications
The locations of HMGR genes in Zea mays, Gossypium raimondii,

Populus trichocarpa and Glycine max were collected from the genome

annotation data of the corresponding organism, respectively. The

chromosomal distribution images of these HMGR genes were

generated by MapInspect software according to their starting

positions in chromosomes [36]. Gene duplication events of

HMGR genes in Zea mays, Gossypium raimondii, Populus trichocarpa

and Glycine max were also investigated. Gene duplication was

Table 1. Species and number of HMGR genes used in this study.

Lineage Species Abbreviation Number of HMGR genes

Green algae Ostreococcus lucimarinus Ol 0

Ostreococcus tauri Ot 0

Micromonas pusilla Mp 0

Chlamydomonas reinhardtii Cr 0

Chlorella variabilis Cv 0

Volvox carteri Vc 0

Mosses Physcomitrella patens Pp 3

Lycophytes Selaginella moellendorffii Sm 1

monocots Brachypodium distachyon Bd 3

Oryza sativa Os 3

Zea mays Zm 7

Sorghum bicolor Sb 3

Eudicots Vitis vinifera Vv 3

Citrus sinensis Cs 2

Gossypium raimondii Gr 9

Carica papaya Cp 3

Brassica rapa Br 3

Arabidopsis thaliana At 2

Glycine max Gm 8

Populus trichocarpa Pt 6

Total 56

doi:10.1371/journal.pone.0094172.t001

Expansion and Molecular Evolution of HMGR Gene

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94172

http://www.arabidopsis.org
http://pfam.sanger.ac.uk/
http://meme.nbcr.net/meme/cgi-bin/meme.cgi
http://meme.nbcr.net/meme/cgi-bin/meme.cgi
http://gsds.cbi.pku.edu.cn/


defined according to (1) the length of aligned sequence cover .

80% of the longer gene; and (2) the identity of the aligned regions

.80% [37,38]. With the chromosomal locations of HMGR genes,

two types of gene duplications were recognized, i.e., tandem

duplication and segmental duplication.

Estimating the divergence time for duplicated gene pairs
The pairwise alignment of HMGR duplicated gene pairs from

four plants was performed using Clustal X version 2.0 program

[34]. Then pairwise synonymous (Ks) and non-synonymous (Ka)

numbers of substitutions corrected for multiple hits were

calculated using the DnaSP v5.0 software (DNA polymorphism

analysis) [39]. Finally, the selection pressure for these duplicate

HMGR gene pairs was calculated as Ka/Ks ratio. Based on the

synonymous substitutions per year (l) of 6.561029 for Zea mays

[40], 9.161029 for Populus trichocarpa [41], and 6.161029 for

Glycine max [42], by substituting the calculated Ks values, the

approximate age of duplicated events of the duplicate HMGR

gene pairs was estimated (T = Ks/2l61026 Mya).

Gene expression analysis
The expression profiles of ZmHMGRs and GrHMGRs were

clustered using the Cluster 3.0 [43], respectively. The public

expression data for various tissues and developmental stages in Zea

mays were obtained from the Plant Expression Database (PLEXdb,

http://www.plexdb.org/) [44,45] according to the identified

ZmHMGR ID, and the transcriptome sequencing datasets of

Glycine max were downloaded from SoyBase (http://soybase.org/

soyseq/) [46] based on the GmHMGR ID.

Results and Discussion

Genomic identification of HMGR genes in plants
In order to identify HMGR genes in Viridiplantae, the blast

searches among the 20 completely sequenced genomes (Table S1)

were carried out. These genomes represent major evolutionary

lineages of the plant kingdom such as algae, mosses, lycophytes,

monocots, and eudicots. After removing partial or redundant

sequences, and the predicted alternative splice variants, a total of

56 genes encoding HMGR proteins were retrieved in the 14 land

plant genomes, and no HMGR genes were detected in algae

(Table 1). Because there is no standard naming system for HMGR

genes (not including Arabidopsis), the newly identified HMGR

genes were assigned according to the species and the gene orders

on the chromosomes (Table S2). The Arabidopsis HMGR genes

were named following the TAIR website (http://www.arabidopsis.

org/).

The Viridiplantae are comprised of two major lineages that split

early, i.e., the Chlorophyta (chlorophyte algae) and the Strepto-

phyta (charophyte algae and land plants) [47,48]. Interestingly, it

was observed that no HMGR genes were found in genomes of all

6 algal species, which belong to the division Chlorophyta of green

algae, suggesting that the HMGR gene family might be lost in the

chlorophyte algae during evolution. The HMGR protein is a

major rate-limiting enzyme in the MVA pathways [10], and the

MVA pathway is considered as an ancestral metabolic route for

the biosynthesis of terpene compounds in all the three domains of

life (bacteria, archaea, and eukaryotes) [49]. So it could be

speculated that the Chlorophyta had abandoned the MVA

pathway. These observations were compatible with previous

findings that the chlorophyte algae synthesized their terpenes

exclusively via the MEP pathway and might develop efficient

mechanisms of exporting MEP-pathway-derived terpene interme-

diates from the plastid for the biosynthesis of cytosolic terpenes

[50,51]. The analysis also provided further proof for that the genes

involved in the MVA pathway in the chlorophyte algae were not

silenced but really absent.

Although genome sequence data are currently not available for

charophyte algae, which is believed to be the closest relatives of

land plants [47]. But it has been experimentally substantiated that

the charophyte algae Mesostigma viride contained the HMGR gene

[52]. Moreover, it was also found that the HMGR genes were

widespread in land plants. So it could be figured out that the MVA

pathway was still operating in the Streptophyta, especially in land

plants. The MEP pathway has been identified to be present in

plastid-bearing eukaryotes [53]. Therefore, unlike the chlorophyte

algae, the land plants simultaneously retained the MVA and MEP

pathways. In this case, the MVA pathway was active within the

cytoplasm at the same time as the MEP pathway functioned in the

plastids. The utilization of both the MVA and MEP pathways

could enable plants to separate and optimize the biosynthesis of a

wide range of complex terpene-derived specialized metabolites.

Obviously, by retaining and compartmentalizing the two path-

ways, the land plants could gain a selective advantage in

interactions with their surrounding environments to overcome

sessile-lifestyle constraints.

Additionally, among the land plants, there were 1 to 9 HMGR

genes in each species, and most species (10 of 14 species) only had

3 or less HMGR genes. The non-vascular Physcomitrella patens, a

species of mosses which is a basal lineage of land plants, contained

3 HMGR genes. The Selaginella moellendorffii, the oldest extant

vascular plant belonging to lycophytes, was the fewest HMGR

gene family species among the land plants in our survey, which

was expected as it has one of the smallest plant genomes known

[54]. In the flowering plants, the number of HMGR genes was

varied greatly. Here, Citrus sinensis and Arabidopsis thaliana contained

only two HMGR genes, which was the fewest two species in

HMGR gene number among flowering plants we investigated.

The other six plants, Brachypodium distachyon, Oryza sativa, Sorghum

bicolor, Vitis vinifera, Carica papaya, and Brassica rapa, had three

HMGR gene members. While the remaining four species had a

relative higher number of HMGR genes, 6 HMGRs in Populus

trichocarpa, 7 HMGRs in Zea mays, 8 HMGRs in Glycine max, and 9

HMGRs in Gossypium raimondii. The variable size of the HMGR

gene family suggested that the gene family underwent species-

specific expansion in flowering plants. Furthermore, among these

species which underwent the gene expansion, Zea mays belongs to

the monocots, and the other three belong to the eudicots, which

indicated that the gene expansion occurred both in monocot

plants and dicot plants.

Conserved protein motifs and exon/intron structure of
HMGR genes

The MEME motif search tool was employed to identify the

conserved motifs presented in 56 plant HMGR proteins, and 5

conserved motifs were uncovered (Figure S1). After searching in

the Interpro database, all motifs corresponded to known domains.

The motif 5 was a region including two transmembrane helices,

and the others were located in the catalytic domain of HMGR

genes (Figure 1).

A common feature of plant HMGRs is the presence of a

transmemebrane region consisting of two separate transmemeb-

rane domains that are linked to the cytoplasmic domain bearing

the catalytic center [55,56]. Of the 56 HMGRs, only VvHMGR3,

GrHMGR8 and GmHMGR3 missed the motif 5, suggesting that

most plant HMGR genes have two transmembrane helices in the

N-terminus. The result was verified by prediction of transmem-

brane helices in HMGR proteins using the TMHMM Server v.

Expansion and Molecular Evolution of HMGR Gene
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2.0 (Table S2). Unexpectedly, existence of the motif 5 and the

prediction of two transmembrane helices by TMHMM Server v.

2.0 did not correspond precisely in five HMGR genes. Further

analysis found that there were no transmembrane helices that

could be predicted by TMHMM Server v. 2.0 due to the diversity

of several amino acid sites in the motif 5 in these genes. Overall,

the plant HMGRs usually had two transmemebrane domains in

the N-terminal region of proteins, and several genes appeared to

start sequence variations, or even lost the domain.

In the protein sequences of plant HMGR, there were four

conserved motifs including EMPVGYVQIP, TTEGCLVA,

DAMGMNM, and GTVGGGT in the catalytic domain. In this

study, the motif 3 represented the two HMG-CoA binding sites

(EMPVGYVQIP and TTEGCLVA), the motif 2 represented one

of the NADP(H) binding sites (DAMGMNM), and the motif 4

represented the other NADP(H) binding sites (GTVGGGT),

respectively (Figure 1). Among them, the motif 3 in the N-terminus

was lost in GrHMGR8 and GmHMGR3, the motif 2 in the

middle was lost in OsHMGR1 and ZmHMGR1, and the motif 4

in the C-terminus was lost in OsHMGR1, ZmHMGR1,

ZmHMGR3, ZmHMGR5 and GmHMGR3 (Figure S1). Appar-

ently, the C-terminus of the catalytic domain was more variable

than the N-terminus in the evolutionary process of plant HMGRs.

Interestingly, 3 out of 7 ZmHMGRs missed the motif 4 that binds

to NADP(H), and the ZmHMGR1 also missed the other

NADP(H) binding sites (motif 2). It could be guessed that this

might be the need for functional differentiation of HMGR genes

after gene expansions in maize.

In order to validate the conservation of residues in the catalytic

domain, the sequence logos of the motif 3, motif 2, motif 1 and

motif 4 were investigated (Figure 1). It was observed that the high

homology region appeared to be centered around the HMG-CoA

and NADP(H) binding sites. The amino acids composed of the

second HMG-CoA binding site and the two NADP(H) binding

sites were almost the same in all analyzed plant HMGRs. While

the amino acid residues in the first HMG-CoA binding site were

diverse among plant HMGRs, which might contribute to the

substrate selectivity. Additionally, the position and orientation of

four key catalytic residues (Glu, Lys, Asp and His) [29], which are

functionally significant, were highly conserved in HMGR proteins.

Among them, three residues except Lys residue were shown in

Figure 1.

Analysis of HMGR gene structure for exon/intron organization

revealed that the number of introns per gene varied from 1 to 14

(Figure S2). OsHMGR1, ZmHMGR1, and ZmHMGR5 pos-

sessed a minimum of one intron each, whereas ZmHMGR3

Figure 1. Sequence logos of the five motifs identified using the MEME search tool. (A), (B), (C), (D) and (E) represent the motif 5, 3, 2, 1 and
4, respectively. The height of letter designating the amino acid residue at each position represents the degree of conservation. The numbers on the x-
axis represent the residue positions in the motifs. The y-axis represents the information content measured in bits. The two transmembrane helices,
two HMG-CoA binding sites (EMPVGYVQIP and TTEGCLVA) and two NADP(H) binding sites (DAMGMNM and GTVGGGT) are represented on the top of
the corresponding locations in motifs. Asterisks (*) indicate the conserved residues in the catalytic domain of plant HMGR genes.
doi:10.1371/journal.pone.0094172.g001
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Figure 2. Neighbor-joining phylogenetic tree of plant HMGR proteins. The tree was constructed based on a complete protein sequence
alignment of HMGR genes using neighbor-joining method, and the PpHMGRs and SmHMGR were designated as outgroups. Numbers at the nodes
represent bootstrap support (1000 replicates). Bootstrap support higher than 40% is indicated at respective nodes.
doi:10.1371/journal.pone.0094172.g002
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possessed a maximum of fourteen introns. Among all the analyzed

genes, the great majority (43 out 56), including all HMGRs from

the lower land plants, possessed three introns. These results

indicated that the common ancestor of plant HMGRs had three

introns. The intron/exon structure of HMGR genes was highly

coincided in plant evolution.

Regardless of the less variability, the protein architectures and

gene structures of plant HMGRs were remarkably conserved,

indicating that the molecular characteristics and biological

functions of each plant HMGR were highly conserved during

evolution. This was not the same as other gene families involved in

plant secondary metabolism, which were very much lineage-

dependent and varied tremendously among plant taxa [57]. The

results also suggested that the plant HMGR genes might be

monophyletic and were descendants of an ancestor.

Phylogenetic analysis of HMGR gene families
To examine the evolutionary relationships of the HMGR genes

in Viridiplantae, a neighbor-joining phylogenetic tree (Figure 2)

was constructed based on the alignments of full-length HMGR

protein sequences. Because mosses and lycophytes are the basal

lineages of land plants, PpHMGRs and SmHMGR were

designated as outgroups. Firstly, HMGR genes from the flowering

plants were divided into two monophyletic clades, the monocots

and eudicots. No genes from the two lineages tended to cluster

together in the phylogenetic tree, suggesting that the plant

HMGRs were derived from one ancestor gene and developed

into different branches after the lineages diverged. Within the

monocots or eudicots, the HMGR genes fell into two major

distinctive groups each with high bootstrap values. As shown in the

Figure 2, these groups were named group I, II, III and IV.

In eudicots, there were 36 HMGR genes from 8 plant species.

Group I contained 21 members, and group II contained 15

members. Statistically, 7 out 8 dicot plants contained all two

groups of HMGR genes, except for Glycine max, which only

contained group I HMGR genes. Obviously, the significant

expansion of group I genes contributed to the increase of HMGR

genes in Glycine max which had up to 8 members. In addition, those

HMGR genes from the same species were not equally classified

into the two groups. Most of the 8 plant species had more genes in

group I than in group II, except for Gossypium raimondii which

contained 8 group II genes, but only a single gene in group I. It

was indicated that, unlike Glycine max, the increase in HMGR

genes in Gossypium raimondii attributed to the remarkable expansion

of group II genes.

In monocots, all of 4 monocot plants contained the two group

genes, group III and IV. As the HMGR genes from dicot plants,

the 16 HMGR genes from 4 monocot plants were not evenly

distributed in the two groups neither. All investigated monocot

plants contained more members in group IV than in group III.

Such as Zea mays that had the largest HMGR gene family in

analyzed monocots had five genes in group IV, but two genes in

group III.

In general, there were no paralogs of HMGR genes from plants

which contained less than or equal to 3 HMGRs, indicating that

no gene expansion occurred within the HMGR gene family after

the divergence of these plant species. In contrast, four other

species, Zea mays, Gossypium raimondii, Populus trichocarpa, and Glycine

max, underwent considerably more frequent gene duplications,

which gave rise to an increase in more members of the HMGR

gene family. As we know, the occurrence of most of secondary

metabolites and their respective biosynthetic pathways is restricted

to specific plants or plant lineages [57]. The evolution of these

pathways definitely requires new enzymes and regulatory elements

in specific plants. So it can be deduced that the four plant species

may need to produce more or wider variety of terpene compounds

in their respective development. Gossypium raimondii, which

contained the largest HMGR gene family (9 genes) in our survey,

was known to accumulate a unique group of terpenes included

Figure 3. Chromosomal localization of HMGR genes in four
selected plant species. (A): Zea mays; (B): Gossypium raimoddii; (C):
Populus trichocarpa; and (D): Glycine max. The chromosome number is
indicated at the top of each chromosome representation. The scale
represents megabases (Mb). The segmental duplicated genes are
indicated by dotted lines and the tandemly duplicated genes by red
vertical lines.
doi:10.1371/journal.pone.0094172.g003

Expansion and Molecular Evolution of HMGR Gene

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94172



desoxyhemigossypol, hemigossypol, gossypol, hemigossypolone,

and the heliocides [58], which fit well with this hypothesis.

Chromosomal localization and duplication of HMGR
genes in four selected plant species

Based on the coordinate of each HMGR gene on the

chromosomes, the chromosomal distribution images of these

HMGR genes in four plant species which underwent species-

specific gene expansions were generated (Figure 3). The 7 HMGR

genes of Zea mays were distributed unevenly on 5 chromosomes,

and chromosome 4 contained three HMGR genes. In Gossypium

raimondii, 9 HMGR genes were located on 5 chromosomes, and

one gene cluster contained 4 genes was detected on chromosome

5. While in Populus trichocarpa and Glycine max, the HMGR genes

were distributed uniformly, one gene on each chromosome.

A total of fourteen duplication events which contributed to

HMGR gene family expansion in the four plant species were

found. Among them, two events as segmental duplications were in

Zea mays, and there were three segmental duplication events in

respective genome of Populus trichocarpa and Glycine max, strongly

indicating that the segmental duplication was the main cause of

the species-specific expansion of HMGR genes in the three

species. Particularly, there were up to six duplication events in

Gossypium raimondii which had the largest HMGR gene family

number in our survey. With three segmental duplications and

three tandem duplications, it was suggested that a relatively large

extent of species-specific gene expansion was caused by both

segmental and tandem duplications after the divergence of

Gossypium raimondii.

During the process of evolution, the duplicated genes might

have undergone divergent fates such as nonfunctionalization (loss

of original functions), neofunctionalization (acquisition of novel

functions), or subfunctionalization (partition of original functions)

[41]. To explore whether Darwinian positive selection was

involved in HMGR gene divergence after duplication, the Ka/

Ks ratio for each pair of duplicated HMGR genes were calculated

(Table S3). Generally, a Ka/Ks ratio .1 indicates accelerated

evolution with positive selection, a ratio = 1 indicates that the

genes are pseudogenes with neutral selection, while a ratio ,1

indicates the functional constraint with negative or purifying

selection of the genes. In this study, the Ka/Ks ratios for fourteen

duplicated HMGR gene pairs were less than 0.3, suggesting that

the HMGR genes from the four plants have mainly experienced

strong purifying selection pressure with limited functional diver-

gence after the species-specific duplications. These results suggest-

ed that functions of the duplicated HMGR genes did not diverge

much during subsequent evolution. The approximate age of

segmentally duplicated HMGR gene pairs from Zea mays, Populus

trichocarpa and Glycine max were estimated using the Ks as the proxy

for time (Table S3). The Ks values of these duplicated HMGR

gene pairs were 0.152–0.289, indicating that the duplications

might have occurred 12.25–16.05 million years ago (Mya).

Expression profiling of HMGR genes in Zea mays and
Glycine max

To understand the temporal and spatial expression patterns of

HMGR genes, their expression profiles during Zea mays and Glycine

max development were analyzed using the public expression data.

Figure 4. Expression profiles of HMGR genes in Zea mays across different tissues and developmental stages. The color scale represents
the relative signal intensity values. DAP: Days After Pollination; DAS: Days After Sowing.
doi:10.1371/journal.pone.0094172.g004
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The published microarray data of 60 different tissues and

developmental stages of Zea mays [44] were collected and

investigated (Figure 4). Five of the seven ZmHMGRs showed

wide expressions in the examined tissues. The ZmHMG6 showed

higher expression in seeds (whole seed, endosperm and embryo)

than in other organs, which indicated that it may play important

roles in seed development or secondary metabolites accumulation

in maize seed. By contrast, the ZmHMGR5 just expressed

specificity in the endosperm, but not the whole seed and embryo.

Additionally, the ZmHMGR5 showed relatively high expression in

vegetative tissues (root, internode and leaf). The ZmHMGR2,

ZmHMGR3 and ZmHMGR5 also showed remarkable expression

in roots. In the anthers, there were four ZmHMGRs

(ZmHMGR2, ZmHMGR5, ZmHMGR6 and ZmHMGR7)

expressed highly, which might be due to the large demand for

terpene compounds in the pollen development [59]. However, two

ZmHMGRs (ZmHMGR1 and ZmHMGR4) were not found to

have corresponding probes in this dataset, so there were no

expression data to be investgated. As the ZmHMGR4 had the

typical gene structure (3 introns) and was just diversified in the

transmemebrane region of the N-terminus in protein sequence,

and it also was involved in a duplicated event with ZmHMGR6

that was expressed widely in maize development. It was deduced

that the ZmHMGR4 might undergo the process of subfunctiona-

lization after gene duplication and might be expressed similarly

with ZmHMGR6. The other ZmHMGR duplicated gene pair,

ZmHMGR2 and ZmHMGR7, which had the same gene structure

and protein architecture shared similar expression patterns in

nearly all of the organs and developmental conditions analyzed.

The expression profiles of HMGR genes in Glycine max [46]

were also analyzed (Figure 5). Similar to ZmHMGRs, the

GmHMGRs also exhibited abundant transcript across multiple

tissues and organs. Moreover, there was also a HMGR gene

(GmHMGR4) expressed at relatively high level in the seeds.

Especially, it had higher expression in later developmental stages

but lower expression in early developmental stages of seed, which

suggested that it might contribute to the accumulation of terpene

compounds in soybean seed. Additionally, the expression patterns

of all identified soybean duplicated gene pairs which had the same

gene structure and protein architecture were also investigated in

this research. Most gene pairs such as GmHMGR1/GmHMGR5

and GmHMGR2/GmMGR6 were similar. However, it was not

the case for GmHMGR4/GmHMGR7. The expression of the

duplicated gene pairs were strongly divergent, which might be

caused by the significant variation in gene regulations after the

duplication events. Overall, the highly similar expression patterns

of most duplicated gene pairs in Zea mays and Glycine max implied

that functional divergence after the gene duplications was

restricted. These results indicated that the HMGR gene family

was dramatically conserved during plant genome evolution.

Figure 5. Expression profiles of HMGR genes in Glycine max across different tissues and developmental stages. The color scale
represents the relative signal intensity values. DAF: Days After Flowering.
doi:10.1371/journal.pone.0094172.g005
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Conclusions

The HMGR gene family might be lost in the chlorophyte algae

during evolution, but still widespread in land plants. The plant

HMGR genes might be derived from one ancestor gene and

finally developed into two distinct groups within the monocots

and eudicots, respectively. The gene structure and protein

architecture of all plant HMGRs were considerable conserved.

The HMGR family in four flowering plants underwent species-

specific expansions after the species diverged due to the large

production for terpene compounds in their respective develop-

ment. Segmental duplication appeared to be the dominant

mechanism for the gene duplication events in three species,

whereas segmental duplication and tandem duplication played

similar roles in the expansion of the HMGR gene family of

Gossypium raimondii. The functional divergence after the gene

duplications was restricted. The findings implied that the HMGR

gene family was dramatically conserved during plant evolution,

and the HMGR was the committed enzyme for terpene

biosynthesis that had essential roles in regulating plant develop-

ment.

Supporting Information

Figure S1 Distribution of conserved motifs in plant
HMGR proteins identified using the MEME search tool.
Different motifs are indicated by different colors numbered 1-5.

The names of all members of HMGR genes and combined p-

values are shown on the left side of the figure, and the positions

and sizes of motifs are indicated at the bottom of the figure.

The motif 5 is a region including two transmembrane helices.

The motif 3, 2, 1 and 4 are located in the catalytic domain

of HMGR proteins. Moreover, the N-terminus of the motif 3 is

at the start position of catalytic domain in each HMGR

protein.

(TIF)

Figure S2 Exon/intron organization of plant HMGR
genes. Exons are represented by green boxes and introns by black

lines. Names of all plant HMGR genes from different lineages are

shown on the left side of the figure.

(TIF)

Table S1 Data sources for the genome sequences used
to mine for HMGR genes.
(XLSX)

Table S2 Summary of 56 HMGR genes identified in
Viridiplantae.
(XLSX)

Table S3 Ka/Ks analysis and estimated divergence
time for the HMGR duplicated genes from Zea mays,
Gossypium raimondii, Populus trichocarpa and Glycine
max.
(XLSX)
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