FUNCTION AND REGULATION OF THE POLYSACCHARIDE UTILIZATION LOCUS, DON, IN THE GUT SYMBIONT BACTEROIDES FRAGILIS

By

Yanlu Cao

August, 2014

Director of Dissertation: C. Jeffrey Smith, Ph.D.

Major Department: Department of Microbiology and Immunology

Abstract

Bacteroides fragilis is the most common anaerobe isolated from clinical infections and in this report we demonstrate a novel feature of the species that is critical to their success as an opportunistic pathogen. Among the *Bacteroides spp*. in the gut, *B. fragilis* has a unique ability to efficiently harvest complex N-linked glycans from the glycoproteins common to serum and serous fluid. This activity is mediated by a Sus-like outer membrane protein complex designated as Don. Using the abundant serum glycoprotein transferrin as a model it was shown that *B. fragilis* alone can rapidly and efficiently deglycosylate this protein *in vitro* and that transferrin glycans can provide the sole source of carbon and energy for growth in defined media. We then showed that transferrin deglycosylation occurs *in vivo* when *B. fragilis* is propagated in the rat tissue cage model of extraintestinal growth and that this ability provides a competitive advantage *in vivo* over strains lacking the *don* locus. Thus, Don functionally is an extraintestinal growth factor that may contribute to *B. fragilis* opportunistic infection.

The regulation of *don* expression is controlled by two independent pathways. The first one was shown to be a typical ECF sigma/anti-sigma factor switch, commonly found in Sus-like Polysaccharide Utilization Loci (PULs), which responds to the presence of specific substrate. In the ECF sigma factor deletion mutant, ΔdonA, expression of the don PUL was completely abolished in the presence of substrate glycans, while the cognate anti-sigma deletion strain, ΔdonB, expressed the don genes even in the absence of substrate glycans. The donA overexpressing strain highly expressed the don PUL regardless of the substrate glycan presence. The second regulatory pathway is involved with a *cis*-encoded antisense sRNA which is associated within the *don* locus, DonS. DonS was shown to negatively regulate *don* expression. In contrast, expression of the *don* genes was induced two- to six-fold in the *donS* silencing mutant and highly repressed in the *donS* overexpressing strain. Notably, this sRNA controlled regulatory pathway is not commonly found associated with *B. fragilis* PULs. Only 14 of more than 50 PULs in *B. fragilis* possess DonS-like sRNAs, but at the present time their roles in commensal colonization and opportunistic infections is not understood.

FUNCTION AND REGULATION OF THE POLYSACCHARIDE UTILIZATION LOCUS, DON, IN THE GUT SYMBIONT BACTEROIDES FRAGILIS

A Dissertation Presented to

The Faculty of the Department of Microbiology and Immunology

Brody School of Medicine at East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy in Microbiology and Immunology

Ву

Yanlu Cao

August 15th, 2014

©Yanlu Cao, 2014

FUNCTION AND REGULATION OF THE POLYSACCHARIDE UTILIZATION

LOCUS, DON, IN THE GUT SYMBIONT BACTEROIDES FRAGILIS

by

Yanlu Cao

APPROVED BY:

DIRECTOR OF DISSERTATION

COMMITTEE MEMBER

COMMITTEE MEMBER

COMMITTEE MEMBER

COMMITTEE MEMBER

Warren Knudson, Ph.D.

CHAIR OF THE DEPARTMENT OF MICROBIOLOGY AND IMMUNOLOGY

C. Jeffrey Smith, Ph.D.

INTERIM DEAN OF THE GRADUATED SCHOOL

Paul J. Gemperline, Ph.D.

R. Martin Roop, II, Ph.D.

Rachel L. Roper, Ph.D.

Everett C. Pesci, Ph.D.

C. Jeffrey Smith, Ph.D.

ACKNOWLEDGEMENTS

First I would like to thank my mother Hong Cao, who had encouraged and supported me to pursue an education and career in the United States, for her constant love. I would also like to thank all my family members from my maternal side, especially my grandparents, for their support and help since my childhood. For the past six years during my high education in ECU, I foremost have to give my thanks to my advisor, Dr. C. Jeffrey Smith. For his dedication and mentorship, I can accomplish the work in this study and be qualified to have a doctoral degree in microbiology and immunology. I also must thank Dr. Edson R. Rocha, Dr. Ivan Ndamukong, Anita C. Parker and Michael Betteken for their support and cooperation, both as co-workers and great friends. I also need to acknowledge Dr. Clayton C. Caswell for his technique support during the small RNA study. I would also like to thank my committee members, Dr. Everett C. Pesci, Dr. R. Martin Roop, II, Dr. Rachel L. Roper and Dr. Warren Knudson for their contribution to my educational development. For many years I always want, but have not had a chance, to say thanks to the Biology Department of Indiana University of Pennsylvania, especially to Dr. Carl Luciano and Dr. Narayanaswamy Bharathan, for their help which are not just limited to education. There are many people in my life that I sincerely appreciate but not be able to mention every one individually here. To them, I just want to say: thank you all and God bless.

LIST O	DF TABLES	vi
LIST O	DF FIGURES	vii
CHAP	TER ONE: INTRODUCTION	1
1.1	Bacteroides taxonomy, structure, physiology and metabolism	1
1.2	The mutualistic relationship between <i>Bacteroides</i> and their hosts	7
1.3	Bacteroides as opportunistic pathogens	10
1.4	Virulence Mechanisms	11
1.5	The polysaccharide utilization systems in <i>Bacteroides</i>	14
CHAP	TER TWO: EFFICIENT UTILIZATION OF COMPLEX N-LINKED GLYCANS IS A SELECTIV	E
ADVA	ANTAGE FOR BACTEROIDES FRAGILIS IN EXTRAINTESTINAL INFECTIONS	21
ADVA 2.1	ANTAGE FOR BACTEROIDES FRAGILIS IN EXTRAINTESTINAL INFECTIONS	21
ADVA 2.1 2.2	ANTAGE FOR BACTEROIDES FRAGILIS IN EXTRAINTESTINAL INFECTIONS Abstract Significance	21 21 22
ADVA 2.1 2.2 2.3	ANTAGE FOR BACTEROIDES FRAGILIS IN EXTRAINTESTINAL INFECTIONS Abstract Significance Introduction	21 21 22 22
ADVA 2.1 2.2 2.3 2.4	ANTAGE FOR BACTEROIDES FRAGILIS IN EXTRAINTESTINAL INFECTIONS Abstract Significance Introduction Materials and methods	21 21 22 22 22
ADVA 2.1 2.2 2.3 2.4	ANTAGE FOR BACTEROIDES FRAGILIS IN EXTRAINTESTINAL INFECTIONS Abstract Significance Introduction Materials and methods 2.4.1 Bacterial strains and growth	21 21 22 22 24 24
ADVA 2.1 2.2 2.3 2.4	ANTAGE FOR BACTEROIDES FRAGILIS IN EXTRAINTESTINAL INFECTIONS Abstract Significance Introduction Materials and methods 2.4.1 Bacterial strains and growth 2.4.2 Construction of a <i>don</i> operon deletion mutant	21 21 22 22 24 24 24
ADVA 2.1 2.2 2.3 2.4	ANTAGE FOR BACTEROIDES FRAGILIS IN EXTRAINTESTINAL INFECTIONS Abstract Significance Introduction Materials and methods 2.4.1 Bacterial strains and growth 2.4.2 Construction of a <i>don</i> operon deletion mutant 2.4.3 Animal model of infection	21 21 22 22 24 24 27 27
ADVA 2.1 2.2 2.3 2.4	ANTAGE FOR BACTEROIDES FRAGILIS IN EXTRAINTESTINAL INFECTIONS Abstract Significance Introduction Materials and methods 2.4.1 Bacterial strains and growth 2.4.2 Construction of a <i>don</i> operon deletion mutant 2.4.3 Animal model of infection 2.4.4 Total RNA extraction	21 21 22 22 24 24 24 27 27 28

TABLE OF CONTENTS

	2.4.6 Whole cell deglycosylation assay	30
	2.4.7 Glycomics analyses of <i>B. fragilis</i> treated human transferring	30
2.5	Results	31
	2.5.1 In vivo, extraintestinal PUL expression	31
	2.5.2 <i>In vitro</i> induction of the <i>donCDEFG</i> operon	35
	2.5.3 Deglycosylation of transferrin is mediated by <i>donCDEFG</i>	38
	2.5.4 Growth on transferrin as the sole carbon and energy source	43
	2.5.5 <i>In vivo</i> role of the <i>don</i> PUL	46
	2.5.6 Efficient transferrin deglycosylation is unique to <i>B. fragilis</i>	50
2.6	Discussion	53
2.7	Supplementary Figures	58
2.8	Addendum	67
CHAPT	TER THREE: BACTEROIDES FRAGILIS PRIMARY TRANSCRIPTOME ANALYSIS	68
3.1	Introduction	68
3.2	Materials and Methods	69
	3.2.1 Total RNA Extraction	69
	3.2.2 Preparation of cDNA libraries and 454 pyrosequencing	69
	3.2.3 Data Visualization	70
3.3	Results	71
	3.3.1 Identification of <i>B. fragilis</i> TISs at a genome wide level	71

	3.3.2	Confirmation of the recognition sequence for the <i>B. fragilis</i> primary sigma factor
	3.3.3	Discovery of putative small non-coding RNAs in the <i>B. fragilis</i> genome77
3.4	Discu	ssion80
СНАРТ	ER FO	JR: CHARACTERIZATION OF THE REGULATION MECHANISMS FOR THE BACEROIDES
FRAGI	<i>LIS</i> POL	YSACCHARIDE UTILIZTION LOCUS, DON82
4.1	Introd	luction
4.2	Mate	rials and Methods
	4.2.1	Bacterial strains and growth84
	4.2.2	Construction of <i>donA</i> and <i>donB</i> deletion mutants and the <i>donA</i> over-expression
	strain	
	4.2.3	Construction of DonS silencing mutant (IB561) and DonS over-expression strain
	(IB563	3)86
	4.2.4	Total RNA extraction, cDNA synthesis and qRT-PCR87
	4.2.5	Northern blot analysis88
4.3	Result	ts93
	4.3.1	BF638R_3437 and BF638R_3438 encode regulators of the <i>don</i> operon93
	4.3.2	A small non-coding RNA is divergently transcribed from the <i>donC</i> gene96
	4.3.3	DonS is a <i>cis</i> -encoded antisense RNA that negatively regulates the <i>don</i> operon 99
	4.3.4	DonS-like sRNAs are found in other PULs of <i>B. fragilis</i>
4.4	Discu	ssion

REFERENCES	
APPNEDIX 1: COPYRIGHT PERMISSION POLICY OF THE AMERICAN SOCIETY FOR BIOCHEMISTRY	
AND MOLECULAR BIOLOGY	
APPENDIX 2: INDUCTION AND REPRESSION OF BACTEROIDES FRAGILIS 638R PUL GENES IN	
VIVO AND IN VITRO124	4
APPENDIX 3: PRIMARY TRANSCRIPTOME ANALYSIS13	3
APPENDIX 4: INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC) APPROVAL FORM	
	0

LIST OF TABLES

Table 1.1	Sus-like systems in <i>Bacteroidetes</i>	19
Table 2.1	Bacterial strains and plasmids used in this study	25
Table 2.2	Oligonucleotides used in this study	26
Table 2.3	Quantitative glycan analysis of transferrin incubated with <i>B. fragilis</i> cells	42
Table 4.1	Bacterial strains used in this study	89
Table 4.2	Plasmids used in this study	90
Table 4.3	Oligonucleotides used in this study	91
Table 4.4	Characteristics of the DonS-like sRNAs in <i>B. fragilis</i>	106

LIST OF FIGURES

Figure 1.1	A schematic diagram of two opposing half-cycles of the split TCA cycle in <i>B</i> .					
	fragilis5					
Figure 1.2	Functional model of the <i>B. thetaiotaomicron</i> starch utilization system (Sus) 16					
Figure 2.1	In vivo PUL gene expression during growth of <i>B. fragilis</i> in the rat tissue cage					
	model 33					
Figure 2.2	Induction of <i>donC</i> expression during growth on mucin glycans					
Figure 2.3	Deglycosylation of transferrin is mediated by the <i>don</i> PUL					
Figure 2.4	B. fragilis can grow with transferrin as the sole source of carbon and energy 44					
Figure 2.5	Growth in vivo is enhanced by deglycosylation of transferring					
Figure 2.6	Transferrin deglycosylation by medically important <i>Bacteroides</i> species 51					
Figure S1	Genetic map and RT-PCR analysis of the <i>donABCDEFG</i> genes					
	(BF638R3437-43)58					
Figure S2	Induction/repression patterns of SusC orthologues expressed during growth in					
	<i>vivo</i> 59					
Figure S3	Deglycosylation assays using total serous fluid proteins with serum albumin					
	removed 63					
Figure S4	In vitro competition assays in defined media with glucose					

Figure S5	Deglycosylation analysis of IgG and lactoferrin65
Figure S6	Deglycosylation analysis of transferrin by <i>B. thetaiotaomicron</i> strain 5482 66
Figure 3.1	The transcript signal of the BF638R_3589 gene72
Figure 3.2	Logo for the promoter recognition sequence of the primary sigma factor in B.
	fragilis75
Figure 3.3	The putative sRNA in the intergenic region of the <i>don</i> PUL
Figure 4.1	Relative expression of <i>donC</i> in different <i>B. fragilis</i> strains under non-inducing and
	inducing conditions
Figure 4.2	A small, non-coding RNA is divergently transcribe from the <i>donC</i> gene97
Figure 4.3	DonS is a negative regulator of the <i>don</i> expression100
Figure 4.4	Northern blot confirmation of the DonS-like sRNAs in <i>B. fragilis</i>

CHAPTER ONE: INTRODUCTION

This dissertation mainly focuses on the study of a Sus-like polysaccharide utilization locus (PUL) in Bacteroides fragilis, named don. The impetus for studying this locus was derived from the fact that in the rat artificial abscess model, its expression was the most up-regulated in the *B. fragilis* transcriptome compared to in *vitro* growth. This indicates that the *don* locus may play a role in adaption to extraintestinal environments. Also, in an analysis of the B. fragilis primary transcriptome using RNA deep sequencing, a novel feature was observed of cisencoded small RNAs associated with 14 PULs in *B. fragilis*, including *don*. Thus, the major objectives of this dissertation research were: first, characterize the role of *don* in colonization of extraintestinal sites (chapter 2); second, elucidate the role of sRNAs in the regulation of the Suslike systems in *B. fragilis*, using the *don* locus as a model (chapter 4). Also included in this dissertation is a brief description of the *B. fragilis* primary transcriptome analysis since it led to the initial discovery of the sRNAs involved in the PUL regulation (chapter3). This chapter (chapter 1) is a general review on the current understanding of *Bacteroides* physiology and metabolism as it relates to virulence factors and the Sus-like polysaccharides utilization systems.

1.1 Bacteroides taxonomy, structure, physiology and metabolism

The genus *Bacteroides* are Gram-negative, obligate anaerobic bacteria commonly found in the gastro-intestinal tract (GI-tract) of humans and animals as members of the normal

microflora (1). The type species of *Bacteroides* is *B. fragilis*, so sometimes the genus is referred to as the *Bacteroides fragilis* group. This genus falls within the family *Bacteroidaceae* of the order *Bacteroidales* of the phylum *Bacteroidetes*. Together with the closely related genera *Porphyomonas* and *Prevotella*, they make up a major subgroup of the *Cytophaga-Flavobacter-Bacteroides* group which diverged from the primary eubacterial phylogenic lineage very early in evolution (2) and consequently are not closely related to the Gram-negative *Proteobacteria* which are more commonly studied.

All Bacteroides are non-motile, non-spore formers with relatively large genomes ranging in size from 4.4 to 6.7 Mb and relatively low in GC content ranging from 39% to 48% (1). The cell morphology is short rods and the doubling time under optimal growth conditions is approximately 45 minutes. Bacteroides have capsules which are important for their colonization in the distal gut (3). B. fragilis has eight different capsule polysaccharide encoding loci on its genome which are different in size, composition and staining character. Coexpression of two capsule polysaccharides is commonly observed (4-6). On the cell surface, Bacteroides possess pilli- or fimbrae-like structures that serve for attachment (1). Under transmission electron microscopy, numerous blebs on the cell surface and detached extracellular vesicles can be observed (7). These vesicles have been shown to have hemagglutinin function and contain sialidase activity (8, 9). The lipopolysaccharide (LPS) of Bacteroides is different from the canonical LPS structure represented by *E. coli* LPS. The lipid A in *Bacteroides* LPS is pentaacylated and monophosphorylated and the fatty acids chains are branched, 15 to 17 units long in contrast to the unbranched 12 or 14 unit length of canonical LPS (10). This structure probably is responsible for its low toxicity compared to the LPS of other Gram-negative bacteria (1).

Bacteroides also have a rare O-glycsosylation system which enables them to synthesize fucosylated glycoproteins (11). The model for this general O-glycsosylation proposes that the glycan chain is assembled on a lipid carrier on the inner side of the cytoplasmic membrane by the sequential action of glycosyltransferases, then the glycan is flipped to the periplasmic space and glycosylation of the target protein happens there. The fucosylated O-linked glycoproteins then are inserted into the outer membrane surface and play a role in the colonization in the gut (12).

Bacteroides are saccharolytic organisms that primarily use carbohydrates as their carbon/energy source (1). They can express a large number of outer membrane protein complexes for polysaccharide transport and utilization (13). An in-depth review of these outer membrane complexes in *Bacteroides* will be given later in this chapter. Once the polysaccharides have been hydrolyzed to their monosaccharide units, further carbohydrate catabolism proceeds through the Embden-Meyerhof pathway followed by a split TCA cycle composed of two opposing half-cycles termed the oxidative branch and the reductive branch (1, 14). A simplified schematic diagram of this split TCA cycle is shown in Fig. 1.1. Anaerobic respiration makes use of the reductive branch of the TCA cycle with fumarate as the terminal electron receptor, reduced to succinate mediated by a membrane-bound fumarate reductase (1). Interestingly, *Bacteroides* also possess a cytochrome bd oxidase which allows them to use oxygen as a terminal receptor when oxygen is at nanomolar levels (15). Under nanomolar oxygen levels (60 nM to 1000 nM), the growth benefit of this cytochrome bd oxidase can be seen when respiration with fumarate is disrupted by deletion of the fumarate reductase (15).

However, as obligate anaerobes, *Bacteroides* cannot grow with oxygen levels close or above 2 μ M (15).

Heme is important for *Bacteroides* metabolism during normal growth. However *Bacteroides* cannot synthesize heme *de novo* and it must be obtained from the environment (1). When grown in the absence of heme, their metabolism shifts from anaerobic respiration to strictly fermentation since heme is required as a cofactor by two critical components of the electron transport chains, fumarate reductase and cytochrome bd oxidase (1). Under these conditions, fumarate and lactate will accumulate as the metabolic byproducts instead of the short chain fatty acids succinate and propionate (1). During anaerobic respiration, fumarate is constantly consumed as the final electron receptor and reduced to succinate. The large demand for fumarate is provided by carboxylation of phosphoenolpyruvate to oxaloacetate, and then by enzymes of the reductive branch of the TCA cycle (1, 14). Carbon dioxide is required for the *Bacteroides* anaerobic respiration since it is the substrate for the carboxykinase to catalyze the carboxylation of phosphoenolpyruvate. Fig. 1.1. A schematic diagram of two opposing half-cycles of the split TCA cycle in *B. fragilis* (14).

As saccharolytic bacteria, *Bacteroides* cannot use proteins or peptides as the sole carbon/energy source but they can use them as the sole nitrogen source, although ammonia is the more preferred nitrogen source (1). Ammonia assimilation in *Bacteroides* is primarily through incorporation of ammonia into α -ketoglutarate to form glutamate catalyzed by glutamate dehydrogenase (1). Glutamate serves as an amino group donor for the synthesis of other amino acids. α -ketoglutarate biosynthesis is achieved through the reductive branch of the split TCA cycle in the presence of heme, alternatively, the oxidative branch in the absence of heme (14) (Fig. 1.1). The *Bacteroides*, with the possible exception of *B. ovatus*, synthesize all of their amino acids *de novo* (1).

1.2 The mutualistic relationship between *Bacteroides* and their hosts

The human distal gut is one of the most densely populated microbial ecosystems on earth, exceeding numbers of 10¹¹ per gram of wet weight, and *Bacteroides* is one of the predominant species making up to 25% of the total microbial population in this ecological niche (1, 7, 16). A strong mutualistic relationship between the *Bacteroides* and their hosts has developed over the course of coevolution (16, 17).

The human large intestine provides an ideal space for the *Bacteroides* to thrive: sufficient moisture; highly reducing environment with oxygen levels less than 1.5%; carbon dioxide levels of 5% - 10%; adequate amount of ammonia, heme and vitamin B₁₂; and most importantly a stable source of carbon/energy from the constant influx of polysaccharides from indigestible material in the diet and host mucosal secretions (18-21). The host diet plays an important role in shaping the gut microflora composition including the *Bacteroides* species (18-20, 22).

In return for the food and shelter, *Bacteroides* provide multiple benefits to their host. The breakdown and conversion of the indigestible dietary fiber to short chain fatty acids by the Bacteroides provides the host an additional nutrition source which can meet up to 10% of the human energy requirement (1, 7, 23). Bacteroides also play important roles in the development of the host GI tract: their presence greatly increases the volume, surface area of and villi numbers in the GI tract (1). They participate in the development of gut associated lymphatic tissue (GALT) and gut angiogenesis (24). They prevent the attachment and colonization of pathogenic bacteria by occupying the mucosal surface of the gut to form a protective barrier. B. thetaiotaomicron can also help prevent infection by Gram-positive species by promoting induction of a host cell secreted bactericidal lectin named RegIIIy, which can directly bind to the peptidoglycan and result in bacterial killing (25). B. thetaiotaomicron also stimulates the production of a certain type of immune cell in the gut crypts called Paneth cells which secrete an antimicrobial substance to kill specific pathogens such as Listeria monocytogenes (26). B. *fragilis* in the gut can help the host develop a healthy immune response and prevent allergies (27). This is mediated in part by the capsule polysaccharide, polysaccharide A (PSA), which is a zwitterion, unlike most other capsule polysaccharides which are only negatively charged. PSA can bind to major histocompatibility complex II molecules in the professional antigen presenting cells and be presented to the T cells. It has been show that PSA can prevent inflammation by triggering the IL-10 mediated anti-inflammatory response at the same time repressing the Th17 mediated pro-inflammatory response (28, 29). It also can correct the CD4+

cell deficiency and establish Th1/Th2 balance in the gut (28, 29). The beneficial effect of PSA immunomodulatory properties even can be seen in the brain. A recent study using a mouse model shows that a subset of neurodevelopmental disorders, including autism spectrum disorder (ASD), could be due to dysbiosis of the gut microbiota and GI barrier impairment. Harmful bacterial metabolites, for example 4-ethylphenylsulfate (4EPS), can pass the tight junctions between intestinal epithelial cells and enter blood stream circulation. These metabolites can cause autism-like symptoms in the host such as abnormalities in sociability, communication, compulsive activity and severe stereotypic behavior. Oral treatment with B. fragilis can alter the gut microbial composition, restore normal GI barrier permeability and correct the ASD-related behavioral abnormalities (30). *Bacteroides* can efficiently deconjugate bile salts in the gut. Deconjugated bile salts have a much lower reabsorption rate and lowered ability to solubilize diet cholesterols. Non-reabsorbed bile will be excreted which has the indirect affect to reduce cholesterol levels by forcing the host to use more cholesterols for biosynthesis of bile salts and decrease cholesterol absorption (31). Lastly, several reports have shown that there is an association between the intestinal *Bacteroides* population and obesity. Obese individuals tend to have an abnormally low *Bacteroides* to *Firmicutes* ratio (32, 33). In some studies, it was also found that the relative abundance of *Bacteroides* increases as obese individuals lose weight (34). It is still not clear whether there is a causal relationship between obesity and the proportion of *Bacteroides* in the gut.

1.3 Bacteroides as opportunistic pathogens

Although the *Bacteroides* do provide many benefits as friendly commensals, they can transform into dangerous threats when translocated to extraintestinal sites. *Bacteroides* are frequently isolated from clinical anaerobic infections with high mortality (1, 7). *Bacteroides fragilis*, the type species of this group, only accounts for 0.5% of the colonic flora, but it is the most common anaerobe isolated from infections, being found in more than 63% of *Bacteroides* associated infections (1, 7). Thus, *B. fragilis* is regarded as the most virulent *Bacteroides* species and has served as a model for studying *Bacteroides* pathogenesis. Anaerobic infections are usually polymicrobial, and *B. fragilis* associated anaerobic infections have a mortality of more than 19%, up to 60% if left untreated (35).

B. fragilis opportunistic infections generally occur when the integrity of the intestinal wall is disrupted. Common predisposing conditions include GI surgery, trauma, malignancy and perforated inflammatory disease or infections in the GI tract (1, 7). *B. fragilis* associated infections include abscesses, appendicitis, bacteremia, bone and soft tissue infections, deep wound ulcers and UTI infections, but the most common and dangerous are intra-abdominal abscesses (IAA) (1, 7). IAA caused by *B. fragilis* are actually a pathologic immune response in which the immune cells are attracted to infected sites, if unable to clear the infection, additional immune cells are recruited to contain the bacterial cells and necrotic host tissue by walling them off with fibrin and connective tissues (36, 37). Once formed, antibiotic treatment has little effect on IAA and surgery is usually required. Rupture of the IAA without medical intervention usually leads to life-threatening situations.

It is also worthy to note that some strains of *B. fragilis* are able to produce the enterotoxin fragilysin. These strains are grouped as enterotoxigenic *B. fragilis* (ETBF) (92). ETBF can cause secretory diarrhea and studies have shown they also may be linked to inflammatory bowel disease and colon cancer (92).

1.4 Virulence Mechanisms

Following translocation from the gut to an extraintestinal site, *Bacteroides* typically face several challenges to the establishment of a successful infection. First, they need to attach at the site of infection, withstand the increased oxygen tension and resist clearing mechanisms from the host immune system. Next, they must persist in the new environment where the available nutritional resources become very limited, and where they need to shift their diet from a combination of dietary glycans and host glycans to host glycans only. *Bacteroides* need to coordinately express a variety of virulence factors to meet these challenges (1).

The *Bacteroides* capsule is a major factor associated with infection and pathogenesis. It contributes to the virulence in several ways. First, the capsule plays an important role in adherence. It has been shown that the ability of *B. fragilis* and other *Bacteroides* to adhere to rat peritoneal mesothelium depended on the presence of capsular polysaccharide, while acapsular strains were less adherent (39). Purified capsular polysaccharide alone can compete with live bacterial cells and inhibit *B. fragilis* adherence to rat peritoneal mesothelium (39). Second, the capsule can help *Bacteroides* withstand host clearance mechanisms due to its antiphagocytic and anti-complement properties (40) and it subverts immune surveillance by

antigenic variation. For example, a single strain of B. fragilis has the capacity to synthesize eight different capsular polysaccharides, designated PSA to PSH (41), and expression of these capsular polysaccharides are regulated by two independent mechanisms. One is DNA inversion by which the promoter region of each individual locus can flip to give it an "on" or "off" status (42, 43). This inversion is mediated by a global DNA invertase named Mpi (42, 44, 45). The second mechanism involves trans locus inhibition. Within each capsule polysaccharide synthesis locus, there are two regulatory genes that encode UpxY and UpxZ, where x is replaced by "a" to "h" corresponding to PSA to PSH. UpxY is an antiterminator which is necessary for the transcription of the full length message of that polysaccharide synthesis locus, and UpxZ is a trans locus inhibitor which interacts with several other UpxYs to cause premature termination of the transcription of other capsule synthesis loci (46, 47). The combined effect of these two regulatory mechanisms allows B. fragilis to switch its capsule composition so that no more than two types of capsular polysaccharides are expressed at the same time. This ability to change the architecture on the cell surface may result in antigenicity variation and evasion of host immune surveillance (48). In addition to adherence and immune evasion, the capsule plays a vital role in abscess formation (49). Injection of capsule polysaccharide alone is sufficient to induce abscess formation, while systemic injection prevents abscess formation in rats, presumably due to the establishment of an antibody response to the capsules (49-51). It also has been demonstrated that the capsular polysaccharides do not contribute equally to abscess formation; rather, PSA is the most potent among all the eight to facilitate abscess formation (52). PSA is a zwitterionic (both positively and negatively charged) which can trigger a T-cell dependent response, and

contains the amino sugar acetamido-amino-2, 4, 6-trideoxygalactose (AATGal) as a component sugar. These two properties were thought to boost the PSA's abscess formation ability (49, 52).

Extraordinary aerotolerance is another important factor associated with Bacteroides extraintestinal infection. When translocated from the colon to the peritoneal cavity, bacteria have to face the challenge of increased oxygen tension up to 6% in this new environment. Oxidative stress will generate dramatic amounts of intracellular reactive oxygen species (ROS) such as hydrogen peroxide, superoxide and hydroxyl radicals, and ROS cause damage in a cell by peroxidation of membrane lipids, oxidation of amino acids in proteins, destruction of ironsulfur clusters in enzymes, modification of DNA bases and strand breaks (53). Bacteroides, as strict anaerobes, cannot shift to a full aerobic metabolism but they can mount a sophisticated oxidative stress response that allows them to survive in oxygenated environments for extended periods of time. The oxidative stress response in B. fragilis has been well characterized, and can be divided into two phases. One is an acute response in which approximately 28 gene products involved in detoxification, repairing, and protection are quickly up-regulated within minutes of oxygen exposure (1, 54, 55). These gene products include catalase, peroxidase, superoxide dismutase, alkyl hydroperoxide reductase, and the non-specific DNA binding protein DPS, which all work synergistically to minimize the effect of ROS and to restore the reduced intracellular environment (54, 55). If the oxidative stress remains for an extended period, B. fragilis will mount a prolonged oxidative stress response (POST) in which there is a shift in gene expression aimed at remodeling the bacterial metabolism and physiology. This metabolic response induces genes encoding enzymes that can supply reducing power for detoxification and restore energygenerating capacity (55-59). This sophisticated oxidative stress response makes B. fragilis one of

the most aerotolerant anaerobes on earth and enhances its survival in extraintestinal sites to allow it to cause infection (55).

Besides its capsules and oxidative stress response, *B. fragilis* also has other virulence traits. These include the ability to release outer membrane vesicles containing a variety of hydrolases and hemagglutinases (8, 9), expression of neuraminidinases, expression of hemolysins (54, 60), and release of proteases and enterotoxin (enterotoixigenic strains only) (92).

1.5 The polysaccharide utilization systems in *Bacteroides*

Bacteroides are glycan utilization experts with extraordinary enzymatic abilities to degrade a wide variety of polysaccharides as carbon/energy sources (21). The human distal gut allows *Bacteroides* to exert their expertise by constantly providing a broad spectrum of polysaccharides, mostly undigested dietary glycans such as cellulose, pectin, xylan, and host derived glycans in the form of glycoconjugates such as glycoproteins, glycolipids and glycosaminoglycans (20, 22, 61). This ability explains in part why *Bacteroides* are so predominant in the distal gut (18, 19).

In *Bacteroides* genomes, genes encoding the machinery to degrade a specific type of polysaccharides are organized into multiple gene clusters, known as polysaccharide utilization loci (PULs). The ability to utilize such a wide variety of polysaccharides is the result of dedicating

a large portion of their genomes to these PULs. For instance, 18% of *B. thetaiotaomicron* genome is composed of these PULs (62).

Bacteroides PULs were first characterized in *B. thetaiotaomicron* using the starch utilization system (Sus), which specifically degrades starch, as a model. The sus locus contains eight genes *susABCDEFGR*. *SusA* and *susB* encode periplasmic amylases. *SusC* encodes a TonBlinked outer membrane porin which is required to transport the processed starch oligosaccharides from outside of the cell to the periplasmic space. The *susD* gene encodes an outer membrane protein which binds the oligosaccharides and aids its transportation through the channel formed by SusC porin. Downstream genes *susEFG* encode gene products which will form an outer membrane complex with SusC and SusD and are important for recognition and processing of large starch molecules (63-66). SusR is a transcriptional activator which responds to the substrate in the periplasmic space (67). A functional model of the *B. thetaiotaomicron* starch utilization system is represented by Fig. 1.2.

Steps involved in processing starch are sequentially illustrated and numbered. Step 1, starch molecules transit through the capsule layer. Step 2, starch molecules are bound by outer membrane complex components such as SusD. Step 3, surface bound starch molecules are degraded and processed by outer membrane complex component glycohydrolase such as SusG, generating smaller oligosaccharides through the outer membrane porin SusC. Step 4, oligosaccharides are further degraded into component mono- or disaccharides by periplasmic

Fig. 1.2. Functional model of the *B. thetaiotaomicron* starch utilization system (Sus) (68).

glycan degrading enzymes SusA and SusB. Step 5 and 6, liberated glycan components serve as signal molecules for the transcriptional activator SusR that activate *sus* operon expression. Step

7, degraded sugar units are imported in to the cytoplasm serving as a carbon/energy source.

This figure is originally published on Journal of Biological Chemistry. Martens, E. C.; Koropatkin, N. M., Smith, T. J., Gordon, J. I. Complex glycan catabolism by the human gut microbiota: the *Bacteroidetes* Sus-like paradigm. *Journal of Biological Chemistry*. 2009. 283 (37): 24673-24677. © the American Society for Biochemistry and Molecular Biology. (Appendix 1).

The *B. thetaiotaomicron* Sus system serves as a paradigm for all the Sus-like PULs in *Bacteroides*. These PULs encode similar outer membrane protein complexes for glycan utilization and are identified by sequence homology. Most PULs contain the SusC and SusD homolog with or without the presence of other downstream genes encoding outer membrane complex proteins, but in limited cases, only the SusC/SusD-like protein pair is present in the locus (7, 13). In contrast to the archetypical *B. thetaiotaomicron* Sus system, the most frequently observed genetic regulators of the PULs in *B. fragilis* are not SusR homologs but rather they are ECF sigma factor/anti sigma pairs, and in some cases two component regulatory systems.

Although there is a wide range of glycan substrates used by the Sus-like systems, each system generally only has one specific type of glycan as the substrate (68), and the Sus-like systems are not only limited in *Bacteroides* species but seen in the *Bacteroidetes* phylum (68). A few well-studied Sus-like systems are listed in Table 1.1.

The traditional catabolite repression/activation system which allows for the select utilization of a preferential carbon/energy source does not function in *Bacteroides* as they do not possess cyclic AMP (69). Although multiple Sus-like systems can be induced at the same time when their substrates are present, a recent study showed that there is a hierarchy in the expression of these Sus-like systems (22). The mechanism of how *Bacteriodes* define the hierarchy is not clear. Interestingly, there also appears to be a link between the expression of some specific Sus-like systems and polysaccharide capsule biosynthesis, but the mechanism is still not fully understood (62).

 Table 1.1. Sus-like systems in the Bacteroidetes

Ref.	(68)	(124)	This study	(86)	(59)	(63)	(1)
Special note	Paradigm for all Sus-like systems	Break down plant cell walls	Extraintestinal growth factor	Commensal colonization factor	Oxygen inducible	A Sus-like system in a <i>Flavobacteria</i>	Enable the bacterium to grow on chondroitin sulfate and hyaluronic acid
Substrate	Starch	Xylan glycans	Transferrin and other serum glycoproteins	Unknown host glycan	Starch	Human IgG glycan	Glycosaminoglycan
Species	B. thetaiotaomicron	B. ovatus	B. fragilis	B. fragilis	B. fragilis	C. canimorsus	B. thetaiotaomicron
Name	Sus	XyGULs	Don	CCF	Osu	Gpd	Csu

CHAPTER TWO: EFFICIENT UTILIZATION OF COMPLEX N-LINKED GLYCANS IS A SELECTIVE ADVANTAGE FOR BACTEROIDES FRAGILIS IN EXTRAINTESTINAL INFECTIONS

2.1 Abstract

Bacteroides fragilis is the most common anaerobe isolated from clinical infections and in this report we demonstrate a novel feature of the species that is critical to their success as an opportunistic pathogen. Among the *Bacteroides spp.* in the gut, *B. fragilis* has a unique ability to efficiently harvest complex N-linked glycans from the glycoproteins common to serum and serous fluid. This activity is mediated by a Sus-like outer membrane protein complex designated as Don. Using the abundant serum glycoprotein transferrin as a model it was shown that *B. fragilis* alone can rapidly and efficiently deglycosylate this protein *in vitro* and that transferrin glycans can provide the sole source of carbon and energy for growth in defined media. We then showed that transferrin deglycosylation occurs *in vivo* when *B. fragilis* is propagated in the rat tissue cage model of extraintestinal growth and that this ability provides a competitive advantage *in vivo* over strains lacking the *don* locus.

2.2 Significance

The human microbiota has a huge impact on health from the proper development of the immune system to the maintenance of normal physiological processes. The largest concentration of microbes is found in the colon which is home to more than 500 bacterial species most of which are obligate anaerobes. This population also poses a significant threat of opportunistic infection and of all the species present, *Bacteroides fragilis* is the one most frequently isolated from anaerobic, extraintestinal infections. New findings presented here describe a unique ability of this species to efficiently deglycosylate complex N-linked glycans from the most abundant glycoproteins found in serum and serous fluid. This provides *B. fragilis* a competitive, nutritional advantage for extraintestinal growth.

2.3 Introduction

The genus *Bacteroides* are Gram-negative, obligate anaerobic bacteria that account for approximately 30% of the microbiota in the human large intestine (1, 17). This relationship benefits the host by aiding in the development of a healthy immune response and in the maintenance of many physiological and nutritional processes. One major factor that contributes to the predominance of *Bacteroides* is their capacity to utilize a wide spectrum of polysaccharides ranging from dietary compounds that cannot be digested by the host, such as xylans or pectins, to the host derived glycans in the form of glyco-conjugates (19, 20). Polysaccharide digestion in the *Bacteroides* is mediated in large part by novel outer membrane complexes that bind, cleave and transport these substrates. These systems have a similar
genetic organization characterized by a regulatory region followed by an operon coding for orthologues of the TonB-dependent transporter, SusC, and the accessory binding protein SusD. Additional genes in the operon are for specific substrate binding and glycohydrolase enzymes (68). The genes for these protein complexes are termed polysaccharide utilization loci (PULs).

In contrast to their beneficial role in the colon, *Bacteroides* species also are the most common opportunistic pathogens isolated from clinical specimens of anaerobic infections. These opportunistic infections can occur when the integrity of the intestinal wall becomes compromised. Predisposing conditions include intestinal surgery, perforated or gangrenous appendix, carcinoma, diverticulitis, trauma and inflammatory bowel diseases. Peritonitis and intra-abdominal abscesses are the most common infections associated with *Bacteroides* often leading to bacteremia (70). Notably, *Bacteroides fragilis* represents only 0.5% of the gut flora yet it is isolated in the majority of anaerobic infections, thus it is regarded as more invasive than the other *Bacteroides* (71-73). A number of factors have been identified that may contribute to its enhanced extraintestinal survival. For example, there is a variable polysaccharide capsule which interferes with immune surveillance and there is a robust oxidative stress resistance system but these attributes are not exclusive to *B. fragilis* (43, 52, 55). Another challenge faced by organisms invading from the colon is the need to adapt to different nutritional sources. In the gut, the Bacteroides rely on dietary polysaccharides and host derived glycans as sources of carbon/energy but when outside of the gut environment they will have more limited choices of only host derived glycans. The ability to efficiently harvest glycans present on host glycoproteins in extraintestinal sites may enhance survival and colonization.

In this report we describe a Sus-like PUL which is unique to *B. fragilis* and allows it to efficiently utilize complex N-linked glycans from the most abundant serum/serous fluid glycoproteins including transferrin. Overall the studies suggest that the ability to harvest these glycans is advantageous for growth at extraintestinal sites and can explain, in part, the success of *B. fragilis* as an opportunistic pathogen relative to the other *Bacteroides* species.

2.4 Materials and methods

2.4.1 Bacterial strains and growth.

Bacterial strains and plasmids used in this study are listed in Table 2.1. *B. fragilis* 638R was the wild type strain used for genetic analyses. *Bacteroides* strains were grown in an anaerobic chamber in Brain Heart Infusion broth supplemented with hemin and cysteine (BHIS) (55). Rifampicin (20 µg/ml), gentamicin (100 µg/ml), erythromycin (10 µg/ml) and tetracycline (5 µg/ml) were added as indicated. Minimal defined media (DM) were prepared as described previously with the specific carbon/energy sources described in the text (74). Mucin glycans were prepared by proteolysis of porcine gastric mucin (Sigma-Aldrich, Cat. M2378) followed by alkaline β -elimination to release free glycans (20). In experiments using DM-transferrin, the transferrin was >98% iron saturated holo-transferrin and the transferrin-containing media (and controls) contained 100 µM FeSO₄ to ensure a readily available source of iron for growth.

Bacterial strain or plasmid	^a Description	Reference
		or source
Bacteroides strains		
IB101	<i>B. fragilis,</i> 638R, clinical isolate, Rf ^r	(75)
IB555	638R Δ <i>don</i> , BF638R3439-3443 genes replaced with a <i>tetQ</i> cassette,	This study
	Tc ^r , Rf ^r	
IB114	<i>B. fragilis</i> , ATCC 25285, clinical isolate, Rf ^r	(55, 76)
IB116	Bacteroides thetaiotaomicron, VPI strain 2302, Rf ^r	(77)
BT5482R	Bacteroides thetaiotaomicron, VPI strain 5482 (ATCC 29148), Rf ^r	(77)
IB102	Bacteroides uniformis, VPI strain 006-1 (ATCC8492), Rf ^r	
IB103	Bacteroides ovatus, VPI 0038 (ATCC 8483)	(76)
IB351	Bacteroides vulgatus, ATCC 8482	(76)
BER37	Parabacteroides distasonis, clinical isolate CLA348	(78)
Ber39	Parabacteroides merdae, ATCC 43185	
E. coli strains		
DH10B	<i>E. coli,</i> F ⁻ mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1	Invitrogen
	endA1 araD139 Δ(ara leu) 7697 galU galK rpsL nupG λ⁻	
HB101::RK231	<i>E. coli</i> , HB101 containing RK231, Kn ^r , Tc ^r , Sm ^r	(79)
Plasmids		
pFD516	<i>Bacteroides</i> suicide vector, 7.7 kb, Sp ^r in <i>E. coli</i> , Em ^r in <i>Bacteroides</i>	(80)
pFD516/omp117±2K/tetQ	pFD516 containing the BF638R3439-3443 deletion construct with the	This study
	<i>tetQ</i> gene cassette, 14.6 kb, Sp ^r in <i>E. coli</i> , Em ^r and Tc ^r in <i>Bacteroides</i> .	

Table 2.1 Bacterial strains and plasmids used in this study.

^a Rf, rifampicin; Tc, tetracycline; Sp, spectinomycin; Em, erythromycin; Kn, kanamycin; Sm, streptomycin.

Name	Sequence ($5' \rightarrow 3'$)	Tag	Description	
UF	AGTC <u>CTGCAG</u> CAAACAGATGCCTTATCAGTTT	Pstl	Designed to amplify 2 kb	
UR	AGTC <u>GGATCC</u> CAGTGTCTTATCCAGAGATTCA	BamHI	upstream of donC	
DF	AGTC <u>GGATCC</u> CTGGACAATATCGATTCAAGCA	BamHI	Designed to amplify 2 kb	
DR	AGTC <u>GAGCTC</u> ATAGCGACCAAAACCCTTCT	Sacl	downstream for donG	
Omp117rtL	GGTGAAGGCATTTCCGACTT		Designed to amplify a 140 bp	
Omp117rtR	TTGCCTTCCTGCCCTTTCTT		fragment of <i>donC</i> gene for quantitative PCR	
16srL	GATGCGTTCCATTAGGTTGTTG		Designed to amplify a 127 bp	
16srR	CACTGCTGCCTCCCGTAG		fragment of 16s ribosomal RNA gene for quantitative PCR	
PsigOKL2	AATCACAATCAGCCTTATATTCTAC		Designed to amplify a 375 bp fragment spanning <i>donA</i> and its potential TIS region	
PsigOKR	CATTGCTCCTGATAGGTCTG			
PantisigOKL	GGATATTTCGATCCGCACTG		Designed to amplify a 298 bp	
PantisigOKR	TTTCCTTCCGTTTCGTTCCA		fragment spanning the intergenic region of <i>donA</i> and <i>donB</i>	
Pomp117L	AGATATCCTGAACATTATGCAGG		Designed to amplify a 339 bp	
Pomp117R	GCCGTTTGTAGAATAAAACAGC		fragment spanning the intergenic region of <i>donB</i> and <i>donC</i>	
PsusDL	AATGACCTCTTCGACAGGTA		Designed to amplify a 220 bp	
PsusDR	GGTTCCGGTTGATATCTTCG		fragment spanning the intergenic region of <i>donC</i> and <i>donD</i>	
PendoSL	ATTGATCGGAAACGGATACG		Designed to amplify a 240 bp	
PendosR	CTACCAACAATGCTACTCCG		fragment spanning the intergenic region of <i>donD</i> and <i>donE</i>	
PsusEL	GAAGACGCATTTGAAGACGA		Designed to amplify a 261 bp	
PsusER	GCTCTAAAGTGAAGTTGACGA		fragment spanning the intergenic region of <i>donE</i> and <i>donF</i>	
PsusFL	GAGACCAAAGACCTGAAAGC		Designed to amplify a 288 bp	
PsusFR	GAGTTGCTCACGGATATCTT		fragment spanning the intergenic region of <i>donF</i> and <i>donG</i>	

2.4.2 Construction of a *don* operon deletion mutant.

The *don*CDEFG genes were replaced with a *tetQ* tetracycline resistance (Fig. S1). Chromosomal fragments of about 2 kb flanking the *donC* and *donE* genes were amplified using PCR primer pairs UF/UR and DF/DR respectively (Table 2.2). The amplified DNA was cloned into the *Bacteroides* suicide vector pFD516 together with the *tetQ* gene cassette in a three-fragment ligation. The recombinant plasmid was mobilized into *B. fragilis* 638R by conjugation and exconjugants were selected on BHIS plates containing rifampicin, gentamicin and tetracycline. Candidate mutants were screened for sensitivity to erythromycin and by PCR to identify the double-crossover allelic exchange.

2.4.3 Animal model of infection.

The tissue cage infection model has been described previously (60, 81). Briefly, a perforated, sterilized Ping-Pong ball was surgically implanted into the peritoneal cavity of an adult male Sprague Dawley rat and allowed to encapsulate for 4-5 weeks. The ball becomes encased in connective tissue, develops a blood supply, and fills with sterile serous fluids (~25ml per ball). *B. fragilis* strains grown overnight in BHIS media were diluted in PBS buffer (50 mM PO₄, 150 mM NaCl, pH 7.4,) to 10⁵ CFU/ml and 4 ml of this suspension was injected into the tissue cage. Samples were aspirated at the indicated time points for viable cell counts and RNA extraction. For viable cell counts aliquots were serially diluted in PBS buffer, plated on BHIS plates and incubated in an anaerobic chamber to determine CFU. Samples were also plated on LB agar plates and incubated aerobically to check for contamination.

The *in vivo* competition assay was performed by mixing overnight cultures of 638R and Δdon at a one to one ratio followed by dilution in PBS buffer to a total viable cell count of 10⁵ cfu/ml. Four ml of the cell mixture was injected into the tissue cage of each animal and aliquots were plated to determine CFU/ml. Diluted samples were plated on BHIS plates with rifampicin and gentamicin. After 4-5 days incubation, 100 to 300 colonies from each sample were picked to BHIS plates with and without tetracycline to check the resistance phenotype and determine the ratio of mutant to wild type.

All procedures involving animals followed the National Institutes of Health guidelines and were approved by the Animal Care and Use Committee of East Carolina University. For each bacterial strain tested two trials of 5 animals each were performed.

2.4.4 Total RNA extraction.

RNA extraction from *in vivo* samples was done as described previously with a few modifications (60). Fluid was aspirated and immediately mixed with RNAprotect Cell Reagent (Qiagen, Inc.) at a 1:2 ratio. Next, 0.1% sodium deoxycholate was used to lyse host cells, then bacterial cells and debris were collected and washed in PBS containing RNAprotect Cell Reagent and sodium deoxycholate. Total RNA was extracted from the cell pellet using the hot phenol method described previously (82) and stored in 50% formamide at -80°C. RNA extraction from *in vitro* bacterial cell cultures was performed on washed cell pellets using the same hot phenol method.

2.4.5 cDNA synthesis, qRT-PCR, and microarray analysis.

Total RNA was purified using the RNeasy Mini Kit (Qiagen, Inc.) and DNA was removed by treatment with DNase (Ambion/Life Technologies Inc.). DNA contamination was determined by PCR using specific for the 16s ribosomal RNA gene (Table 2.2). First strand cDNA synthesis was carried out using 1 µg total RNA with random hexamer primers and Superscript III RT (Life Technologies, Inc.). For qRT-PCR, primer pair, omp117rtL and omp117rtR, were used to amplify a 140 bp fragment of the *donC* gene in a standard reaction mixture with SYBR^R Green Supermix (Bio-Rad, Inc.). All sample reactions were in run in triplicate and RNA with no reverse transcriptase was used as a control to monitor for DNA contamination. Relative expression values were normalized to 16s rRNA and calculated by the method of Pfaffl (83). Results represent at least two independent experiments performed in triplicate.

Expression microarray analyses were performed essentially as described previously (58). Double stranded cDNA was synthesized with the SuperScript^R Double-Stranded cDNA Synthesis Kit (Life Technologies, Inc.). One µg of purified double stranded cDNA was then labeled with cy3, hybridized to microarray slides, and processed by the Florida State University Roche/NimbleGen Microarray Facility. For each experimental condition at least two independent trials were performed. Each trial consisted of a high-density-oligonucleotide whole genome expression microarray (Roche/NimbleGen, Madison WI) with 8 technical replicates of each probe per slide. RNA for each trial was pooled from five rats prior to cDNA synthesis. Raw microarray expression data were normalized by using the RMA algorithm implemented with the Roche DEVA 1.1 software. The microarray expression data have been deposited in the NCBI Gene Expression Omnibus database under accession number GSE53883.

2.4.6 Whole cell deglycosylation assay.

Cultures were grown in 5 ml of DM-mucin glycan, harvested by centrifugation at midlogarithmic phase, washed and the cells were suspended to an OD A_{550} of 1.0 in PBS. 100 µL of the cell suspension was incubated with 100 µL of tissue cage serous fluid (1/10 diluted), purified human transferrin (1 mg/ml in PBS), IgG (1 mg/ml in PBS) or IgA (1 mg/ml in PBS) as described in the text. All proteins were from Sigma Aldrich Inc. For controls 100 µL PBS replaced the bacterial cell suspension. Assays were incubated anaerobically at 37°C for 3 hours or overnight, then samples were centrifuged, supernatants collected, mixed with loading buffer and electrophoresed on 12% SDS-PAGE gels. The gels were analyzed by Coomassie blue staining or proteins were transferd to PVDF membranes for glycan determination using *Sambucus nigra* agglutinin according to the manufacturer's instructions (Roche, DIG Glycan Differentiation Kit).

2.4.7 Glycomics analyses of *B. fragilis* treated human transferrin.

Purified human transferrin was suspended in PBS to 2 mg/ml and 100 μ L of this was used in deglycosylation assays as described above except that following incubation the assay supernatants were filter sterilized and frozen at -80°C. Samples were analyzed by Ezose Sciences Inc. (Pine Brook, NJ) to quantify *N*-linked glycans using previously reported methods (84, 85). Briefly, samples were denatured, digested with trypsin and then heat-inactivated. The *N*-glycans were then enzymatically released from the peptides by treatment with PNGase F, captured on chemoselective beads and then processed for MALDI-TOF mass spectrometry. Mass spectra were analyzed using Ezose's proprietary bioinformatics programs. Results were normalized to 1 g/L of transferrin and reported as the average of two independent experiments.

2.5 Results

2.5.1 In vivo, extraintestinal PUL expression.

Considerable progress has been made in understanding how the *Bacteroides* compete for and utilize limited nutrients in the gut ecosystem. In contrast, there is a paucity of knowledge concerning *Bacteroides* nutrient foraging in extraintestinal environments. As an initial strategy to identify significant pathways of catabolism, microarrays were used to measure gene expression of *B. fragilis* cells growing in a rat tissue cage abscess model. The results suggested that the organism may rely on a variety of PULs to harvest glycans from host proteins present in the serous fluid of the model abscess. *B. fragilis* has 47 putative PULs and 22 stand-alone SusC/SusD-like protein pairs and several of these were among the most highly induced genes *in vivo*. A five gene operon, BF638R3439-43 associated with one of these PULs was induced from 2147- to 765-fold along the length of the 8 kb operon. These were the most highly induced genes *in vivo* and the genes in this PUL have been designated as *donABCDEFG* (Fig. S1). To more easily compare expression of all PUL operons, the SusC orthologues were used as proxy for expression of the entire operon (22). This approach was validated by qRT-PCR which confirmed the *in vivo* induction of *donC* (Fig. 2.1A). The results from day 1, 4, and 8 samples were compared to *in vitro* grown mid-logarithmic phase cultures and showed a high level of induction throughout the course of the experiment.

Examination of the SusC orthologue expression data by *k*-means clustering revealed four major *in vivo* PUL gene induction patterns (Appendix 2, Fig. S2). The *donC* gene was associated with the most highly induced genes, Cluster 1, which consisted of 8 PULs and 5 stand-alone SusC/SusD orthologues. As shown in Fig. 2.1B the PULs in this cluster were rapidly induced more than 10-fold and the level of induction remained high throughout the 8 days. A second cluster of 25 SusC orthologues was induced more gradually and remained induced 1.5-5-fold for the 8 days (Fig. S2B). The remaining two PUL clusters were repressed in the abscess model and may be of less importance outside of the intestinal environment.

Fig. 2.1. *In vivo* PUL gene expression during growth of *B. fragilis* in the rat tissue cage model. Samples for analyses were pooled from 5 animals 1, 4, and 8 days post inoculation. **A)** Expression of *donC* was determined by qRT-PCR for samples from the rat tissue cage and midlogarithmic cultures grown in DM-glucose. The results are the average of triplicate samples and are presented as the *in vivo/in vitro* ratio. **B)** Induction of SusC orthologues during growth *in vivo* relative to DM-glucose. Shown are the highly induced-*in vivo susC*-like genes associated with PULs in Cluster 1. Clusters were determined from expression microarray data analyzed by *k*-means clustering using the Standard Pearson's correlation coefficient distance metric. All induction values were significant at p<.01.

2.5.2 *In vitro* induction of the *donCDEFG* operon.

The *don* PUL was chosen as a model for extraintestinal PUL function and it included several gene products that may be associated with N-linked glycan utilization such as an endo-S-like endo-N-acetyl- β -D-glucosaminidase (DonE) and a lectin-like product with an α -N-acetylglucosaminidase domain (DonF). In order to demonstrate a function of the PUL it was necessary to find an inducing substrate for *in vitro* expression studies. This was accomplished by using a crude glycan mixture prepared by alkaline β -elimination hydrolysis of porcine stomach mucin. The majority of mucin glycans are O-linked glycans and 10-20% are N-linked glycans (20). A defined medium containing the glycan mixture as the sole carbon/energy source supported rapid growth of the wild type strain BF638R (Fig. 2.2). Expression analysis by qRT-PCR showed that *donC* was strongly induced in this medium in a growth phase dependent manner with the highest level of induction at mid-logarithmic phase. This RNA also was used for RT-PCR with primers pairs that spanned the intergenic regions of the PUL and the data indicated linkage between the *donBCDEFG* genes (Fig. S1).

Fig. 2.2. Induction of *donC* expression during growth on mucin glycans. Strain BF638R was grown in defined medium containing 2% porcine gastric mucin glycans as the sole carbon/energy source. The induction of *donC* by mucin glycans relative to growth on glucose was determined by qRT-PCR. The results are overlaid on a typical growth curve with mucin glycans (OD A₅₅₀, grey diamonds). The qRT-PCR results represent 2 independent experiments (grey squares) with standard deviations shown.

2.5.3 Deglycosylation of transferrin is mediated by *donCDEFG*.

Don PUL function was explored by incubating serous fluid from the rat tissue cage (obtained prior to inoculation) with wild type or $\Delta donCDEFG$ (Δdon) mutant cells grown to midlogarithmic phase in the inducing, mucin glycan medium. Samples were analyzed by SDS-PAGE and the results in Fig. 2.3A show that one of the major fluid proteins was significantly reduced in size in samples treated with the wild type strain but not with the deletion mutant. Analysis by mass spectrometry revealed that this protein was rat serum transferrin, one of the most abundant glycoproteins in serum. The precise size reduction of the protein suggested the possibility that the transferrin glycans were removed. To test this, human transferrin was incubated with the wild type or Δdon mutant cells. Duplicate samples were analyzed by SDS-PAGE with either Coomassie blue or *Sambucus nigra* (SNA) lectin staining. As shown in Fig. 2.3B transferrin treated with the wild type strain was reduced in size after the 3 h incubation whereas the deletion strain did not have an obvious effect on transferrin size. Also, no degradation or reduced intensity of the protein band was observed in any of the samples. The SNA stained gels showed that transferrin treated with wild type cells was completely deglycosylated but in contrast an intense signal remained in samples treated with the deletion mutant and controls (Fig. 2.3B). In addition to transferrin, other serous fluid proteins were rapidly deglycosylated by *B. fragilis*. In assays using serous fluid samples the wild type strain had significant deglycosylation activity on many serous fluid proteins but the Δdon mutant activity was considerably reduced (Fig. S3). Although the mutant clearly retained some activity, the overall results indicate that *B. fragilis don* coded proteins play an important role in the

deglycosylation of N-linked glycans on transferrin and other glycoproteins. These genes were designated *don* for <u>D</u>eglycosylation <u>O</u>f <u>N</u>-linked glycans.

The SNA lectin recognizes terminal sialic acids linked to Gal or GalNAc which is suitable to detect N-linked glycans but is not a definitive assay. Conceivably loss of the terminal sialic acids by the action of neuraminidase could result in loss of SNA staining. Therefore a comprehensive mass spectrometric glycomics analysis of transferrin was performed. Human transferrin has two glycosylation sites and there were seven distinct oligosaccharides linked to those sites, five of which made up 98.1% of the total transferrin glycans (Table 1). Incubation of transferrin with wild type cells for 3 h resulted in essentially complete deglycosylation of Nlinked glycans. By comparison, nearly 70% of the N-linked glycans remained in samples incubated with the Δdon mutant. There were no new oligosaccharide structures detected in reactions with the wild type strain suggesting efficient cleavage of the glycan likely at the β -1,4di-N-acetylchitobiose core by the endo- β -N-acetylglucosaminidase S (DonE). These results confirm that transferrin is a substrate for the Don PUL but also indicate there is a second, less efficient deglycosylation system for this substrate.

Fig. 2.3. Deglycosylation of transferrin is mediated by the *don* PUL. **A)** Serous fluid obtained from tissues cages prior to inoculation was incubated for 3 h with PBS or *B. fragilis* cells induced by growth in DM-mucin glycan medium. Samples were analyzed by 12% SDS-PAGE and Coomassie blue staining (Co). The arrowhead indicates the location of transferrin above the abundant serum albumin protein. **B)** Deglycosylation analysis of human transferrin. Human transferrin was incubated with wild type or *Δdon* cells induced by growth in DM-mucin glycan medium. Samples were analyzed by SDS-PAGE and followed by SNA glycan-staining (SNA) to detect N-linked glycans as described in the text.

		^a Concentration of glycan (μM)		
⁵Glycan	% Total	PBS	wt	∆don
	87.5%	15.86 ±0.32	ND	10.43 ±1.06
÷•••	4.0%	0.72 ±0.03	ND	0.25 ±0.01
••••	3.3%	0.60 ±0.02	ND	0.71 ±0.11
***** ****	1.9%	0.34±0.01	0.05	0.27 ±0.07
	1.4%	0.25 ±0.01	ND	0.21 ±0.04
Totals	98.1%	17.77±0.4	0.05	11.87 ±1.11

Table 2.3. Quantitative glycan analysis of transferrin incubated with *B. fragilis* cells.

^a Transferrin was treated with PBS, strain 638R (wt), or the Δdon mutant for 3 hours as described in the text. Results are normalized to 1 g/L of transferrin and are the average of 2 independent samples. ND=not detected.

^b The five major glycans on transferrin are shown and were composed of the following sugars: O Galactose Gickac Mannose Fucose Vertical Action of the following sugars:

2.5.4 Growth on transferrin as the sole carbon and energy source.

The ability to forage for high quality carbohydrates in extraintestinal sites would be advantageous to *Bacteroides spp*. translocated from the gut. Transferrin is the most abundant glycoprotein present in serum and is estimated to have a carbohydrate content of 5.8% so we tested if it could support the growth of *B. fragilis*. As shown in Fig. 2.4, 25 mg/ml of transferrin supported robust growth of the wild type strain but not the Δdon mutant. There was no significant difference in the growth rate between wild type and mutant strains grown with glucose (Fig. 2.4). Expression of the *don* operon during growth on transferrin was measured by qRT-PCR with *donC* primers and the results showed a 10⁴ –fold induction over glucose grown cells. SDS-PAGE analysis of the transferrin peptide. The non-glycosylated protein, bovine serum albumin, did not support growth (Fig. 2.4). Interestingly, the Δdon mutant was able to grow in the transferrin medium albeit at a much slower rate. This confirms the presence of a second system that enables slow utilization of transferrin glycans. **Fig. 2.4.** *B. fragilis* can grow with transferrin as the sole source of carbon and energy. Growth curves are shown for wild type or Δdon strains in defined media with different carbon/energy sources. An overnight inoculum of 2% was used and the OD A₅₅₀ was measured at specific time intervals. Dashed lines are Δdon and solid lines are wild type. Squares, glucose (0.4%); triangles, human transferrin (25mg/ml); circles, bovine serum albumin (25 mg/ml). Each growth curve represents three biological repeats.

2.5.5 *In vivo* role of the *don* PUL.

To investigate a potential role for the *don* operon in extraintestinal sites, the rat tissue cage model was used to measure growth *in vivo*. There was not a drastic difference in CFU counts between wild type and Δdon strains during monoculture experiments over the course of a 15 day period (Fig. 2.5A). There was however a small, two-fold advantage for the wild type in the first two days following inoculation. To determine if this difference would translate into a competitive advantage, mixed culture assays were performed using wild type and mutant strains co-inoculated into rat tissue cages. The results were clear, Δdon was quickly outcompeted and at one day post-inoculation about 85% of the total population was wild type (Fig. 2.5B). The same trend carried through day 8 when the wild type strain reached about 97% of the total population. In control experiments (Fig. S4) with strains co-inoculated into glucose defined media there was no significant difference between the percentage of strains in the population through logarithmic phase and in fact the Δdon mutant had a slight advantage in stationary phase. These results suggest that access to novel carbohydrate nutrient sources *in vivo* can be advantageous for survival at extraintestinal sites.

One important extraintestinal carbohydrate source for growth *in vivo* is transferrin which was rapidly deglycosylated during growth in the rat model. This was demonstrated by SDS-PAGE analysis of fluids removed from rat tissue cages over the course of the eight day experiment (Fig. 2.5C). The transferrin from uninoculated controls appeared as a single peptide species of about 80 kDa but by day one post-inoculation there were two transferrin peptides in samples from wild type infected animals and by day two nearly all of the transferrin was

converted to the smaller species. In contrast, samples from animals inoculated with the Δdon strain appeared unchanged at day one and by day two only a small portion of the transferrin was deglycosylated. Interestingly all of the transferrin in samples from wild type or mutant infected animals was deglycosylated by the end of the experiment on day eight (Fig. 2.5C). This result shows that the *don* locus plays an important role in the efficient deglycosylation of transferrin *in vivo*.

Fig. 2.5. Growth *in vivo* is enhanced by deglycosylation of transferrin. **A)** Growth curve for wild type (circles) and Δdon (squares) strains inoculated separately into rat tissue cages. **B)** Mixed culture competition assay. Mixtures of wild type (stippled bars) and Δdon (hatched marked bars) cells were prepared in a 1:1 ratio, inoculated into 5 rats and the CFU/ml determined. The percentage of wild type or Δdon cells was determined by screening the total cell counts for tetracycline resistant colonies. **C)** Coomassie blue- stained SDS-PAGE gel of serous fluid samples obtained following growth of strains in the rat tissue cage. Samples from the wild type (wt) and Δdon (Δ) strains were compared to uninoculated controls (un). The arrow indicates the migration of the glycosylated transferrin. The results are from two biological repeats and panel C shows a representative result.

2.5.6 Efficient transferrin deglycosylation is unique to *B. fragilis*.

B. fragilis is the most common *Bacteroides* species isolated from opportunistic infections at extraintestinal sites. The ability of six other intestinal *Bacteroides* species to deglycosylate human transferrin was tested by SDS-PAGE and SNA glycan staining. The results in Fig. 2.6 show that only the two *B. fragilis* strains were able to efficiently deglycosylate transferrin in the 3 hour assays. This was indicated by both the change in mass and the loss of SNA staining of the transferrin. No significant loss in SNA staining was seen for the other species except *B. vulgatus*. In this case the transferrin band appeared as a doublet with somewhat decreased staining intensity in the SNA blot (Fig. 2.6, lane 7). These data indicate that *B. vulgatus* deglycosylates transferrin inefficiently and that of the intestinal *Bacteroides* species tested only *B. fragilis* can rapidly remove the N-linked glycans from this abundant serum protein. **Fig. 2.6.** Transferrin deglycosylation by medically important *Bacteroides* species. Human transferrin was used in standard 3 h deglycosylation assays with mid-logarithmic phase cells of *Bacteroides* species grown in DM-mucin glycan media. Samples were analyzed by SDS-PAGE with Coomassie blue (Co) staining and on duplicate SDS-PAGE gels followed by SNA glycan-staining (SNA). 1, PBS; 2, *B. fragilis* (638R); 3, *B. fragilis* (ATCC 25285); 4, *B. thetaiotaomicron* (IB116); 5, *B. uniformis*; 6, *B. ovatus*; 7, *B. vulgatus*; 8, *Parabacteroides distasonis*; 9, *Parabacteroides merdae*.

2.6 Discussion

The intestinal microbiome has a complex, symbiotic relationship with its host that is maintained by a series of physical barriers and immunological processes designed to keep the microbial populations in check. When these barriers are breached, contaminating normally sterile body sites, the invading organisms must rapidly adapt to an environment with a challenging set of new physical, chemical, and nutritional parameters. In this study, we used a rat tissue cage model to gain a better understanding of the nutritional sources that opportunists such as *B. fragilis* might encounter in extraintestinal habitats. Expression microarrays showed that PUL genes were highly induced in vivo and the Don locus was induced more than any other genes *in vivo*. The carbon/energy sources available in the abdominal cavity are quite varied and complex so we were not surprised to see such a robust, complex response in PUL expression. A recent study of *B. thetaiotaomicron* PUL regulation during growth on mixtures of dietary glycans provides some insight into this response (22). The work showed that there is a rapid response to the influx of new glycan sources and that multiple PULs were simultaneously expressed in order to prioritize utilization of the most advantageous substrates. This required coordinated induction and repression of multiple systems working to maximize utilization of certain glycans although the rationale for prioritization is not yet entirely clear. Similarly B. fragilis growing in the rat tissue cage elicited a broad PUL response and in this case it seemed to be directed toward use of N-linked glycans found on host glycoproteins. The most abundant glycoprotein in tissue cage serous fluid is transferrin which is a significant substrate for the Don PUL. Many other glycoproteins present in the fluid also were targeted by the Don PUL (Fig. S3). Other PULs that were strongly induced in the microarray experiments also had

protein signatures consistent with the utilization of N-linked host glycans: BF638R0384-92 (β -N-1-4 acetylglucosaminidase + GH88 glycosidase); BF638R1323-30 (endo- β -Nacetylglucosaminidase + concanavalin A-like); BF638R0444-448 has member proteins with fibronectin binding domains.

A critical requirement for utilization of N-linked glycans is removal of terminal sialic acid residues and in a previous study it was shown that neuraminidase activity was necessary for robust growth in a rat pouch model similar to the tissue cage used in this report (86). An extensive region of the *B. fragilis* chromosome (BF638R1715-1740) seems to be devoted to sialic acid utilization and neuraminidase activity and this region has been shown to be required for optimal utilization of mucin (87). This gene cluster includes the *nanLET* operon (88), the *nanH* operon, and 5 standalone pairs of SusC/SusD orthologues. Our microarray data showed that regulation of these genes was complex but the entire region was induced on day 1 following inoculation of the tissue cage and for the most part remained elevated throughout (Appendix 2 and Fig. S2).

The hydrolysis of host glycoprotein glycans is an important characteristic of several bacterial pathogens and this has been proposed to be a mechanism for immune evasion as well as for nutrient acquisition. *Streptococcus pyogenes* secretes the archetypical GH18 family glycoprotein hydrolase, EndoS, which can efficiently hydrolyze the IgG glycan and significantly reduce IgG mediated killing of the bacteria in blood (89, 90). *Streptococcus pneumoniae* possesses several exoglycosidases that in combination deglycosylate IgA1, lactoferrin, human secretory component and α 1-acid glycoprotein, and it was shown that deglycosylation of α 1-

acid glycoprotein supported growth in the absence of other carbohydrates (91, 92). This ability may be linked to the persistence of *S. pneumoniae* in the nasopharynx. Likewise transferrin supports the growth of *B. fragilis* (Fig. 2.4) and is present in serum and serous fluid at 2-4 mg/ml so this would be an excellent source of fermentable carbohydrate for extraintestinal growth. Glycan harvesting also seems to be important for *in vivo* growth of *Capnocytophaga canimorsus* a member of the *Bacteroidetes* phylum and a common inhabitant of the oral cavity of dogs (93). *C. canimorsus* was able to deglycosylate fetuin and IgG *in vitro* using a Sus-like system and the deglycosylation activity was necessary to sustain growth with cultured mammalian cells.

A notable difference of the Don PUL and the glycosidase systems listed above is the inability to deglycosylate IgG or IgA. Several attempts with different sources of human IgG and IgA failed to demonstrate activity against these substrates (Fig. S5). This suggests that the Don system did not evolve for the need to inactivate immune clearance mechanisms. Further, it is well known that transferrin and lactoferrin also have antibacterial activity, largely due to their ability to sequester iron from the bacteria (94, 95). However, the glycosylation status of transferrin and lactoferrin has little effect on their ability to either bind iron or their receptors (96, 97). The Don PUL then does not seem to be designed to circumvent this element of the innate immune system.

A key finding of the work presented here was that rapid, efficient deglycosylation of transferrin and many other glycoproteins in serous fluid is mediated by the *don* genetic locus which is unique to *B. fragilis* among the medically important *Bacteroides* species. This was

demonstrated specifically for transferrin but may apply to the other serous proteins (Fig. 2.6, Fig. S3). Although not as efficient as wild type, the Δdon mutant was able to deglycosylate and utilize transferrin glycan at a slow rate. This was seen both *in vivo* and *in vitro* (Figs. 2.4, 2.5) and these results indicate a second transferrin deglycosylation system in *B. fragilis*. Other *Bacteroides* may have deglycosylation capabilities more similar to the Δdon mutant. For example, *B. vulgatus* showed some deglycosylation of transferrin after 3 h (Fig. 2.6) and results with a second strain of *B. thetaiotaomicron* showed some activity on transferrin after 3 h but failed to further deglycosylate the substrate even after overnight incubation (Fig. S6). We propose that the Don PUL is composed of 7 genes (Fig. S1). DonA and DonB are the regulators of the system encoding an ECF sigma factor and antisigma factor respectively. DonEFG are outer membrane proteins that bind and cleave glycans from the target glycoproteins. DonCD would work in tandem to transport oligosaccharides into the periplasm where the concerted effort of neuraminidases and other glycohydrolases release monosaccharides from the glycan chains (68).

The normal habitat for *B. fragilis* is the colon where it is in a persistent, mutualistic relationship with its host. The Don system must have evolved to provide a means by which to establish a specific niche in the gut or to help the organism maintain its competitive position. Several studies have indicated that *B. fragilis* are closely associated with the mucosa and that they penetrate the mucus layer to bind receptors deep in the crypts (98, 99). The *don* genes are significantly induced by a crude mixture of gastric mucin glycans in fact they were the most highly induced of all genes in mucin glycan medium (Appendix 2). One potential role for the Don PUL may be to harvest the high quality complex N-linked mucus glycans, [which make up

about 20% of mucus glycans (100)] as cells transit through the mucus layers to the crypts. Other host associated N-linked glycan sources may become available to bacteria adherent in the crypts or the *don* operon may be shut down since *don* transcription is negligible in the absence of inducer. Koropatkin et al. (19) suggested that in the colon there are many "glycan microhabitats" and any given *Bacteroides spp*. has evolved to respond to a specific subset of these. If we define the glycan habitat of *B. fragilis* then we may gain further insight as to why the Don PUL potentiates the organism to so efficiently deglycosylate proteins in extraintestinal sites.

2.7 Supplementary Figures

Fig. S1. Genetic map and RT-PCR analysis of the *donABCDEFG* genes (BF638R3437-43). **A)** Schematic diagram of the predicted *donABCDEFG* locus. The location of the Δ*don* deletion is show with the dashed line. *donAB* are regulatory genes coding an ECF sigma factor and antisigma factor respectively. *donC* and *donD* code for the SusC and SusD orthologues respectively. The *donEFG* genes code for an endo-S-like endo-N-acetyl-β-D-glucosaminidase, a Concanavalin A lectin-like product with an α-N-acetylglucosaminidase domain, and a protein with a DUF 1735 domain common to acylhydrolases respectively. **B)** Agarose gel visualization of RT-PCR products performed with oligonucleotide primers specific for each intergenic region of the *donABCDEFG* locus. Arrows below the schematic in panel A indicate the relative positions of primers used to amplify each intergenic region. "+", positive control using genomic DNA; "RT", complete RT-PCR reaction containing reverse transcriptase; "-", negative control with reverse transcriptase omitted.

The RT-PCR results show a strong signal and linkage between the *donCDEFG* genes. There also is a weaker linkage between the antisigma factor gene, *donB*, and *donC* which are separated by 182 bp. Although these two genes are linked, based on the microarray data and regulatory models for other PULs it is likely a second promoter is located upstream *donCDEFG* that would act to amplify the expression of these structural genes under inducing conditions. Regulation of this locus is currently under investigation.

Fig. S2. Induction/repression patterns of SusC orthologues expressed during growth *in vivo*. Expression microarray data were used to determine induction or repression of all *susC*-like genes during growth of *B. fragilis* 638R in the rat tissue cage model relative to DM-glucose. Four induction patterns (Clusters) were identified by *k*-means clustering using the Standard Pearson's correlation coefficient distance metric. The four clusters are shown in panels A, B, C and D respectively. The fold-induction for *in vivo* growth relative to mid-logarithmic phase growth *in vitro* for 1, 4, and 8 days post-inoculation are shown by the blue, red, and green bars respectively.

Fig. S2. Induction/repression patterns of SusC orthologues expressed during growth *in vivo*. Expression microarray data were used to determine induction or repression of all *susC*-like genes during growth of *B. fragilis* 638R in the rat tissue cage model relative to DM-glucose. Four induction patterns (Clusters) were identified by *k*-means clustering using the Standard Pearson's correlation coefficient distance metric. The four clusters are shown in panels A, B, C and D respectively. The fold-induction for *in vivo* growth relative to mid-logarithmic phase growth *in vitro* for 1, 4, and 8 days post-inoculation are shown by the blue, red, and green bars respectively.

Fig. S2. Induction/repression patterns of SusC orthologues expressed during growth *in vivo*. Expression microarray data were used to determine induction or repression of all *susC*-like genes during growth of *B. fragilis* 638R in the rat tissue cage model relative to DM-glucose. Four induction patterns (Clusters) were identified by *k*-means clustering using the Standard Pearson's correlation coefficient distance metric. The four clusters are shown in panels A, B, C and D respectively. The fold-induction for *in vivo* growth relative to mid-logarithmic phase growth *in vitro* for 1, 4, and 8 days post-inoculation are shown by the blue, red, and green bars respectively.

Fig. S5. Deglycosylation analysis of IgG and lactoferrin. **A)** Deglycosylation assay of human IgG by *B. fragilis*. Commercially prepared human IgG was mixed and incubated anaerobically at 37°C for 3 h with PBS or wild type or Δdon cells grown in an inducing DMmucin glycan medium. Samples were analyzed by SDS-PAGE and subjected to Coomassie blue staining (Co) or SNA glycan-staining (SNA). **B.)** Deglycosylation analysis of lactoferrin. Commercially prepared human lactoferrin was mixed and incubated anaerobically at 37°C for 3 h with PBS or wild type or Δdon cells grown in an inducing DM-mucin glycan medium. Samples were analyzed by SDS-PAGE and subjected to Coomassie blue staining (Co) or SNA glycan-staining (SNA).

Fig. S6. Deglycosylation analysis of transferrin by *B. thetaiotaomicron* strain 5482. Commercially prepared human transferrin was incubated with PBS or wild type *B. thetaiotaomicron* cells (Bt) for 3 h or overnight (O/N) in standard deglycosylation assays. Cells used in the assays were grown to mid-logarithmic phase in DM-mucin glycan medium. Samples were analyzed by SDS-PAGE followed by Coomassie blue staining (Co) or SNA glycan staining (SNA).

2.8 Addendum

In this chapter, it was shown that the *B. fragilis don* locus mediates the efficient deglycosylation of N-linked glycoproteins (Fig. 2.3, 2.5C, S3; Table 2. 3) both in vitro and in vivo. Deletion of the *don* locus led to a growth defect in DM with transferrin as the sole carbon/energy source and a selective disadvantage in the rat extraintestinal infection model (Fig. 2.4, 2.5). While we have shown a correlation between deglycosylation activity and growth advantage in the rat abscess, model, we have not proven that deglycosylation is the cause of this advantage in vivo. This is especially of interest because we deleted not only donE, which has predicted deglycosylation activity, but also donF and donG. These genes have unknown functions that might affect *in vivo* growth. In the future direction, two experimental designs can strength the causal relation between efficient deglycosylation of N-linked glycoprotein and the selective advantage in extraintestional infection. First, point mutations of two active site residues on the endo- β -N-acetylglucoaminidase gene (*donE*) can abolish the deglycosylation activity of this enzyme (125) but keep the structure and other functions of the locus intact. If there is a real causal relation between the deglycosylation of N-linked glycoproteins and selective advantage in extraintestinal infection, the *donE* point mutant should show the same selective disadvantage phenotype as the *don* deletion mutant. Second, to rule out the possibility that the tetracycline resistant gene tetQ is responsible for the impaired in vivo growth/competency phenotype, a control strain will be constructed with only the *tetQ* gene inserted into the chromosome. If tetQ is not responsible for the selective disadvantage observed in the *don* deletion mutant, similar in vivo growth/competency should be observed between the wild type and the *tetQ* insertion mutant.

CHAPTER THREE: BACTEROIDES FRAGILIS PRIMARY TRANSCRIPTOME ANALYSIS

3.1 Introduction

B. fragilis has a genome of about 5.3 Mb and encodes approximately 4,300 genes. To gain insight not only on the gene expression profile but also the overall structure of individual mRNAs, differential massively parallel cDNA sequencing (dRNA-seq) was performed using RNA obtained from mid-logarithmic phase anaerobic *B. fragilis* cultures grown in rich media. The dRNA-seq approach was first done with the human pathogen Helicobacter pylori which has a small genome (101). In contrast to other RNA-seq methods, terminator-5'-phosphatedependent exonuclease is used to treat the RNA samples before conversion to cDNA. By adding this step, the processed transcripts such as mature rRNA, tRNA and partially degraded mRNAs which have a 5' mono-phosphate (5'P) group are selectively degraded leaving only the RNAs with a 5' tri-phosphate (5'ppp) group such as primary transcripts including most mRNAs and small RNAs (sRNA) (101). By comparing the exonuclease treated samples to non-treated samples, it was possible to generate a single-nucleotide resolution map of the primary transcriptome of *B. fragilis*, allowing us to locate the transcription initiation sites (TIS) of individual transcripts, distinguish potential sRNAs, and confirm the -7 promoter consensus sequence for the primary sigma factor. Analysis of this primary transcriptome identified 1,657 TISs, and confirmed the recognition sequence for the *Bacteroides* primary sigma factor. In

addition, 176 putative sRNAs were discovered. These results demonstrate that the dRNA-seq technique is a good approach and has great potential for understanding some of the molecular aspects of *B. fragilis* gene regulation.

3.2 Materials and Methods

3.2.1 Total RNA Extraction

B. fragilis strain IB101 (BF638R) was grown at 37°C anaerobically in Brain Heart Infusion broth supplemented with hemin and cysteine (BHIS). Cells were harvested in midlogarithmic phase at O.D. A₅₅₀ = 0.5 for RNA extraction. RNA extractions from *in vitro* bacterial cell cultures were performed on washed cell pellets using the hot phenol method as described previously (82). RNA quality and integrity was checked by RNA-denaturing gel (1% agarose; 5.5% formaldehyde) electrophoresis.

3.2.2 Preparation of cDNA libraries and 454 pyrosequencing

Experiments were done by collaborator Jörg Vogel and lab members at University of Würzburg, Institute for Molecular Infection Biology, D-97080, Würzburg, Germany. The dRNA-seq was performed as previously described (101). Total RNA was treated by DNase I to eliminate residual genomic DNA. Equal amounts of IB101 RNA were either incubated with Terminator[™] 5'-phosphate-dependent exonuclease (TEX) (Epicentre #TER51020) or in buffer alone for 60 min at 30°C. 1 unit TEX per µg total RNA was used. RNA was extracted with

phenol/chloroform/isoamyalcohol (25:24:1 v/v) and then precipitated overnight with 2.5 volumes of an ethanol/0.1M sodium acetate (pH 6.5) mixture. Then the TEX treated RNA was incubated with 1 unit TAP (tobacco acid pyrophosphatase) (Epicentre, #T19100) for 1 hour at 37°C to generate 5'-mono-phosphates for linker ligation, and again purified by phenol/chloroform extraction and precipitation as above.

Equal amounts of TEX treated or untreated RNA were poly(A)-tailed using poly(A) polymerase, followed by ligation of an RNA adapter to the 5'P RNA fragment. First-strand cDNA was synthesized using an oligo (dT)-adapter primer and M-MLV-RNaseH⁻ reverse transcriptase. The reaction mix was incubated at 42°C for 20 min followed by 55°C for 5 min. The cDNA was amplified by PCR to yield a concentration of 20-30 ng/µl using a high fidelity DNA polymerase. Sequencing was performed on Roche 454 FLX machines at the MPI for Molecular Genetics (Berlin, Germany), and Roche Diagnostics GmbH (Penzberg, Germany).

3.2.3 Data Visualization

Linker and poly(A) sequences were removed from the sequencing results to reduce the background. cDNA inserts were mapped to the *B. fragilis* 638R genome using an error-tolerant suffix array technique (102). Graphs representing the number of mapped reads per nucleotide were calculated and visualized using the Integrated Genome Browser (IGB) version 4.56 software from Affymetrix (http://genoviz.sourceforge.net/).

3.3 Results

3.3.1 Identification of *B. fragilis* TISs at a genome wide level

Degradation of the processed RNA (5'P transcripts) by TEX leads to an enrichment of the primary RNA (5'PPP transcripts) in the total RNA sample. Because in prokaryotic cells, RNA processing (including degradation) often causes a loss of the 5' region of a transcript (103), it is reasonable to assume that an enrichment of the primary transcripts will lead to an enrichment of the original (or intact) 5' ends of the transcripts (104). This was reflected by an increased signal at the 5' end of many transcripts on the TEX treated library compared to the untreated library. An example is shown in Fig. 3.1. Depletion of the processed RNAs by TEX leads to a characteristic change in the distribution of the total transcripts, as shown here for the BF638R 3589 mRNA. The most noticeable change is at the 5' end of the transcript where an increased number of reads are concentrated compared to the untreated library. This provides a reliable primary transcriptome map with a resolution to the single nucleotide level and thus can be used to identify the TIS of any transcript present for that specific growth condition. 1,657 primary transcripts were mapped for this growth condition (mid-logarithmic phase in rich medium), of which 838 were on the positive-strand and 819 were on the negative-strand. Analysis of the mapped primary transcripts is attached in Appendix 3.

Fig. 3.1. The transcript signal of the BF638R_3589 gene. *B. fragilis* strain IB101 was grown anaerobically in BHIS at 37°C to mid-logarithmic phase and RNA was prepared for dRNA-seq analysis as described in materials and methods. **A)** A comparison of the mapping signal histogram for TEX-treated and untreated samples of BF638R_3589 sRNA. **B)** A schematic diagram of the BF638R_3589 locus aligned with its signal on the transcriptome above. The TIS suggested by the dRNA-seq results is indicated by the +1 arrow and the -7 promoter consensus (TAxxTTTG) is also indicated.

3.3.2 Confirmation of the recognition sequence for the *B. fragilis* primary sigma factor

The *Bacteroidetes/Flavobacteria* are known to have a primary sigma factor that recognizes a unique promoter structure. The *Bacteroidetes* equivalent to the classic Proteobacteria/Eubacteria -10 sequence is TAxxTTTG (105, 106). Based on the TIS identified by the dRNA-seq results, sequences about 50 bases upstream of the TIS were aligned. The conserved promoter recognition sequence "TAxxTTTG" was observed 5 to 10 bases prior the TIS in 1,428 of the 1,657 TISs observed (Fig. 3.2 and Appendix 3). These results confirmed the novel promoter consensus sequence for the *B. fragilis* primary sigma factor on a genome-wide scale. **Fig. 3.2.** Logo for the promoter recognition sequence of the primary sigma factor in *B. fragilis*. Primary transcriptome data were used to identify sequence about 50 bases upstream of the TIS sites. Sequences of 1,657 genes were aligned and analyzed using CLC Main Workbench v6.5 software.

3.3.3 Discovery of putative small non-coding RNAs in the *B. fragilis* genome

Small non-coding RNA transcripts will have the enriched 5' signal in the TEX (+) library and are usually located in intergenic regions. 176 putative sRNAs were observed by these criteria. Interestingly, we observed a group of 14 putative sRNAs individually located in the intergenic region of 14 Sus-like PULs, including the *don* PUL described in chapter 2. The apparent sizes of these sRNAs range from 80 bases to 250 bases and they are divergently transcribed from the putative SusC-like porin of their respective PUL. Shown in Fig. 3.3 is a putative sRNA located in the *don* PUL. Characteristics of these PUL-associated sRNAs are presented in Table 4.5 in the next chapter (chapter 4). **Fig. 3.3.** The putative sRNA in the intergenic region of the *don* PUL. **A)** The putative sRNA located in the *don* PUL visualized on the Integrated Genome Browser. The sRNA signal is indicated by the red arrow. The green bars are local alignment annotations for *donA*, *donB*, and *donC* respectively as indicated at the bottom. **B)** A schematic diagram showing the location and orientation of the putative sRNA in the intergenic region of the *don* PUL.

3.4 Discussion

One major advantage of using the dRNA-seq technique is that it can generate a primary transcriptome that precisely shows TISs across the entire genome for the condition tested. It is considerably more efficient than other TIS identification methods such as primer extension or 5' RACE. Further, based on our observation it is at least equal in accuracy compared to primer extension. As shown in the results, a majority of the TISs mapped from the primary transcriptome data have the conserved *Bacteroides* primary sigma factor recognition sequence (TAxxTTTG) 5 to 10 bases upstream. This result supports the reliability of the TIS data since it is reasonable to expect that for the growth condition tested (37°C, anaerobic, rich medium, mid-logarithmic phase), many of the genes expressed would be transcribed by the primary sigma factor.

Another important feature of the primary transcriptome map is that putative sRNAs are readily identified due to the enrichment of their 5' signal and the reduced background noise from processed RNAs. Most interesting for this work, a group of 14 putative sRNAs were observed in the intergenic region of 14 PULs, including the *don* PUL described in chapter 2. Based on the locations and orientations of these putative sRNAs, they are likely to be *cis*encoded antisense sRNAs that play a role in the regulation of the PUL they are in proximity to. The role of these sRNAs and their regulation mechanism will be the topic of the next chapter (chapter 4).

In this study, only the primary transcriptome in one growth condition was explored: 37°C, anaerobic, rich medium, mid-logarithmic phase cells. It will be much more informative

when the transcriptomes of different growth conditions are compared. In these cases, it is reasonable to expect that there will be changes in the mRNAs such as alternative TIS and alternative transcript termination sites. By comparing the primary transcriptomes of stressed and non-stressed cells, we may also detect some stress responsive sRNAs. All in all, primary transcriptome analysis is a useful tool and has great potential in understanding the molecular mechanisms of regulating *B. fragilis* physiology and pathogenesis.

CHAPTER FOUR: CHARACTERIZATION OF THE REGULATION MECHANISMS FOR THE *BACTEROIDES FRAGILIS* POLYSACCHARIDE UTILIZATION LOCUS, *DON*

4.1 Introduction

As one of the most abundant symbiotic bacteria in the human gut, Bacteroides species are well known for their extraordinary ability to utilize a wide range of diverse polysaccharides as their carbon/energy source. These include plant fiber glycans from dietary sources as well as host derived glycans in the form of glycoconjungates such as glycoproteins. This extensive catabolic ability is mediated by a large number of outer membrane complexes coded by discrete polysaccharide utilization loci (PULs). For example, one of the most abundant gut Bacteroides species, B. thetaiotaomicrom, dedicates about 18% of its genome to PULs (62). The PULs in *Bacteroidetes* have a unique yet well-characterized operon structure that was first documented for the starch utilization system (Sus) of *B. thetaiotaomicron* (68). This consists of genes for an outer membrane protein complex that involves recognition, binding, processing and transport of its substrate glycan molecules. This outer membrane complex contains a SusClike TonB-dependent transmembrane transporter and a SusD-like substrate binding protein while additional genes encoding specific substrate binding and processing proteins are usually present downstream of the SusD-like gene (62-66). Please see chapter 1 for a detailed review of the structure and functional mechanism of the Bacteroides Sus-like PULs. These PULs are

substrate specific, for example the prototype of these systems, the *B. thetaiotaomicron* Sus, only binds, processes and transports starch into the cell (22, 68). Expression of the PULs must be under precise control to avoid futile energy spending and envelope stress. Most of the PULs have regulatory genes located upstream from the SusC-like gene in the form of a two component regulatory phosphorelay or an ECF (extracytoplasmic function) sigma factor/ antisigma factor pair which is the most common regulatory mechanism. The SusC-like porin, ECF sigma factor and anti-sigma factor form a trans-envelope signaling pathway that provides a positive feedback loop; when the inducing glycan substrate is present in the environment, the SusC-like transporter will sense the signal and cause a conformational change of the anti-sigma factor followed by the release of the ECF-sigma factor and specific induction of the PUL. When there is no inducer substrate glycan for that particular PUL, the SusC-like porin will interact with the anti-sigma factor so that it will sequester the sigma factor and the expression of the system will switch back to an "off" state (62, 68).

B. fragilis is typical of the *Bacteroides* with more than 50 PULs. Interestingly, an analysis of the primary transcriptome for possible sRNAs, intense signals were observed in the intergenic regions between the SusC-like gene and the anti-sigma factor gene of 14 PULs. Please review chapter 3 for a description of the transcriptome analysis. Each of these sRNAs is antisense to the SusC-like gene in the operon in which they were found. There are two classes of antisense sRNAs in the prokaryotic systems: one is the *cis*-encoded antisense sRNAs that are located in the same chromosomal region and fully complementary to their target mRNAs over a long sequence stretch; and another class is the *trans*-encoded antisense sRNAs which are

targets and usually need the small RNA chaperone Hfq to aid the sRNA-target interaction (107-110). Based on the location and orientation of the 14 PUL-associated sRNAs, we hypothesized that they are *cis*-encoded regulatory sRNAs that control the expression the specific PUL in which they were found. In this study, we used the *B. fragilis don* locus (please see chapter 2 for a detailed study on the function and characterization of *don* locus) as a model to understand PUL regulation in *B. fragilis*, by first elucidating the roles of the ECF-sigma factor and anti-sigma factor, and then by testing our hypothesis that the sRNAs play important regulatory roles in the *B. fragilis* PULs.

4.2 Materials and Methods

4.2.1 Bacterial strains and growth

Bacterial strains used in this study are listed in Table 4.1. *Bacteroides* strains were grown at 37°C anaerobically in Brain Heart Infusion broth supplemented with hemin and cysteine (BHIS) for routine cultures (55). *E. coli* strains were grown at 37°C aerobically in Luria-Bertani broth for routine cultures. Ampicillin (100 µg/mL), spectinomycin (50 µg/mL), rifampicin (20 µg/mL), gentamycin (100 µg/mL), erythromycin (10 µg/mL), tetracycline (5 µg/mL), trimethoprim (100 µg/mL), thymine (50 µg/mL) were added to the media when required (74). Minimal defined media (DM) were prepared as described previously with the specific carbon/energy source as mentioned in the text. Mucin glycans were prepared from porcine stomach mucin (Sigma-Aldrich, Cat. M2378) according to Eric C. Martens (20). All subcultures were done using a 2% inoculum of an overnight BHIS culture

4.2.2 Construction of *donA* and *donB* deletion mutants and the *donA* over-expression strain

The donA and donB mutants, IB559 and IB560 respectively, were constructed as unmarked and in-frame deletions to avoid potential polar effects. Briefly, chromosomal fragments of about 1.2 kb flanking *donA* were PCR amplified using primer pairs sigOK+2kL/sigOK+2kR and sigOK-2kL/sigOK-2kR respectively (Table 4.3). The amplified DNA fragments were cloned into the *B. fragilis* suicide vector pYT102 (14) by three-fragment ligation. The plasmid was mobilized into *B.fragilis* ADB77 (thyA⁻) using the *E. coli* helper strain HB101::RK231 (79), and the exconjugates were selected on BHIS plates containing rifampicin, gentamicin and tetracycline. Exconjugates were then allowed to resolve in BHIS medium supplemented with thymine for three days and then plated on trimethoprim-containing media. Sensitivity to tetracycline, resistance to trimethoprim, and PCR were used to confirm the double-crossover allelic exchange into the ADB77 chromosome. The mutant construction was finalized by reversion of the strains from thy A^{-} to thy A^{+} (14). The *donB* mutant was made in the same way with the primer pairs anti-sigOK+2kL/anti-sigOK+2kR and anti-sigOK-2kL/anti-sigOK-2kR (Table 4.2). The donA over-expression strain IB558, was made by PCR amplifying the donA gene using primer pairs sigOK-340L/sigOK-340R. Primer sigOK-340L contains a strong ribosomal binding sequence from the B. fragilis ahpC gene to facilitate expression. The amplified fragment was inserted to the Bacteroides-E.coli expression shuttle vector pFD340 (Table 4.2) downstream of the constitutive IS4351 promoter sequence. The recombinant plasmid was then mobilized into the wild type *B. fragilis*, BF638R, using the *E.coli* helper strain RK231.

4.2.3 Construction of DonS silencing mutant (IB561) and DonS over-expression strain (IB563)

DonS silencing was achieved by changing its core promoter sequence "TTTG" to "AAAC" through site-directed mutagenesis. First a 1301bp chromosomal fragment covering the entire *donS* region was amplified and the TTTG in the core promoter sequence was replaced with AAAC by using overlapping PCR with the mutagenic primer pairs sRNA117+L/sRNA117+R(AAACmut) and sRNA117-L(AAACmut)/sRNA117-R [Table 4.2; sRNA117+R(AAACmut) and sRNA117-L(AAACmut) are complementary to each other]. The mutated fragment was cloned into the suicide vector pYT102. The allelic exchange mutation was selected as described above for *donA* except that colony-PCR followed by nucleotide sequencing of the PCR fragments was used to screen for the mutation after resolving the exconjugates in BHIS plus thymine media. The DonS over-expression strain, IB563, was constructed by cloning the *donS* gene downstream of an 82 bp 16s rRNA promoter sequence into a multiple copy vector. Briefly, the primer pair sRNA117-L/sRNA117-R1 was used to amplify the *donS* sequence with 36 bp of 16s rRNA promoter sequence engineered into the sRNA117-L primer, upstream of the *donS* sequence. Then this PCR product was used as a template in a PCR amplification performed with primer pair 16sPR-36-82/sRNA117-R1. The primer 16sPR-36-82 includes an additional 46 bp adjacent to and upstream of the 36 bp fragment of the 16s rRNA promoter sequence. The final product contained the *donS* sequence downstream of the 82 bp of the 16s rRNA promoter sequence (111, 112). The final PCR product was cloned by replacing the DNA fragment between the SacI site and PstI site on the plasmid pFD340. The recombinant plasmid was mobilized into *B. fragilis* strains using the *E.coli* helper strain HB101::RK231.

Exconjugates were selected on BHIS media containing rifampicin, gentamycin and erythromycin.

4.2.4 Total RNA extraction, cDNA synthesis and qRT-PCR

Total RNA was extracted from cell pellets using the hot phenol method described previously (82) and stored in 50% formamide at -80°C. Total RNA was purified using the RNeasy Mini Kit (Qiagen, Inc.) and DNA was removed by treatment with DNase (Ambion/Life Technologies Inc.). DNA contamination was determined by PCR using specific primers for the 16s ribosomal RNA gene (Table 4.3). First strand cDNA synthesis was carried out using 1 µg total RNA with random hexamer primers and Superscript III RT (Life Technologies, Inc.). For qRT-PCR, primer pair, omp117rtL and omp117rtR, were used to amplify a 140 bp fragment of the *donC* gene in a standard reaction mixture with SYBR[®] Green Supermix (Bio-Rad, Inc.). All sample reactions were in run in triplicate and RNA with no reverse transcriptase was used as a control to monitor for DNA contamination. Relative expression values were normalized to 16s rRNA and calculated by the method of Pfaffl (83). Results represent at least two independent experiments performed in triplicate.

Expression microarray analyses were performed essentially as described previously (58). Double stranded cDNA was synthesized with the SuperScript^R Double-Stranded cDNA Synthesis Kit (Life Technologies, Inc.). One μg of purified double stranded cDNA was then labeled with cy3, hybridized to microarray slides, and processed by the Florida State University Roche/NimbleGen Microarray Facility. Each trial consisted of a high-density-oligonucleotide whole genome expression microarray (Roche/NimbleGen, Madison WI) with 8 technical replicates of each probe per slide. Raw microarray expression data were normalized by using the RMA algorithm implemented with the Roche DEVA 1.1 software.

4.2.5 Northern blot analysis

Northern blot analyses were performed as described previously (113). Briefly, 10 μ g of RNA was separated on a 10% denaturing polyamcrylamide gel containing 7 M urea and 1X TBE (89 mM Tris-base, 89 mM boric acid and 2 mM EDTA). The low-molecular-weight DNA ladder (NEB, cat. N3233S) was labeled with $[y-^{32}P]$ -ATP and polynucleotide kinase, and used as the size standards. Following electrophoresis in 1X TBE buffer, the ladder and RNA samples were transferred to an Amersham Hybond[™]-N⁺ membrane (GE Healthcare, cat. RPN303B) in 1X TBE buffer. The samples were UV-cross-linked to the membrane, and the membrane was prehybridized in hybridization buffer (ULTRAhyb[®]-Oligo Buffer, Ambion, cat. AM8863) for 3 h at 43°C on a rocking shaker. The oligonucleotide probes specific for each small RNA species were end-labelled with $[\gamma^{-32}P]$ -ATP and polynucleotide kinase. The radiolabelled probes were incubated with the pre-hybridized membranes at 43°C on a rocking shaker overnight (~ 12 h). The membranes were then washed three times for 30 min each with 2X SSC (300 mM sodium chloride and 30 mM sodium citrate), 1X SSC and 0.5X SSC, respectively, at 43°C on a rocking shaker. All SSC wash buffers contained 0.1% sodium dodecyl sulfate (SDS). The membranes were then exposed to X-ray film and visualized by autoradiography.

Bacterial strains	Description or genotype ^a	Reference
		or source
IB101	<i>B. fragilis</i> , Clinical isolate 638R, Rif ^r	(75)
ADB77	<i>B. fragilis,</i> strain 638R, ΔthγA,, Rif ^r , Tp ^r	(14)
DH10B	<i>E. coli</i> , $F^{-}mcrA \Delta(mrr-hsdRMS-mcrBC) \Phi 80 lacZ\DeltaM15 \Delta lacX74 recA1 endA1$	Invitrogen
	araD139 Δ(ara leu) 7697 galU galK rpsL nupG λ^-	
HB101::RK231	<i>E. coli</i> , HB101 containing RK231, Kan ^r , Tet ^r , Sp ^r	(79)
IB558	<i>B. fragilis,</i> strain 638R, <i>donA</i> overexpressed on pFD340, Rif ^r , Erm ^r	This Study
IB559 (<i>∆donA</i>)	<i>B. fragilis,</i> strain 638R, <i>∆donA</i> , Rif ^r	This Study
IB560 (<i>∆donB</i>)	<i>B. fragilis,</i> strain 638R, ΔdonB, Rif ^r	This Study
IB561	<i>B. fragilis,</i> strain 638R, DonS silenced by promoter sequence mutation, Rif ^r	This Study
IB563	<i>B. fragilis,</i> strain 638R, DonS overexpressed on pFD1244, Rif ^r , Erm ^r	This Study

Table 4.1. Bacterial strains used in this study.

^aRif^r, rifampin resistance; Tet^r, tetracycline resistance; Sp^r, spectinomycin resistance; Erm^r, erythromycin resistance; Tp^r, trimethoprim resistance; Kan^r, kanamycin resistance.

Table 4.2.	Plasmids	used in	this	study
------------	----------	---------	------	-------

Plasmid	Description ^a	Reference
		of source
pYT102	P15A ori, RP4 oriT; <i>B. fragilis</i> suicide vector, thyA ⁺ , (Cm ^r), Tet ^r	(14)
pFD340	<i>Bacteroides-E.coli</i> expression shuttle vector, (Amp ^r), Erm ^r	(114)
pFD1243	B. fragilis expression vector, generated by inserting the cloned donA gene	This Study
(pFD340_ <i>don</i> A)	with ahpC ribosomal binding site downstream the IS4351 promoter on	
	pFD340	
pFD1244	B. fragilis expression vector, generated by replacing the IS4351 promoter on	This Study
	pFD340 with an 82 bp 16s rRNA promoter sequence and the <i>donS</i> gene	

^aCm^r, chloramphenicol resistance; Tet^r, tetracycline resistance; Amp^r, ampicillin resistance; Erm^r, erythromycin resistance. For *Bacteroides-E. coli* shuttle vectors, parentheses indicate antibiotic resistance expression in *E. coli*.

Table 4.3. Oligonucleotides used in this study^a.

Name	Sequence ($5' \rightarrow 3'$)	Tag	Description
sigOK+2kL	AGTC GGATCC CCGATGGTTACATCTACGATC	BamHI	Designed to amplify a 1283 bp
sigOK+2kR	AGTC CTGCAG CGCTTTGACTTTGGGATAAGTC	Pstl	upstream fragment of donA
			gene
sigOK-2kL	AGTC CTGCAG CACATCTATTTGGCACTAATCG	Pstl	Designed to amplify a 1231 bp
sigOK-2kR	GCAT <u>AAGCTT</u> TAACGCAAAGAATTC	HindIII	downstream fragment of donA
			gene
Omp117rtL	GGTGAAGGCATTTCCGACTT		Designed to amplify a 140 bp
Omp117rtR	TTGCCTTCCTGCCCTTTCTT		fragment of <i>donC</i> gene for
			quantitative PCR
16srL	GATGCGTTCCATTAGGTTGTTG		Designed to amplify a 127 bp
16srR	CACTGCTGCCTCCCGTAG		fragment of 16s ribosomal RNA
			gene for quantitative PCR
anti-sigOK+2kL	CACG <u>AAGCTT</u> GCGTACAGTA	HindIII	Designed to amplify a 1393 bp
anti-sigOK+2kR	AGTC CTGCAG GGCAAACAGACGGATGATTC	Pstl	upstream fragment of <i>donB</i>
			gene
anti-sigOK-2kL	AGTC CTGCAG GTTGTGGGAGGATTCAGTCAT	Pstl	Designed to amplify a 1296 bp
anti-sigOK-2kR	AGTC <u>GGATCC</u> CTCCGTATTGTTGGAGATCGA	BamHI	downstream fragment of donB
			gene
sigOK-340L	AGTC <u>GGATCC</u> AAATAAGAAACAATT	BamHI	Designed to amplify the donA
	ATGATTTTAAATAACGAGTCTAATAAGAAG		gene with the <i>ahpC</i> gene
sigOK-340R	AGTC <u>GAGCTC</u> AGGTGTGACTGATTACTCAA	Sacl	ribosomal binding site
			upstream
sRNA117+L	AGTC <u>GGATCC</u> GTCAGCCATTCATTGTCAGA	BamHI	Designed to amplify a 693 bp
sRNA117+R	AAATAGACTTTAATCGATAAAAATTCATAGAAAAACAAC		DNA fragment including <i>donS</i>
(AAACmut)	GAATTTTAGTGTTAAATCATAATATTTATTTCC		sequence with its -7 "TTTG"
			change to "AAAC"
sRNA117-L	GGAAATAAATATTATGATTTAACACTAAAATTCGTTGT		Designed to amplify a 679 bp
(AAACmut)	TT TCTATGAATTTTTATCGATTAAAGTCTATTT		DNA fragment including donS
sRNA117-R	AGTC <u>GGATCC</u> CTGCTGAACACTGTAACTCA	BamHI	sequence with its -7 "TTTG"
			change to "AAAC
sRNA117-L	TTGTCTCTTATCTCCTAATGCCTTACTTTTGCATCCCGA		Designed to amplify the donS
	ATTTTAGTGTTAAATCATAATATTTATTTC		sequence with an 82 bp 16s
sRNA117-R1	AGTC <u>GAGCTC</u> GGATTCAGTCATGAACTGAAG	Sacl	rRNA promoter fragment
16sPR-36-82	AGTC <u>CTGCAG</u> TTTACGTTTTTATTCAAAATATTTTCAAA	Pstl	sequence tagged upstream.
	AAAATCCCCTTTTATATTTGTCTCTTATCTCCTAATGCC		

^aTag sequences are underlined.

Table 4.3. Oligonucleotides used in this study (continued).

Name	Sequence ($5' \rightarrow 3'$)	Tag	Description
DonSP	GCCACCTGATTCCGGATATGAAATCTGAAT		Probe for small RNA DonS
0549P	GGTGGCACACTTCCGGCTCCGGGTTAACAA		Probe for small RNA 0549
1041P	CCTTGTGAGCTTGTTTGGCGACAAGCTGAGA		Probe for small RNA 1041
1270P	GGTCTGGTACACCTTTCCCTCCCGATAAAGTCAA		Probe for small RNA 1270
1469P	TGAGAATGCCGATAGGTGTTCCCGCACCTA		Probe for small RNA 1469
1035P	ATTGGCGTATCTACCTGTATGAAAGTCCACCGTC		Probe for small RNA 1035
2917P	ACATATTGGGGTATGTCCTCCGATTCAGAA		Probe for small RNA 2917
3123P	CACCCATTTCCGATCCCCGAAATCAATCAA		Probe for small RNA 3123
3597P	CTGAGTTTTTTTAATCACGTCTCTTGCAGGAGGCGC		Probe for small RNA 3579
3604P	CCTCATATCATCCAACCCCTGATTAGATTAAACTACG		Probe for small RNA 3604
4145P	CAGATGCGCCAACACCTGCCAACCTCGGGT		Probe for small RNA 4145
5srRNAP	CACTGTTACGCAGTACCATCGGCGTGATCA		Probe for the 5s ribosomal RNA

4.3 Results

4.3.1 BF638R_3437 and BF638R_3438 encode regulators of the don operon

The typical genetic organization of the *Bacteroides* PULs includes regulatory genes adjacent to the *susC* orthologues. In the case of the *don* PUL, there is an ECF sigma factor homolog BF638R 3437 (donA) and an anti-sigma factor homolog BF638R 3438 (donB) which appear immediately upstream from *donC* (Fig. 4.1A), suggesting that they are the regulators of this PUL. To confirm their roles in regulation, in-frame deletion mutants for both donA and donB were constructed, and a donA overexpression strain was made by cloning the gene on an expression plasmid, under the control of a constitutive promoter. The relative expression level of *donC* was determined for the wild type strain and genetically modified strains in glucose defined medium (non-inducing medium) and mucin glycan defined medium (inducing medium). The expression of *donC* in the wild type strain under non-inducing conditions was as low as background levels and used as the baseline against which the expression in other strains and conditions was compared. As shown in Fig. 4.1B, *donC* expression was highly induced in the wild type when grown in mucin glycan medium. When *donA* was overexpressed on the plasmid, donC levels were high even in the non-inducing medium compared to the wild type, and it was induced to the highest levels observed when grown in the inducing medium. When the sigma factor homolog was deleted from the cell, induction of *donC* expression was abolished even when grown in the inducing condition. The anti-sigma factor deletion mutant, $\Delta donB$, was able to highly express *donC* in the inducing medium similar to the *donA* overexpression strain, but

Fig. 4.1. Relative expression of *donC* in different *B. fragilis* strains under non-inducing and inducing conditions. A) A schematic diagram of the *B. fragilis don* operon. B) qRT-PCR analysis of *don*C expression. RNA samples were obtained from mid-logarithmic phase cultures of the wild type strain (IB101), the *donA* overexpressing strain (IB558), *donA* deletion mutant (IB559) and *donB* deletion mutant (IB560). qRT-PCR were performed in triplicate. The *donC* expression level in the wild type strain under non-inducing condition (glucose defined medium) was used as a control. Results are the average of two biological repeats. Error bars represent standard deviations.

there was about an 80-fold up-regulation in the non-inducing medium compared to the wild type strain. From these data it is clear that the sigma factor homolog *donA* and anti-sigma factor homolog *donB* act as an activator and a repressor respectively and work coordinately in the regulation of the *don* operon expression in response to the presence of the substrate nutrients.

4.3.2 A small non-coding RNA is divergently transcribed from the *donC* gene.

As described in chapter 3, when analyzing the primary transcriptome data of cells grown under standard growth conditions in BHIS medium, a group of putative sRNA signals in 14 PULs were identified, including one in the *don* PUL. Based on the primary transcriptome map, all these putative sRNAs are located immediately upstream from, and divergently transcribed from the SusC orthologues of each of the 14 PULs (see chapter 3 Fig. 3.3). To verify the existence of the sRNA in the *don* PUL, northern hybridization analysis was performed using an oligonucleotide complementary to the putative sRNA sequence shown in the primary transcriptome map as the probe (Fig. 4.2A). As shown in Fig. 4. 2B, a sRNA species about 125 nucleotides long was clearly detected by northern blot analysis.

96

Fig. 4.2. A small, non-coding RNA is divergently transcribe from the *donC* gene. A) A schematic diagram of the sRNA location and orientation in the *don* PUL. The probe used to detect this sRNA is indicated by the green arrow. B) Northern blot confirmation of the sRNA species. 10 μ g of total RNA from a *B. fragilis* mid-logarithmic phase culture grown in BHIS medium was electrophoresed for analysis. Lane 1, γ -³²P labeled low molecular weight DNA ladder. Lane 2, sRNA detected by the γ -³²P labeled probe. C) Sequence analysis of the sRNA region in the *don* PUL. The TIS and -7 promoter sequence of the sRNA are underlined and indicated by "+1" and "-7". The DonC coding sequence is in blue and the sRNA sequence is in Red. The sRNA sequence was determined from the transcriptome analysis (see chapter 3).

Α

В

С

AATATATTGATTTGATTTAACCTTAAAAAACAACTGTTTAGTATGTAAAAAAAGT ATCCGGAAAGAGGCGGCCACCTGATTCCGGATATGAAATCTGAATTCTTTG CGTTAAAGCTTATGCTTTACTTTTTGGGAAATAAATATTATGATTTAACACT +1 -7

AAAATTCGTT<u>CAAATCTA</u>TGAATTTTTATCGATTAAAGTCTATTTTTTTATA ATTTTTAGCTGTTTTATTCTACAAACGGCTGCCTTTGCTCAAAACAACGTAA AAATAACAATCAAGAAAAAGAATATCACGTTGCAGGAAGCATTGCGGGAG GTTGAGAAACAATCTGATTATCTGATCGCTTTCAACGAATCCAAACTTGAG AAAACCAAGCGCGTTAACCTGAATATTAATGCTGAATCTCTGGATAAGACA This sRNA is divergently transcribed and located immediately upstream from *donC*. The TIS (from primary transcriptome data) of the sRNA is only 9 bases from the *donC* start codon and is adjacent to a consensus primary sigma factor recognition sequence (Fig. 4.2C). The location and orientaton of this sRNA suggests that it is a cis-encoded antisense RNA that plays a role in regulation of the *don* PUL. Since this sRNA is in the *don* PUL, it was designated DonS.

4.3.3 DonS is a *cis*-encoded antisense RNA that negatively regulates the *don* operon.

The location and orientation of DonS suggests that it is a regulator for the *don* PUL. To explore this role, a DonS silencing strain (IB561) and a DonS overexpression strain (IB563) were constructed. As shown in Fig. 4.3A, the sRNA northern blot confirmed that DonS expression was abolished in IB561 and DonS was highly overexpressed in strain IB563. To test the effect of DonS on *don* expression, qRT-PCR was performed to check the *donC* transcript level. As before, the expression of *donC* in the wild type strain under non-inducing condition (glucose defined medium) was used as a baseline control. The results in Fig. 4.3B show that expression of *donC* was up-regulated further in strain IB561 in the inducing condition (mucin glycan defined medium) compared to the wild type. In contrast, *donC* expression in strain IB563 decreased to background levels even for cells grown in the inducing condition. Gene expression microarray analysis (Fig. 4.3C) showed similar trend as the qRT-PCR analysis. Taken together, these results indicated that DonS acts as a negative regulator for the *don* PUL expression.

99

Fig. 4.3. DonS is a negative regulator of the *don* **expression. A)** sRNA northern blot. DonS expression is abolished in IB561, and highly overexpressed in IB563. 5s rRNA was used as a loading control. 10 µg of total RNA was analyzed for each sample. γ -³²P labeled probes (Table 4.3) were used for detection. **B)** qRT-PCR analysis of *donC* expression in the wild type, DonS silencing mutant and DonS overexpression mutant. qRT-PCR reactions using *donC* primers were performed in triplicate. The *donC* expression level in wild type strain grown under non-inducing condition (glucose defined medium) was used as a baseline. Results are the average of two biological repeats. Error bars represent the standard deviation. glu, cells grown in glucose defined medium; mcn, cells grown in mucin glycan defined medium. **C)** Gene expression overexpression mutant. The *donC* expression level in wild type under non-inducing condition (glucose defined medium) was used as a baseline. But and DonS overexpression mutant. The *donC* expression in wild type, DonS silencing mutant and DonS overexpression in wild type, DonS silencing mutant and DonS overexpression mutant. The *donC* expression level in wild type under non-inducing condition (glucose defined medium) was used as a baseline. glu, cells grown in glucose defined medium; mcn, cells grown in mucin glycan defined medium.

4.3.4 DonS-like sRNAs are found in other PULs of *B. fragilis*

As mentioned in chapter 3, a group of putative sRNA signals in 14 PULs was identified when analyzing the primary transcriptome data of *B. fragilis*. To confirm the existence of the other sRNAs in this group, probes were designed for 10 of these (Table 4.4) and northern blots performed. As shown in Fig. 4. 4, 10 sRNAs with size range from 75 bases to 130 bases in this group were confirmed by northern blot analysis. These sRNAs have been named according to the SusC-like gene they are adjacent to. The other three putative sRNAs in this group (BF638R_3799, 3787 and 3821) will be tested in the future.

Fig. 4.4. Northern blot confirmation of the DonS-like sRNAs in *B. fragilis*. 10 µg of total RNA from mid-logarithmic phase cultures grown in BHIS medium was loaded each lane for analysis. The left lane of each panel is γ -³²P labeled low molecular weight DNA ladder. The right lane of each panel shows the specific sRNA species to that PUL using γ -³²P labeled probes specific to that sRNA (Table 4.3). The numbers above each panel are the BF638R gene designation of the SusC-like gene of each PUL.

This group of DonS-like sRNAs have several common features. First, they are all divergently transcribed from the *susC* homolog of the PUL. Their orientation and proximity to the *susC* homolog makes it likely that these are cis-encoded antisense sRNA that will negatively regulate that PUL expression like DonS. Second, they all have the *B. fragilis* primary sigma factor -7 promoter recognition sequence "TAxxTTTG" 5 to 9 bases upstream of their TIS and they are relatively abundant as estimated from the primary transcriptome data and the northern blot results. Third, many of the PULs in which they are located may be involved in utilization of host glycans as shown for Don. The evidence for this is that some of these PULs contain genes for glycoside hydrolase that target glycosidic linkage specific for host derived glycans. For example, *donC* in the *don* PUL encodes an endo-beta-N-acetylglucosaminidase homolog which specifically hydrolyzes the glycosidic bond between the two N-acetyglucosamine residuals on the host complex N-linked glycoproteins such as transferrin. A summary of these DonS-like sRNAs is shown in Table 4.4.

 Table 4.4. Characteristics of the DonS-like sRNAs in *B. fragilis*. Except DonS, these sRNAs have

 been named according to the specific *susC* homolog from which they are divergently

 transcribed.

Name	Confirmed by northern blot	Approx. Size (nucleotides)	Glycosyl hydrolase in the PUL	Potential substrate of the PUL
DonS	Yes	125	Endo-β-N- acetylglucosaminidase	Complex N-linked serum glycoproteins (confirmed)
0549	Yes	95	Unknown function	N/A
1035	Yes	127	Unknown function	N/A
1041	Yes	103	Arylsulfatase	Glycosaminoglycan
1270	Yes	100	Sulfatase	Glycosaminoglycan
1496	Yes	100	Unknown function	N/A
2917	Yes	75	β-glucoside glucohydrolase	N/A
3123	Yes	06	Chitobiase	Glycans contain N- acetlyglucosamine repeats
3597	Yes	97	Sulfatase	Glycosaminoglycan
3604	Yes	140	Chitobiase	Glycans contain N- acetlyglucosamine repeats
3787	No	95	Sialidase & Neuraminidase	Glycoproteins or gangliosides
3799	No	98	Arylsulfatase	Glycosaminoglycan
3821	No	105	*Laminin G	Glycosaminoglycan
4145	Yes	97	β-Galactosidase	N/A

* Laminin G is a protein domain which specifically binds to some type of glycosaminoglycans such as herparin (115).

4.4 Discussion

This study clearly showed that the ECF sigma factor and anti-sigma factor genes, donA and donB, encode regulators for the downstream outer membrane complex genes in the don PUL. Constitutive over-expression of *donA* in the absence of inducing substrate significantly induced transcription of the *donBCDEFG* operon. In contrast, deletion of *donA* completely abolished expression of the operon regardless of the presence of inducing substrate. In the anti-sigma deletion mutant ΔdonB, there was an 80 fold increase in donC expression compared to the wild type in non-inducing condition. This level of induction is significant but it is not comparable to induction in the wild type under the inducing condition (several hundred to several thousands). This low induction could be due to the fact that the anti-sigma factor DonB is a FecR type regulator which interacts with its cognate sigma factor to fully activate the sigma factor's function in a process called sigma factor maturation (116). Notably, *donC* expression in the anti-sigma deletion mutant was induced to the same level as the sigma over-expression mutant under the inducing condition, seemingly like the presence of substrate can overcome the lack of sigma maturation. The increased expression of *donC* in the presence of substrate in all of the three modified strains, the sigma factor deletion strain, anti-sigma deletion strain and sigma factor over-expressing strain, suggests a possibility that the substrate is involved in second pathway to boost the Don complex expression.

The existence of a group of *cis*-encoded antisense sRNAs associated with some of the Sus-like PULs in *B. fragilis* was demonstrated in this report. Each of these sRNAs is divergently transcribed from a SusC-like outer membrane transporter gene on a Sus-like PUL. The sRNA in

the *don* PUL, named DonS, was used as a model and we found this sRNA is likely a *cis*-acting regulatory sRNAs that negatively effects the expression of the downstream outer membrane complex genes. Small regulatory RNAs can affect gene expression in many different ways, including transcriptional and translational regulation (107-110, 117). As showed previously in chapter 2, *donBCDEFG* are transcribed in one operon. When antisense sRNAs are organized between two genes on the same messages such as *donS* in *don*, they usually repress downstream gene expression by transcriptional termination in which the sRNA binds the nascent mRNA and forms a termination loop, causing RNA polymerase to stop further transcription of the message (117, 118). It is very likely that DonS represses the *don* operon expression through a similar mechanism, since our microarray analyses showed that under inducing conditions, *donCDEFG* expression was completely abolished in the DonS over-expressing strain the while the *donB* gene was still normally induced. This could be tested by using northern blot analysis to check the effect of DonS on the *donBCDEFG* message.

Evidently, the presence of the sRNA DonS adds another layer to the regulation of the *don* PUL expression. Different from the ECF sigma/anti-sigma pair DonA/DonB, DonS expression does not respond to the presence of the *don* PUL substrate and it appeared to be constantly expressed at a relatively high level during logarithmic growth phase. However, we observed a significant decrease in DonS expression when cells were grown into stationary phase in defined glucose media (data not shown). This differential expression of DonS could be a response to the varieties of stresses when cells enter stationary phase. It has been well-known that sRNAs can be implicated in integrating environmental stress signals and regulating a plethora of stress responses including temperature stress, metabolite/nutrient stress, envelope/outer membrane

109

proteins (OMPs) stress, oxidative stress, iron deficiency stress and anaerobic stress (119). Here we suspect these DonS-like sRNAs respond to metabolite/nutrient starvation or perhaps envelope stress. The reason for this is that the genes under control of these sRNAs are PULs which are involved in nutrient uptake and they contain multiple OMPs.

It is also interesting to notice that many of this group of sRNAs may be specialized to regulate PULs which are involved in host derived glycan utilization. This hypothesis is supported by the presence of host derived glycan hydrolases in these PULs. As shown in Table 4.5, among the PULs which contain a DonS-like sRNA, two encode sulfatases, two encode arysulfatases, and one encodes a laminin G. Sulfatases and arysulfatases has been implicated in hydrolysis of the sulfate linkages on various types of glycosaminoglycans (GAGs) (120), while laminin G is a protein globular domain which possess heparin binding activity (115). One PUL in this group encodes a chitobiase homolog, which specifically hydrolyzes oligomer, trimer and dimer of Nacetyglucosamine molecules into monomers (121, 122). Another PUL in this group encodes two sialidase/neuroaminidase homologs, indicating its substrates are host glycoproteins or glycolipids rather than plant derived glycans (123). The potential substrates of these glycosyl hydrolases, as well as the confirmed glycan substrates of Don (chapter 2), suggest that these DonS-like sRNA regulated PULs are specifically involved in host derived glycan utilization. Notably, by enabling *B. fragilis* to utilize different host glycans, this group of PULs may indirectly affect the body site-specific colonization and growth of the bacterium in its host. For example, we demonstrated in chapter 2 using a rat model that the Don PUL acts as an extraintestinal growth factor by enabling the bacterium efficiently utilization of N-linked serous glycoprotein glycans. Another example is the PUL BF638R 3602-3606 which has a DonS-like sRNA

110

divergently transcribe from the BF638R_3604 gene (Fig. 4.4; Table 4.4). A recently study showed that this PUL allows *B. fragilis* to establish a resilient colonization in a specific niche within the colonic crypts that serves as a reservoir for stable gut colonization, so it has been named the Commensal Colonization Factor (CCF) (98).

Future directions for this project will be, first, test the hypothesis that DonS has an effect on the *donBCDEFG* message using northern blot analysis. Second, characterize another sRNA-PUL system to support our idea that actually these DonS-like RNAs are regulators of their adjacent PULs, and these PULs are involved in host glycan utilization in *B. fragilis*. Third, explore the possible stress conditions that these DonS-like sRNAs respond to. Forth, since these DonS-like sRNAs have the same -7 promoter sequence, we would like to explore if there is a master regulator for all of them and the possible phenotype when the regulation of the sRNAs are abolished.

REFERENCES

1. Smith CJ, Rocha ER, Paster BJ. The medically important bacteroides spp. in health and disease - springer. In: Martin Dworkin, Stanley Falkow, Eugene Rosenberg, Karl-Heinz Schleifer, Erko Stackebrandt, editors. The Prokaryotes. Springer New York; 2006. p. 381-427.

2. Gherna R, Woese CR. A partial phylogenetic analysis of the "flavobacter-bacteroides" phylum: Basis for taxonomic restructuring. Syst Appl Microbiol. 1992 Dec;15(4):513-21.

3. Coyne MJ, Chatzidaki-Livanis M, Paoletti LC, Comstock LE. Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont bacteroides fragilis. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13099-104.

4. Pantosti A, Tzianabos AO, Onderdonk AB, Kasper DL. Immunochemical characterization of two surface polysaccharides of bacteroides fragilis. Infect Immun. 1991 Jun;59(6):2075-82.

5. Pantosti A, Tzianabos AO, Reinap BG, Onderdonk AB, Kasper DL. Bacteroides fragilis strains express multiple capsular polysaccharides. J Clin Microbiol. 1993 Jul;31(7):1850-5.

6. Tzianabos AO, Pantosti A, Baumann H, Brisson JR, Jennings HJ, Kasper DL. The capsular polysaccharide of bacteroides fragilis comprises two ionically linked polysaccharides. J Biol Chem. 1992 Sep 5;267(25):18230-5.

7. Wexler HM. Bacteroides: The good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007 Oct;20(4):593-621.

8. Patrick S, McKenna JP, O'Hagan S, Dermott E. A comparison of the haemagglutinating and enzymic activities of bacteroides fragilis whole cells and outer membrane vesicles. Microb Pathog. 1996 Apr;20(4):191-202.

9. Domingues RM, Silva e Souza W das,G., Moraes SR, Avelar KE, Hirata Junior R, Fonseca ME, et al. Surface vesicles: A possible function in commensal relations of bacteroides fragilis. Zentralbl Bakteriol. 1997 Apr;285(4):509-17.

10. Berezow AB, Ernst RK, Coats SR, Braham PH, Karimi-Naser LM, Darveau RP. The structurally similar, penta-acylated lipopolysaccharides of porphyromonas gingivalis and bacteroides elicit strikingly different innate immune responses. Microb Pathog. 2009 Aug;47(2):68-77.

11. Coyne MJ, Reinap B, Lee MM, Comstock LE. Human symbionts use a host-like pathway for surface fucosylation. Science. 2005 Mar 18;307(5716):1778-81.

12. Fletcher CM, Coyne MJ, Villa OF, Chatzidaki-Livanis M, Comstock LE. A general O-glycosylation system important to the physiology of a major human intestinal symbiont. Cell. 2009 Apr 17;137(2):321-31.

13. Wexler HM. Outer-membrane pore-forming proteins in gram-negative anaerobic bacteria. Clin Infect Dis. 2002 Sep 1;35(Suppl 1):S65-71.

14. Baughn AD, Malamy MH. A mitochondrial-like aconitase in the bacterium bacteroides fragilis: Implications for the evolution of the mitochondrial krebs cycle. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4662-7.

15. Baughn AD, Malamy MH. The strict anaerobe bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature. 2004 Jan 29;427(6973):441-4.

16. Xu J, Gordon JI. Honor thy symbionts. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10452-9.

17. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008 Jun 20;320(5883):1647-51.

18. Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell. 2010 Jun 25;141(7):1241-52.

19. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012 Apr 11;10(5):323-35.

20. Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008 Nov 13;4(5):447-57.

21. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat Rev Microbiol. 2008 Feb;6(2):121-31.

22. Rogers TE, Pudlo NA, Koropatkin NM, Bell JS, Moya Balasch M, Jasker K, et al. Dynamic responses of bacteroides thetaiotaomicron during growth on glycan mixtures. Mol Microbiol. 2013 Jun;88(5):876-90.

23. McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984 Feb;39(2):338-42.

24. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001 May 11;292(5519):1115-8.

25. Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006 Aug 25;313(5790):1126-30.

26. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: A new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003 Mar;4(3):269-73.

27. Comstock LE. Importance of glycans to the host-bacteroides mutualism in the mammalian intestine. Cell Host Microbe. 2009 Jun 18;5(6):522-6.

28. Dasgupta S, Kasper DL. Novel tools for modulating immune responses in the host-polysaccharides from the capsule of commensal bacteria. Adv Immunol. 2010;106:61-91.

29. Troy EB, Kasper DL. Beneficial effects of bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed). 2010 Jan 1;15:25-34.

30. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013 Dec 19;155(7):1451-63.

31. Begley M, Hill C, Gahan CG. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol. 2006 Mar;72(3):1729-38.

32. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5.

33. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006 Dec 21;444(7122):1022-3.

34. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesityassociated gut microbiome with increased capacity for energy harvest. Nature. 2006 Dec 21;444(7122):1027-31.

35. Goldstein EJ. Anaerobic bacteremia. Clin Infect Dis. 1996 Dec;23 Suppl 1:S97-101.

36. Finlay-Jones JJ, Davies KV, Sturm LP, Kenny PA, Hart PH. Inflammatory processes in a murine model of intra-abdominal abscess formation. J Leukoc Biol. 1999 Oct;66(4):583-7.

37. Comstock LE, Tzianabos AO. Abscesses. In: Nataro JP, Blaser MJ, Cunningham-Rundles S, editors. Persistent Bacterial Infections. Washington, DC: ASM Press; 2000. p. 397-407.

38. Sears CL. Enterotoxigenic bacteroides fragilis: A rogue among symbiotes. Clin Microbiol Rev. 2009 Apr;22(2):349,69, Table of Contents.

39. Onderdonk AB, Bartlett JG, Louie T, Sullivan-Seigler N, Gorbach SL. Microbial synergy in experimental intra-abdominal abscess. Infect Immun. 1976 Jan;13(1):22-6.

40. Reid JH, Patrick S. Phagocytic and serum killing of capsulate and non-capsulate bacteroides fragilis. J Med Microbiol. 1984 Jun;17(3):247-57.

41. Comstock LE, Coyne MJ, Tzianabos AO, Pantosti A, Onderdonk AB, Kasper DL. Analysis of a capsular polysaccharide biosynthesis locus of bacteroides fragilis. Infect Immun. 1999 Jul;67(7):3525-32.

42. Roche-Hakansson H, Chatzidaki-Livanis M, Coyne MJ, Comstock LE. Bacteroides fragilis synthesizes a DNA invertase affecting both a local and a distant region. J Bacteriol. 2007 Mar;189(5):2119-24.

43. Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, Comstock LE. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature. 2001 Nov 29;414(6863):555-8.

44. Weinacht KG, Roche H, Krinos CM, Coyne MJ, Parkhill J, Comstock LE. Tyrosine site-specific recombinases mediate DNA inversions affecting the expression of outer surface proteins of bacteroides fragilis. Mol Microbiol. 2004 Sep;53(5):1319-30.

45. Coyne MJ, Weinacht KG, Krinos CM, Comstock LE. Mpi recombinase globally modulates the surface architecture of a human commensal bacterium. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10446-51.

46. Chatzidaki-Livanis M, Weinacht KG, Comstock LE. Trans locus inhibitors limit concomitant polysaccharide synthesis in the human gut symbiont bacteroides fragilis. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11976-80.

47. Chatzidaki-Livanis M, Coyne MJ, Comstock LE. A family of transcriptional antitermination factors necessary for synthesis of the capsular polysaccharides of bacteroides fragilis. J Bacteriol. 2009 Dec;191(23):7288-95.

48. Comstock LE, Kasper DL. Bacterial glycans: Key mediators of diverse host immune responses. Cell. 2006 Sep 8;126(5):847-50.

49. Tzianabos AO, Onderdonk AB, Rosner B, Cisneros RL, Kasper DL. Structural features of polysaccharides that induce intra-abdominal abscesses. Science. 1993 Oct 15;262(5132):416-9.

50. Coyne MJ, Kalka-Moll W, Tzianabos AO, Kasper DL, Comstock LE. Bacteroides fragilis NCTC9343 produces at least three distinct capsular polysaccharides: Cloning, characterization,

and reassignment of polysaccharide B and C biosynthesis loci. Infect Immun. 2000 Nov;68(11):6176-81.

51. Tzianabos AO, Kasper DL, Onderdonk AB. Structure and function of bacteroides fragilis capsular polysaccharides: Relationship to induction and prevention of abscesses. Clin Infect Dis. 1995 Jun;20 Suppl 2:S132-40.

52. Coyne MJ, Tzianabos AO, Mallory BC, Carey VJ, Kasper DL, Comstock LE. Polysaccharide biosynthesis locus required for virulence of bacteroides fragilis. Infect Immun. 2001 Jul;69(7):4342-50.

53. Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol. 1999 Apr;2(2):188-94.

54. Rocha ER, Herren CD, Smalley DJ, Smith CJ. The complex oxidative stress response of bacteroides fragilis: The role of OxyR in control of gene expression. Anaerobe. 2003 Aug;9(4):165-73.

55. Sund CJ, Rocha ER, Tzianabos AO, Wells WG, Gee JM, Reott MA, et al. The bacteroides fragilis transcriptome response to oxygen and H2O2: The role of OxyR and its effect on survival and virulence. Mol Microbiol. 2008 Jan;67(1):129-42.

56. Rocha ER, Tzianabos AO, Smith CJ. Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe bacteroides fragilis. J Bacteriol. 2007 Nov;189(22):8015-23.

57. Reott MA, Parker AC, Rocha ER, Smith CJ. Thioredoxins in redox maintenance and survival during oxidative stress of bacteroides fragilis. J Bacteriol. 2009 May;191(10):3384-91.

58. Ndamukong IC, Gee J, Smith CJ. The extracytoplasmic function sigma factor EcfO protects bacteroides fragilis against oxidative stress. J Bacteriol. 2013 Jan;195(1):145-55.

59. Spence C, Wells WG, Smith CJ. Characterization of the primary starch utilization operon in the obligate anaerobe bacteroides fragilis: Regulation by carbon source and oxygen. J Bacteriol. 2006 Jul;188(13):4663-72.

60. Lobo LA, Jenkins AL, Jeffrey Smith C, Rocha ER. Expression of bacteroides fragilis hemolysins in vivo and role of HlyBA in an intra-abdominal infection model. Microbiologyopen. 2013 Apr;2(2):326-37.

61. Ravcheev DA, Godzik A, Osterman AL, Rodionov DA. Polysaccharides utilization in human gut bacterium bacteroides thetaiotaomicron: Comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics. 2013 Dec 12;14:873,2164-14-873.

62. Martens EC, Roth R, Heuser JE, Gordon JI. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J Biol Chem. 2009;284(27):18445-57.

63. Cho KH, Salyers AA. Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by bacteroides thetaiotaomicron. J Bacteriol. 2001 Dec;183(24):7224-30.

64. Shipman JA, Cho KH, Siegel HA, Salyers AA. Physiological characterization of SusG, an outer membrane protein essential for starch utilization by bacteroides thetaiotaomicron. J Bacteriol. 1999 Dec;181(23):7206-11.

65. Shipman JA, Berleman JE, Salyers AA. Characterization of four outer membrane proteins involved in binding starch to the cell surface of bacteroides thetaiotaomicron. J Bacteriol. 2000 Oct;182(19):5365-72.

66. Reeves AR, Wang GR, Salyers AA. Characterization of four outer membrane proteins that play a role in utilization of starch by bacteroides thetaiotaomicron. J Bacteriol. 1997 Feb;179(3):643-9.

67. D'Elia JN, Salyers AA. Effect of regulatory protein levels on utilization of starch by bacteroides thetaiotaomicron. J Bacteriol. 1996 Dec;178(24):7180-6.

68. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human gut microbiota: The bacteroidetes sus-like paradigm. J Biol Chem. 2009 Sep 11;284(37):24673-7.

69. Hylemon PB, Phibbs PV, Jr. Evidence against the presence of cyclic AMP and related enzymes in selected strains of bacteroides fragilis. Biochem Biophys Res Commun. 1974 Sep 9;60(1):88-95.

70. Lassmann B, Gustafson DR, Wood CM, Rosenblatt JE. Reemergence of anaerobic bacteremia. Clin Infect Dis. 2007 Apr 1;44(7):895-900.

71. Brook I. Recovery of anaerobic bacteria from clinical specimens in 12 years at two military hospitals. J Clin Microbiol. 1988 Jun;26(6):1181-8.

72. Gorbach SL, Bartlett JG. Anaerobic infections (second of three parts). N Engl J Med. 1974 May 30;290(22):1237-45.

73. Polk BF, Kasper DL. Bacteroides fragilis subspecies in clinical isolates. Ann Intern Med. 1977 May;86(5):569-71.

74. Varel VH, Bryant MP. Nutritional features of bacteroides fragilis subsp. fragilis. Appl Microbiol. 1974 Aug;28(2):251-7.

75. Privitera G, Dublanchet A, Sebald M. Transfer of multiple antibiotic resistance between subspecies of bacteroides fragilis. J Infect Dis. 1979 Jan;139(1):97-101.

76. Johnson JL. Taxonomy of the bacteroides: I. deoxyribonucleic acid homologies among bacteroides fragilis and other saccharolytic bacteroides species. Int J Syst Bacteriol. 1978;28(2):245-56.

77. Bedzyk LA, Shoemaker NB, Young KE, Salyers AA. Insertion and excision of bacteroides conjugative chromosomal elements. J Bacteriol. 1992 Jan;174(1):166-72.

78. Jacobs MR, Spangler SK, Appelbaum PC. Beta-lactamase production, beta-lactam sensitivity and resistance to synergy with clavulanate of 737 bacteroides fragilis group organisms from thirty-three US centres. J Antimicrob Chemother. 1990 Sep;26(3):361-70.

79. Guiney DG, Hasegawa P, Davis CE. Plasmid transfer from escherichia coli to bacteroides fragilis: Differential expression of antibiotic resistance phenotypes. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7203-6.

80. Smith CJ, Rollins LA, Parker AC. Nucleotide sequence determination and genetic analysis of the bacteroides plasmid, pBI143. Plasmid. 1995 Nov;34(3):211-22.

81. Bamberger DM, Herndon BL, Fitch J, Florkowski A, Parkhurst V. Effects of neutrophils on cefazolin activity and penicillin-binding proteins in staphylococcus aureus abscesses. Antimicrob Agents Chemother. 2002 Sep;46(9):2878-84.

82. Rocha ER, Smith CJ. Regulation of bacteriodes fragilis katB mRNA by oxidative stress and carbon limitation. J Bacteriol. 1997 Nov;179(22):7033-9.

83. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001 May 1;29(9):e45.

84. Furukawa J, Shinohara Y, Kuramoto H, Miura Y, Shimaoka H, Kurogochi M, et al. Comprehensive approach to structural and functional glycomics based on chemoselective glycoblotting and sequential tag conversion. Anal Chem. 2008 Feb 15;80(4):1094-101.

85. Nishimura S, Niikura K, Kurogochi M, Matsushita T, Fumoto M, Hinou H, et al. Highthroughput protein glycomics: Combined use of chemoselective glycoblotting and MALDI-TOF/TOF mass spectrometry. Angew Chem Int Ed Engl. 2004 Dec 17;44(1):91-6. 86. Godoy VG, Dallas MM, Russo TA, Malamy MH. A role for bacteroides fragilis neuraminidase in bacterial growth in two model systems. Infect Immun. 1993 Oct;61(10):4415-26.

87. Nakayama-Imaohji H, Ichimura M, Iwasa T, Okada N, Ohnishi Y, Kuwahara T. Characterization of a gene cluster for sialoglycoconjugate utilization in bacteroides fragilis. J Med Invest. 2012;59(1-2):79-94.

88. Brigham C, Caughlan R, Gallegos R, Dallas MB, Godoy VG, Malamy MH. Sialic acid (N-acetyl neuraminic acid) utilization by bacteroides fragilis requires a novel N-acetyl mannosamine epimerase. J Bacteriol. 2009 Jun;191(11):3629-38.

89. Collin M, Svensson MD, Sjoholm AG, Jensenius JC, Sjobring U, Olsen A. EndoS and SpeB from streptococcus pyogenes inhibit immunoglobulin-mediated opsonophagocytosis. Infect Immun. 2002 Dec;70(12):6646-51.

90. Collin M, Olsen A. EndoS, a novel secreted protein from streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J. 2001 Jun 15;20(12):3046-55.

91. Burnaugh AM, Frantz LJ, King SJ. Growth of streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol. 2008 Jan;190(1):221-30.

92. King SJ, Hippe KR, Weiser JN. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by streptococcus pneumoniae. Mol Microbiol. 2006 Feb;59(3):961-74.

93. Renzi F, Manfredi P, Mally M, Moes S, Jeno P, Cornelis GR. The N-glycan glycoprotein deglycosylation complex (gpd) from capnocytophaga canimorsus deglycosylates human IgG. PLoS Pathog. 2011 Jun;7(6):e1002118.

94. Lawrence T3, Biggers C, Simonton P. Bacteriostatic inhibition of klebsiella pneumoniae by three human transferrins. 1977. annuals of human biology;4(3):281-4.

95. Martin C, Finland M, Jandl J. Enhancement of acute bacterial infections in rats and mice by iron and their inhibition by human transferrin. Journal of infectious diseases. 1963;112(2):158.

96. Padda JS, Schryvers AB. N-linked oligosaccharides of human transferrin are not required for binding to bacterial transferrin receptors. Infect Immun. 1990 Sep;58(9):2972-6.

97. Zhao N, Enns CA. N-linked glycosylation is required for transferrin-induced stabilization of transferrin receptor 2, but not for transferrin binding or trafficking to the cell surface. Biochemistry. 2013 May 14;52(19):3310-9.

98. Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature. 2013 Sep 19;501(7467):426-9.

99. Namavar F, Theunissen EB, Verweij-Van Vught AM, Peerbooms PG, Bal M, Hoitsma HF, et al. Epidemiology of the bacteroides fragilis group in the colonic flora in 10 patients with colonic cancer. J Med Microbiol. 1989 Jul;29(3):171-6.

100. Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 2010 Jul;1(4):254-68.

101. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, et al. The primary transcriptome of the major human pathogen helicobacter pylori. Nature. 2010 Mar 11;464(7286):250-5.

102. Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, et al. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol. 2009 Sep;5(9):e1000502.

103. Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal. Nature. 2008 Jan 17;451(7176):355-8.

104. Deutscher MP. Degradation of RNA in bacteria: Comparison of mRNA and stable RNA. Nucleic Acids Res. 2006 Feb 1;34(2):659-66.

105. Bayley DP, Rocha ER, Smith CJ. Analysis of cepA and other bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett. 2000 Dec 1;193(1):149-54.

106. Vingadassalom D, Kolb A, Mayer C, Rybkine T, Collatz E, Podglajen I. An unusual primary sigma factor in the bacteroidetes phylum. Mol Microbiol. 2005 May;56(4):888-902.

107. Georg J, Hess WR. Cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev. 2011 Jun;75(2):286-300.

108. Waters LS, Storz G. Regulatory RNAs in bacteria. Cell. 2009 Feb 20;136(4):615-28.

109. Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol. 2007 Apr;10(2):102-9.

110. Liu JM, Camilli A. A broadening world of bacterial small RNAs. Curr Opin Microbiol. 2010 Feb;13(1):18-23.

111. Schneider DA, Ross W, Gourse RL. Control of rRNA expression in escherichia coli. Curr Opin Microbiol. 2003 Apr;6(2):151-6.

112. Hirvonen CA, Ross W, Wozniak CE, Marasco E, Anthony JR, Aiyar SE, et al. Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in escherichia coli. J Bacteriol. 2001 Nov;183(21):6305-14.

113. Caswell CC, Gaines JM, Ciborowski P, Smith D, Borchers CH, Roux CM, et al. Identification of two small regulatory RNAs linked to virulence in brucella abortus 2308. Mol Microbiol. 2012 Jul;85(2):345-60.

114. Smith CJ, Rogers MB, McKee ML. Heterologous gene expression in bacteroides fragilis. Plasmid. 1992 Mar;27(2):141-54.

115. Tisi D, Talts JF, Timpl R, Hohenester E. Structure of the C-terminal laminin G-like domain pair of the laminin alpha2 chain harbouring binding sites for alpha-dystroglycan and heparin. EMBO J. 2000 Apr 3;19(7):1432-40.

116. Ochs M, Veitinger S, Kim I, Welz D, Angerer A, Braun V. Regulation of citrate-dependent iron transport of escherichia coli: fecR is required for transcription activation by FecI. Mol Microbiol. 1995 Jan;15(1):119-32.

117. Storz G, Opdyke JA, Wassarman KM. Regulating bacterial transcription with small RNAs. Cold Spring Harb Symp Quant Biol. 2006;71:269-73.

118. Brantl S, Wagner EG. An antisense RNA-mediated transcriptional attenuation mechanism functions in escherichia coli. J Bacteriol. 2002 May;184(10):2740-7.

119. Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH. Bacterial sRNAs: Regulation in stress. Int J Med Microbiol. 2013 Jul;303(5):217-29.

120. Hanson SR, Best MD, Wong CH. Sulfatases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl. 2004 Nov 5;43(43):5736-63.

121. Jenkinson HF, Shepherd MG. A mutant of cmdida albicans deficient in P-Nacetylglucosaminidase. Journal of general microbiology. 1987;133:2097-106.

122. Hanson ML, Lagadic L. Chitobiase activity as an indicator of aquatic ecosystem health. Aquat Ecosyst Health Manage. 2005;8(4):441-50.

123. Zeleny R, Kolarich D, Strasser R, Altmann F. Sialic acid concentrations in plants are in the range of inadvertent contamination. Planta. 2006 Jun;224(1):222-7.

124. Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, et al. A discrete genetic locus confers xyloglucan metabolism in select human gut bacteroidetes. Nature. 2014; 506(7489):498-502.

125. Rao V, Cui T, Guan C, Van Roey P. Mutations of endo-beta-N-acetylglucosaminidase H active site residueAs sp130 anG glu132: activities and conformations. Protein Science. 1998;8(11): 2338-46

APPENDIX 1: COPYRIGHT PERMISSION POLICY OF THE AMERICAN SOCIETYFOR BIOCHEMISTRY AND MOLECULAR BIOLOGY

Copyright Permission Policy

These guidelines apply to the reuse of articles, figures, charts and photos in the *Journal of Biological Chemistry* Molecular & Cellular Protectmics and the Journal of Lipid Research

For authors reusing their own material:

Authors need NOT contact the journal to obtain rights to reuse their own material. They are automatically granted permission to do the following:

- · Reuse the article in print collections of their own writing.
- Present a work orally in its entirety.
- · Use an article in a thesis and/or dissertation.
- Reproduce an article for use in the author's courses. (If the author is employed by an academic institution, that
 institution also may reproduce the article for teaching purposes.)
- · Reuse a figure, photo and/or table in future commercial and noncommercial works.
- Post a copy of the paper in PDF that you submitted via BenchPress.
- · Link to the journal site containing the final edited PDFs created by the publisher.

EXCEPTION: If authors select the Author's Choice publishing option:

- The final version of the manuscript will be covered under the Creative Commons Attribution license (CC BY), the most accommodating of licenses offered. Click here for details.
- The final version of the manuscript will be released immediately on the publisher's website and PubMed Central.

Please note that authors must include the following citation when using material that appeared in an ASBMB journal:

"This research was originally published in Journal Name. Author(s). Title. Journal Name. Year, Vol:pp-pp. © the American Society for Biochemistry and Molecular Biology."

For other parties using material for noncommercial use:

Other parties are welcome to copy, distribute, transmit and adapt the work — at no cost and without permission — for noncommercial use as long as they attribute the work to the original source using the citation above.

Examples of noncommercial use include:

- · Reproducing a figure for educational purposes, such as schoolwork or lecture presentations, with attribution.
- · Appending a reprinted article to a Ph.D. dissertation, with attribution.

For other parties using material for commercial use:

Navigate to the article of interest and click the "Request Permissions" button on the middle navigation bar. (See diagram at right.) It will walk you through the steps for obtaining permission for reuse.

Examples of commercial use by parties other than authors include:

- · Reproducing a figure in a book published by a commercial publisher.
- · Reproducing a figure in a journal article published by a commercial publisher.

Updated March 20, 2013

APPENDIX 2: INDUCTION AND REPRESSION OF *B. FRAGILIS* 638R PUL GENES IN VIVO AND IN VITRO

*All values were calculated from the expression microarray data deposited at the NCBI GEO, accession # GSE53883. B. fragilis 638R wild type cells were grown in vitro in defined medium with either 0.4% glucose (DM-G) or 2% mucin glycans (DM-M). B. fragilis 638R cells were grown in vivo in the rat tissue cage for 1 (D1), 4 (D4), or 8 (D8) days. Values given in columns C-F are the ratios (induction or repression) of the RNA normalized Log2 expression values obtained from at least two biological replicates.

		*DM-	D1/DM-	D4/DM-	D8/DM-
Gene	FUNCTION	M/DM-G	G	G	G
BF638R0283	exported alpha-galactosidase	0.84	0.90	1.70	2.85
BF638R0284	conserved hypothetical exported protein	0.84	0.60	1.28	2.08
BF638R0285	SusC-like	0.61	0.82	2.58	4.84
BF638R0286	regulatory protein	0.80	0.61	19.93	15.68
BF638R0287	ECF-type sigma factor	1.10	0.74	0.83	1.09
BF638R0288	exported alpha-galactosidase	1.63	0.94	1.18	0.86
BF638R0345	SusC-like	2.29	0.85	0.17	0.16
BF638R0346	lipoprotein	1.96	0.70	0.38	0.34
BF638R0347	exported protein	2.14	0.40	0.23	0.24
BF638R0348	exported protein	2.18	0.91	1.03	0.75
BF638R0349	exported endo-arabinase	0.79	0.69	0.75	0.65
BF638R0384	conserved hypothetical exported protein	1.99	1.61	0.40	0.33
BF638R0385	beta-galactosidase	2.23	2.29	0.24	0.18
BF638R0386	exported beta-hexosaminidase	5.52	3.61	0.35	0.32
BF638R0387	conserved hypothetical exported protein	5.99	4.49	0.44	0.78
BF638R0388	exported hydrolase	5.17	4.79	0.86	0.80
BF638R0389	conserved hypothetical protein	4.17	6.56	4.08	3.39
BF638R0390	exported protein	20.14	12.38	4.37	3.01
BF638R0391	SusC-like	37.20	21.85	6.25	3.07
	two-component system sensor histidine				
BF638R0392	kinase	1.22	3.45	3.54	2.64
BF638R0393	two-component sensor histidine kinase	1.78	11.73	3.31	2.65
BF638R0394	conserved hypothetical exported protein	1.41	8.51	4.32	3.41
BF638R0395	conserved hypothetical exported protein	1.27	2.73	1.72	1.52
BF638R0397	exported protein	1.28	1.92	1.39	1.40
BF638R0398	SusC-like	1.22	1.74	1.33	1.26

BF638R0406	SusC-like	0.03	0.04	0.10	0.18
BF638R0407	outer membrane protein	0.06	0.10	0.21	0.30
BF638R0421	exported protein	4.32	3.75	1.32	1.30
BF638R0422	exported protein	5.70	4.33	1.56	1.23
BF638R0423	outer membrane protein	10.43	6.80	1.52	1.50
BF638R0424	SusC-like	15.08	8.96	2.96	2.29
	two-component system sensor histidine				
BF638R0425	kinase/response regulator fusion protein	1.82	16.18	2.42	2.01
0562900444	possible exported xanthan lyase/N-	4 20	2 5 7	0.02	0.60
	action sumporter	4.50	10 / Г	12.65	12.20
BF038R0445	cation symporter	4.23	18.45	11.61	14.29
BF038RU440	conserved hypothetical exported protein	4.93	0.79	10.22	14.21
BF038RU447		44.85	25.01	14.90	10.40
BF638R0448	Susc-like	55.44	30.24	14.86	22.53
BF638R0546		1.65	0.86	1.79	1.94
BF638R0547	giycosyl nydrolase, alpha-xylosidase	2.40	0.86	0.91	0.89
BF638R0548	outer membrane protein	2.16	0.99	1.19	0.85
BF638R0549	Susc-like	2.97	2.36	7.81	4.60
BF638R0550	anti-sigma factor	1.40	0.73	18.21	6.61
BF638R0551	ECF-type RNA polymerase sigma factor	1.42	1.62	0.50	0.63
BF638R0555	transporter	0 42	0.23	0.13	0.27
BF638R0556	ABC transporter	0.47	0.32	0.25	0.51
BF638R0564	SusC-like	21.32	25.78	9.83	5.33
BF638R0565	conserved hypothetical protein	9.58	13.48	4.87	3.46
BF638R0566	arvisulfatase	6.60	6.71	2.58	1.69
BF638R0582	RNA polymerase ECF sigma factor	0.91	0.66	0.92	1.08
BF638R0583	anti-sigma factor	1.18	0.79	2.15	3.34
BF638R0584	SusC-like	3.30	18.29	14.87	23.79
BF638R0585	outer membrane protein	2.65	8.11	8.98	14.03
BF638R0586	conserved hypothetical protein	2.50	5.69	4.39	6.85
BF638R0614	RNA polymerase ECF-type sigma factor	1.54	1.30	2.48	3.91
BF638R0615	anti-sigma factor	1.33	0.43	1.62	1.24
BF638R0616	conserved hypothetical protein	1.32	1.77	6.72	6.50
BF638R0617	SusC-like	2.19	2.80	24.96	29.00
BF638R0618	outer membrane protein	2.06	2.16	9.34	14.91
BF638R0619	beta-galactosidase	1.44	0.71	1.71	3.31
BF638R0620	glycosyl hydrolase	1.32	0.64	0.84	1.39
BF638R0621	glycosyl hydrolase/xylanase	1.30	0.83	0.86	1.32
BF638R0636	conserved hypothetical protein	0.52	0.64	0.12	0.08
BF638R0637	SusC-like	0.57	0.60	0.11	0.07
BF638R0638	membrane protein	0.53	0.99	0.33	0.29

BF638R0639	SusC-like	0.58	0.91	0.32	0.31
BF638R0641	SusC-like	0.70	0.77	0.23	0.17
BF638R0642	lipoprotein	0.65	0.85	0.30	0.23
BF638R0643	GTP-binding protein	0.69	0.30	0.48	0.38
BF638R0644	conserved hypothetical protein	0.62	0.52	0.28	0.24
BF638R0645	aminopeptidase	0.96	0.41	0.16	0.16
BF638R0703	SusC-like	3.60	1.94	1.04	0.55
BF638R0704	conserved hypothetical protein	2.61	1.39	0.66	0.36
BF638R0705	conserved hypothetical exported protein	2.20	1.31	0.80	0.59
BF638R0706	conserved hypothetical exported protein	1.66	0.94	0.43	0.23
BF638R0722	conserved hypothetical lipoprotein	3.17	6.13	1.76	1.95
BF638R0723	SusC-like	3.85	7.41	2.15	2.09
BF638R0724	alpha-1,2-mannosidase precursor	2.84	6.11	2.05	1.62
BF638R0725	alpha-1,2-mannosidase precursor	3.03	7.13	3.62	3.16
BF638R0726	anti-sigma factor	0.77	2.23	3.46	4.25
BF638R0727	RNA polymerase ECF-type sigma factor	0.59	1.17	0.65	0.43
BF638R0728	alpha-1,2-mannosidase precursor	0.64	1.17	0.96	0.85
BF638R0816	glycosyl hydrolase	1.68	0.74	2.88	3.75
BF638R0817	SusC-like	1.96	0.96	1.47	1.24
BF638R0818	outer membrane protein	1.13	0.69	1.06	0.83
BF638R0819	lipoprotein	1.08	0.51	1.00	0.97
BF638R0858	secreted sulfatase	1.50	2.38	0.31	0.26
BF638R0859	possible alpha-galactosidase	1.34	2.98	0.32	0.24
BF638R0860	conserved hypothetical protein	2.02	2.38	0.66	0.43
BF638R0861	sulfatase	4.55	2.10	2.88	2.00
BF638R0862	conserved hypothetical protein	3.68	3.97	3.52	4.19
BF638R0863	SusC-like	4.95	4.21	3.53	4.12
	two-component system sensor histidine				
BF638R0864	kinase/response regulator fusion protein	0.99	0.87	0.57	0.43
BF638R0920	beta-glucosidase	4.59	1.69	1.59	1.37
BF638R0921	cytochrome c binding protein	2.95	0.71	0.47	0.40
BF638R0922	transmembrane protein	2.41	3.45	1.04	0.81
BF638R0923	outer membrane protein	6.39	1.63	0.80	0.62
BF638R0924	SusC-like	7.44	0.78	0.18	0.13
BF638R0925	conserved hypothetical protein	1.14	1.45	0.32	0.38
BF638R0926	SusC-like	1.16	1.01	0.14	0.18
BF638R0927	possible outer membrane protein	2.34	1.34	0.31	0.37
BF638R0929	SusC-like	2.80	1.21	0.27	0.22
BF638R0930	RNA polymerase ECF-type sigma factor	0.62	0.58	0.52	0.63
BF638R0931	anti-sigma factor	5.77	0.82	11.63	6.73
BF638R0932	SusC-like	3.68	0.64	0.17	0.14
BF638R0933	possible outer membrane protein	3.76	0.66	0.40	0.33

BF638R0949	conserved hypothetical protein	3.16	2.27	0.54	0.35
BF638R0950	SusC-like	4.16	2.69	0.33	0.25
BF638R0951	conserved hypothetical protein	1.43	0.82	1.04	1.61
BF638R0952	SusC-like	2.06	0.69	1.01	0.74
BF638R1032	RNA polymerase ECF-type sigma factor	0.80	1.33	2.93	2.41
BF638R1033	anti-sigma factor	1.65	1.13	5.94	3.39
BF638R1035	SusC-like	1.12	0.39	0.34	0.23
BF638R1036	conserved hypothetical protein	1.10	0.37	0.12	0.10
	endonuclease/exonuclease/phosphatase				
BF638R1037	family protein	1.25	0.47	0.18	0.16
BF638R1038	exported protein	1.93	0.39	0.32	0.37
BF638R1039	RNA polymerase ECF-type sigma factor	1.47	1.12	3.34	2.11
BF638R1040	anti-sigma factor	7.58	0.94	15.74	9.82
BF638R1041	SusC-like	29.69	5.19	5.89	3.69
BF638R1042	outer membrane protein	18.88	3.83	3.75	2.63
BF638R1043	arylsulfatase precursor	14.97	4.08	4.27	2.98
BF638R1045	arylsulfatase	1.77	0.48	1.58	1.74
BF638R1264	alpha-glucosidase, glycosylhydrolase	2.19	1.49	1.18	1.11
BF638R1265	ECF-type RNA polymerase sigma factor	1.17	0.34	0.22	0.23
BF638R1266	xylosidase/arabinosidase	2.18	0.16	0.33	0.39
BF638R1267	beta-lactamase	0.73	0.49	0.68	1.14
BF638R1268	hypothetical protein	0.80	0.46	0.60	0.53
BF638R1269	anti-sigma factor	0.56	0.39	3.33	2.04
BF638R1270	SusC-like	0.79	0.74	2.71	0.93
BF638R1271	conserved hypothetical protein	0.77	0.68	1.24	0.51
BF638R1272	phosphohydrolase, Icc family	1.14	1.23	1.33	1.24
	possible phosphodiesterase/nucleotide				
BF638R1273	pyrophosphatase-like protein	1.67	0.51	1.08	0.87
DEC20D1274	endonuclease/exonuclease/phosphatase	1.04	0.67	0 42	0.27
DE629D1222	BNA polymorase ECE type sigma factor	0.76	2 22	0.43 E 17	7.21
DF030R1323	anti cigma factor	2.00	2.55	12.65	12.02
DEC20D122E		2.00	2.05	16.60	20.92
DF030K1323	susc-like	20.02	17.96	12.00	20.89
BF050K1520	possible endo-beta-N-	20.04	17.00	12.00	17.25
BF638R1327	acetylglucosaminidase	19.35	17.54	11.15	16.70
BF638R1329	conserved hypothetical protein	20.68	15.05	9.62	13.49
BF638R1330	conserved hypothetical protein	13.81	13.37	8.34	10.29
BF638R1494	RNA polymerase ECF-type sigma factor	1.07	7.96	6.75	13.31
BF638R1495	anti-sigma factor	1.20	1.83	11.32	4.29
BF638R1496	SusC-like	1.07	1.47	1.04	1.05
BF638R1497	outer membrane protein	0.88	0.54	0.37	0.34

BF638R1498	hypothetical protein	0.96	1.08	0.97	0.79
BF638R1499	alpha-galactosidase	1.03	1.68	0.99	1.04
BF638R1620	SusC-like	1.14	1.99	0.97	0.79
BF638R1621	conserved hypothetical protein	1.25	3.01	1.24	1.05
BF638R1720	SusC-like	5.94	62.70	12.82	8.02
BF638R1721	conserved hypothetical protein	5.43	74.43	16.70	11.68
BF638R1722	conserved hypothetical protein	21.28	188.38	63.00	75.48
BF638R1723	SusC-like	47.55	195.37	67.18	76.87
BF638R1724	conserved hypothetical protein	13.49	163.55	7.43	4.49
BF638R1725	SusC-like	16.81	152.89	5.42	2.61
BF638R1726	SusC-like	3.38	7.18	0.44	0.25
BF638R1727	exported protein	2.52	7.96	0.71	0.52
BF638R1728	neuraminidase precursor	9.81	37.60	12.63	12.98
BF638R1729	beta-N-acetylhexoosaminidase	19.66	128.60	15.90	15.22
BF638R1730	sialate-O-acetyltransferase	11.99	75.34	4.85	7.61
BF638R1731	sialate O-acetylesterase	2.60	3.43	1.19	1.28
BF638R1732	beta-mannosidase	1.38	1.84	0.45	0.61
BF638R1733	beta-N-acetylhexosaminidase	1.63	2.12	0.42	0.48
BF638R1734	lipoprotein	1.29	2.37	0.27	0.40
BF638R1735	beta-N-acetylhexosaminidase	1.28	1.18	0.52	0.43
BF638R1736	outer membrane protein	1.09	1.27	0.37	0.38
BF638R1737	beta-galactosidase	0.99	1.32	0.43	0.50
BF638R1738	SusC-like	6.81	21.16	14.41	10.74
BF638R1739	conserved hypothetical protein	5.40	6.36	3.37	1.96
BF638R1740	outer membrane protein	4.59	3.95	2.57	2.02
BF638R1751	SusC-like	23.68	6.85	0.81	0.62
BF638R1752	outer membrane protein	19.34	6.23	0.68	0.67
BF638R1753	alpha-1,2-mannosidase precursor	13.55	3.03	1.06	1.28
	endonuclease/exonuclease/phosphatase				
BF638R1754	family protein	4.03	1.65	0.55	0.58
BF638R1755	Alkaline phosphatase	2.41	0.70	0.23	0.24
BF638R1756	conserved hypothetical protein	2.22	1.03	0.29	0.29
BF638R1757	exported protein	2.47	0.71	0.21	0.21
BF638R1758	exported protein	1.83	0.92	0.23	0.18
BF638R1928	SusC-like	1.01	0.85	0.26	0.29
BF638R1929	conserved hypothetical protein	1.01	1.10	0.32	0.36
DEC20040C0	TonB-dependent outer membrane	0.50	0.24	0.44	0.20
BF038K196U		0.53	0.31	0.44	0.39
BF038K1961	Susc-like	0.34	0.65	0.19	0.28
BF638K1962	conserved hypothetical protein	0.32	0.42	0.09	0.15
BF638R1963	conserved hypothetical protein	0.33	0.34	0.06	0.07
BF638R1964	nypothetical protein	0.33	0.42	0.06	0.10

BF638R1965	hypothetical protein	0.37	0.54	0.09	0.14
BF638R1966	hypothetical protein	0.43	0.59	0.14	0.17
BF638R1967	conserved hypothetical protein	0.42	0.46	0.10	0.14
BF638R1968	conserved hypothetical protein	0.46	0.51	0.07	0.09
BF638R1969	polysialic acid capsule transport protein	0.52	0.82	0.16	0.21
BF638R2253	SusC-like	0.13	0.31	0.02	0.04
BF638R2254	lipoprotein	0.15	0.28	0.04	0.07
BF638R2329	lipoprotein	0.07	0.08	0.06	0.07
BF638R2330	SusC-like	0.07	0.05	0.03	0.03
BF638R2916	conserved hypothetical protein	2.63	1.04	0.73	0.95
BF638R2917	SusC-like	3.23	1.30	0.83	0.70
BF638R2918	membrane protein	3.26	0.78	1.83	1.64
BF638R2920	ECF sigma factor	1.90	3.73	13.53	10.60
BF638R2946	exported protein	15.80	3.53	8.07	1.32
BF638R2947	membrane protein	18.11	3.53	7.19	1.50
BF638R2948	SusC-like	34.43	8.37	12.90	2.29
BF638R2949	conserved hypothetical protein	15.35	1.25	12.24	3.46
BF638R3029	glutamine-dependent NAD+ synthetase	0.64	1.25	1.39	0.97
BF638R3030	exported protein	0.39	1.59	1.85	0.87
BF638R3031	SusC-like	0.37	0.46	1.07	1.09
BF638R3032	exported protein	0.50	0.21	0.40	0.53
BF638R3033	exported protein	0.67	0.77	1.70	1.00
BF638R3120	sulfatase	1.48	0.63	0.39	0.24
BF638R3121	exported hydrolase	1.64	0.50	0.60	0.33
BF638R3122	lipoprotein	1.47	0.34	0.59	0.24
BF638R3123	SusC-like	1.20	0.82	2.34	0.52
BF638R3124	anti-sigma factor	1.81	1.40	3.64	2.52
BF638R3125	sigma factor	1.15	1.73	0.78	1.22
BF638R3167	conserved hypothetical lipoprotein	8.14	7.10	2.76	4.31
BF638R3168	lipoprotein	2.90	3.23	1.60	2.29
BF638R3169	membrane protein	4.07	3.93	1.86	3.07
BF638R3170	SusC-like	4.23	4.61	2.72	3.57
BF638R3226	SusC-like	5.03	3.82	1.24	0.67
BF638R3227	lipoprotein	3.44	3.90	1.43	0.81
BF638R3228	lipoprotein	3.73	5.26	3.18	2.70
BF638R3290	exported protein	7.72	1.67	0.27	0.20
BF638R3291	SusC-like	8.76	2.17	0.29	0.22
BF638R3331	hypothetical protein	0.90	0.56	0.27	0.32
BF638R3332	lipoprotein	1.08	0.42	0.53	0.44
BF638R3333	exported protein	3.34	2.11	1.27	0.87
BF638R3334	SusC-like	5.06	3.38	2.48	2.34

BF638R3437	RNA polymerase sigma factor	3.60	23.33	14.85	22.79
BF638R3438	regulatory protein	33.84	223.63	597.79	532.11
BF638R3439	SusC-like	559.54	2146.72	933.46	1161.15
BF638R3440	conserved hypothetical protein	505.26	1907.71	700.53	918.12
BF638R3441	exported protein	334.26	1494.32	443.63	631.07
BF638R3442	lipoprotein	233.61	765.28	367.94	438.35
BF638R3443	exported protein	90.69	1227.85	235.37	363.24
BF638R3466	SusC-like	0.50	1.92	0.96	0.68
BF638R3467	conserved hypothetical protein	0.50	1.90	0.28	0.38
BF638R3468	lipoprotein	0.51	0.82	0.08	0.12
BF638R3469	peptidase	0.51	0.88	0.10	0.10
BF638R3470	hypothetical protein	0.41	0.70	0.12	0.15
BF638R3593	exported phosphatase	1.48	1.37	1.03	1.13
BF638R3594	exported protein	1.69	0.99	0.49	0.38
BF638R3595	exported phosphoesterase protein	1.81	0.89	0.72	0.48
BF638R3596	conserved hypothetical protein	6.21	4.97	3.34	3.16
BF638R3597	SusC-like	7.16	6.41	3.45	3.47
BF638R3598	anti sigma factor	2.46	1.60	17.35	14.63
BF638R3599	RNA polymerase sigma factor	1.76	1.46	0.82	0.69
BF638R3600	lipoprotein	8.64	0.67	0.20	0.15
BF638R3601	SusC-like	9.98	0.49	0.14	0.11
BF638R3602	conserved hypothetical protein	6.63	0.82	1.21	1.83
BF638R3603	membrane protein	10.52	0.87	1.31	1.01
BF638R3604	SusC-like	17.96	1.22	1.82	1.44
	regulatory protein (possible anti-sigma				
BF638R3605	factor)	5.53	0.74	10.18	7.99
BF638R3606	RNA polymerase sigma factor	0.87	0.49	0.83	1.81
BF638R3783	transport related, membrane protein	2.67	1.65	1.55	1.22
BF638R3784	sialidase	3.29	1.67	0.67	0.60
BF638R3785	hypothetical protein	3.64	2.55	2.00	1.42
BF638R3786	lipoprotein	2.56	1.55	1.31	1.32
BF638R3787	SusC-like	2.70	1.54	1.41	1.28
5563053700	N-acetylneuraminate lyase (sialic acid	4.00			4.60
BF638R3788	iyase)	1.90	2.57	1.51	1.69
BF638R3789	GntR-family regulatory protein	1.29	0.38	1.12	1.22
BF638R3796	exported sulfatase	1.59	0.76	1.08	0.84
BF638R3/9/	exported usitatase	2.21	1.11	1.20	0.82
BF638R3798	conserved hypothetical protein	2.31	1.70	2.66	2.92
BF638R3799	Susc-like	2.99	2.90	3.90	4.01
BF638R3800	membrane protein	1.37	0.66	15.37	9.87
BF638R3801	RNA polymerase sigma factor	0.59	2.08	3.20	4.32
BF638R3819	RNA polymerase sigma factor	1.95	2.42	3.01	3.69
BF638R3820	membrane protein	4.68	4.53	12.17	6.41
------------	--	-------	-------	-------	-------
BF638R3821	SusC-like	2.13	2.18	2.17	1.33
BF638R3822	liporotein	1.80	0.94	0.60	0.35
BF638R3823	lipoprotein	0.95	1.39	1.07	0.74
BF638R3824	exported protein	0.08	0.12	0.07	0.06
BF638R4102	SusC-like	4.38	4.27	0.97	0.69
BF638R4103	outer membrane protein	3.60	3.57	0.51	0.37
BF638R4104	endo-beta-galactosidase	3.00	3.34	0.74	0.66
BF638R4105	beta-hexosaminidase precursor	2.15	1.40	0.18	0.17
BF638R4106	beta-glucanase	1.99	1.88	0.49	0.44
BF638R4107	beta-galactosidase	1.92	2.37	1.23	0.59
BF638R4108	SusC-like	2.63	2.12	0.42	0.36
BF638R4109	outer membrane protein	2.44	1.50	0.46	0.42
BF638R4142	glycosyl hydrolase	2.02	1.68	0.52	0.52
BF638R4143	conserved hypothetical protein	1.71	0.96	0.30	0.28
BF638R4144	outer membrane protein	2.27	0.84	0.48	0.42
BF638R4145	SusC-like	2.75	1.19	0.37	0.23
BF638R4146	anti-sigma factor	1.58	1.07	1.26	0.75
BF638R4147	ECF-type RNA polymerase sigma factor	0.80	0.72	0.33	0.36
BF638R4192	Transcriptional regulator	1.02	3.06	3.10	2.59
BF638R4193	SusC-like	42.41	4.08	3.66	4.58
BF638R4194	lipoprotein	32.61	3.23	1.83	2.95
BF638R4207	RNA polymerase ECF-type sigma factor	2.17	7.16	12.22	11.38
BF638R4208	anti-sigma factor	8.54	2.29	5.73	2.32
BF638R4209	SusC-like	57.11	32.97	8.14	3.80
BF638R4210	conserved hypothetical protein	24.09	9.37	2.59	2.31
BF638R4247	conserved hypothetical protein	1.41	2.26	2.58	2.10
BF638R4248	possible xylosidase/arabinosidase	1.71	2.17	2.75	2.22
BF638R4249	conserved hypothetical exported protein	2.03	1.70	4.03	4.00
BF638R4250	outer membrane protein	1.59	1.20	3.79	2.11
BF638R4251	SusC-like	2.29	1.88	4.90	2.51
BF638R4258	hypothetical protein	1.46	0.52	0.20	0.19
BF638R4259	outer membrane protein	2.76	1.06	0.73	0.46
BF638R4260	SusC-like	3.79	1.46	0.83	0.70
	two-component system sensor				
BF638R4261	kinase/response regulator fusion protein	0.89	5.25	3.59	2.53
BF638R4328	SusC-like	1.91	1.69	0.17	0.19
BF638R4329	conserved hypothetical protein	1.69	1.29	0.18	0.19
BF638R4330	SusC-like	8.45	1.79	0.35	0.17
BF638R4331	outer membrane protein	6.52	1.39	0.40	0.17
BF638R4332	hypothetical protein	5.68	1.11	1.07	1.36
BF638R4338	SusC-like	2.02	1.03	0.12	0.14

BF638R4339	conserved hypothetical protein	2.18	1.09	0.12	0.14
BF638R4348	conserved hypothetical protein	0.93	0.86	1.30	1.18
BF638R4349	arylsulfatase	1.14	0.52	1.32	1.63
	conserved hypothetical protein;				
BF638R4350	lipoprotein	1.24	0.53	1.10	1.81
BF638R4352	SusC-like	1.24	0.42	1.10	1.61
BF638R4353	anti-sigma factor	1.21	0.28	12.51	9.78
BF638R4354	ECF-type RNA polymerase	0.95	1.05	2.02	3.62
BF638R4443	SusC-like	2.59	2.06	0.41	0.36
BF638R4444	lipoprotein	0.65	0.46	0.15	0.21
BF638R4478	hypothetical protein	2.23	2.84	1.45	2.03
BF638R4479	outer membrane protein	4.48	4.32	0.95	0.72
BF638R4480	SusC-like	4.99	5.82	1.57	1.04
BF638R4481	hypothetical protein	2.09	1.35	1.07	0.70
BF638R4482	transmembrane sugar transporter	2.19	0.83	2.38	1.95
BF638R4442	outer membrane protein	1.00	1.00	1.00	1.00

APPENDIX 3: PRIMARY TRANSCRIPTOME ANALYSIS

		Transcript Start		Putative	Sequence -50 nt upstream + TSS	TAxxT
TSS	Strand	locus	Name	sRNA	(51nt)	TTG
			SpoU rRNA		TTATCAACACCTATGATTGCGTTAACA	
44	+	bf638r_0001	methylase	0	AGAAAAGAATTACTTTTGCAACAT	1
					AAATAGAAATAGTAATATTATTCTATTT	
716	+	bf638r_0002	omp	0	ATATGGTTTTTATGATATTGCAAA	0
					CCGTTATCTTGGCTTTTGCGCGAATAA	
3187	+	bf638r_0004	sugar transferase	0	AAAATTTCCTTTACTTTAATAACTT	0
					TTTGCAAAAATAAAGGATTAAATTTAT	
14658	-	bf638r_0012	hypo	0	ATTAATGGTTTTCCTTGCAGCATTT	1
					TATTAATGGTTTTCCTTGCAGCATTAAC	
14734	+	bf638r_0012	hypo	0	CTATTTAAATTATCTTCGACAAT	0
					AAACGGATGTACAAATGCAGCTGCGT	
16811	+	bf638r_0014	SAM superfamily	0	CTAAAGTTTTAGTAATTTTGTAGAA	1
			iron transport		GCCGCAAAGGTATGTGTACCTGAAAG	
22995	-	bf638r_0018	receptor	0	AGTCTACAATACCTATAAAAAGGTA	1
					TTGCAAAATTACATAAAATAAATGGCA	
24900	-	bf638r_0019	sulfate permease	0	ATATTATGTTTTTGAACATCTTAT	1
					TAATGGATAAAGTTCCGTGTTTTTTGA	
25042	+	bf638r_0020	rubreythrin	0	ACTAAATCCTTATATTTGCGTTAT	1
					ACCGCAAAGCTACAAAATAAGTTTTT	
27348	-	bf638r_0021	nadB	0	CGTTGTGCTTTTCGTTGCCATTAA	1
					TCGTTGTGCTTTTCGTTGCCATTAATTC	
27425	+	bf638r_0022	mem prt	0	ATAAATTTACTAACTTTCCGCCAA	1
					CCGCCAAAGTTATACATTTAATCTGAT	
32662	-	bf638r_0026	hypo	0	TGATACCAATATTTTGGCATGAAA	1
					GCCCAAATGTGTGAAATAAAATTAATA	
32790	-			1	GTGCCAAATCCTTACGCCATAAAT	1
			SAM/TRAM		TTGGTTTCATTTTACAACTTTTTGAGGA	
32951	+	bf638r_0027	methylase	0	TGAAGCAGTATCTTTGCGGACGC	1
					TATGACTGCACCTTGTTTGTTATATGG	
34441	+	bf638r_0028	alpha fucosidase	0	CTACATTGTTTTATCTTTGTGCGT	1
					AATCTATGAGGGAACTTTGAGATAATA	
41129	+	bf638r_0033	mem prt	0	TTGTAAAGTATTACATTTGTTTGC	1
					TAATGCAAAAAATGGTGTTATATTGAT	
42445	+	bf638r_0034	hypo	0	CAATAGCTTTTAACTTTGCTGTGA	1
					AATAAAATTGATAGCAGTTTATCCAAA	
44349	+	bf638r_0037	hypo	0	ATCTCTTTTTACCTTTGCTGCCAG	1
					GGCACGAAGATAGCGAAAAATTTATT	
44748	-			1	GGAATGAGTAAATGTAGCATTTACT	1
					ATTTTTTCTATATTTTAGCTTCTTGTTAG	
46745	+	bt638r_0040	mem prt	0	GAAATAATATTATTTTTGTCAG	1
			1.		AATAAAATTGATAGCAGTTTATCCAAA	
47955	+	bt638r_0041	hypo	0	ATCTCTTTTTACCTTTGCTGCCAG	1
				-	AGTGAGGACTCTTTTATATAAATCTTA	_
48260	+			0	TCACATTATAATCATTCATTGCAT	0
					GGCACGAAGATAGCGAAAAATTAATT	
48357	-			1	AGAAAGAGTAAATGTAGCATTTAC	1

					TTCTACGGAGGAGGTGGCTACCCGAG	
48461	+	bf638r 0042	hypo	0	AGAGAGACACGGCAAATAAGAAAATA	0
					AGATGTGGATTGTAATATAGAATCTGT	-
49845	+	bf638r_0044	hypo-pseudo	0	CGATTIGGCAGAGTIGTGGAAGCA	0
15015		0.0001_0011		0		Ū
5001/	т			1	TEGTEGAGAAGAGCGTTATCATTAT	0
50914	т			1		0
52170		hfc20+ 0040	h			0
52178	+	D1638r_0049	пуро	1		0
		1 (200 0050			CICCIIAAGGAAAIGCCIAIICGICAC	
54233	+	bf638r_0050	hypo	0	IIIIIAIIIGIIAIIIIGCACCAA	1
					ATTGCGAAAATAGAGAAATTGATTAA	
55578	-			0	AAGAAATACCAATATACAGGATGTG	1
					GAAGCAAAAGTAGCAATAAATTCAAA	
59623	-			1	ATATTATCTACCTTTGTCCCTGAAA	1
					ACGAAGCAAAAGTAGCAATAAATTCA	
59671	+	bf638r_0058	metK	0	AAATATTATCTACCTTTGTCCCTGA	1
			lysine		AACAAGGCAGCCTTCTTCTTTCTCCTT	
61222	+	bf638r 0059	decarboxylase	0	GAAATTTGGTACTTTTGCAGCGT	1
		_	· ·		AAGTACAAAAATAGACCAGACTTATTT	
61284	-			1	TGATGCAGCCATGAAATTAGGGCA	1
			uronornhyrinogen	_	TCCTGTAATATTTATGGGGTTTTCCTTT	
62588	+	hf638r_0061		0	TAATTTTATACTTTTGTGCCCTT	1
02500	•	510501_0001	tyrosyl_tRNA	Ŭ	TTTTAGGCAATAAGAGTTGCTTGTTAC	-
61707		hf628r 0062	synthotoco	0	GATAAGAGTCGTACTTTTGCCCTAA	1
04787	+	2000_182010	synthetase	0		1
60533		1 (620, 0000		0	AAGTACAAAGGTAGCAATTCGCTTCG	
69533	-	DT638r_0066	peptidase	0	GUTAACGAGACITATTATACAAAAA	1
					GICIAAAAAIAIIIGGAAAAIAGCIIG	
69635	+	tRNA-gin	trna	0	CAIGGCAITAICITIGCAICGCIT	1
					ATTATCTTAAATTTCTCTTCTTTCTCTTT	
70027	+	bf638r_0067	choline sulfatase	0	CTTTTTACCTATTTTGCCTAT	1
					AATCAATGAAACGTCGCGATTTTCTGA	
70049	-			1	AATGTTCACTTGCCGTGGGAGCAG	0
			4-deoxy-L-threo-5-			
			hexosulose-uronate		GGAGTATCATTTATTCCCAAATCCCGT	
71701	+	bf638r_0068	ketol-isomerase	0	TTTCTTTTCTTATTTTTGCGTCGT	1
					CGGATGTTGTCGCCTACCATGAAAAA	
76163	+			1	GGTTGCCTTGATGTTGTGTTTGTCC	1
					GCGCAAAGATAATGATTTACGTGAAG	
79721	-	bf638r 0073	hypo	0	ATAGCCGTAGAAAGTGTAGAGTTTT	1
					GCAACAAAGATAAGCCGCTTTTTCAT	
79895	-			1	CTGTGCAAATATTTCTACATTGTT	1
				-		-
80013	+			1	GAGCCAAAACTGTGTTTCAAAAAA	Ο
00015	•			1		0
00220				1	CTEGEGECTITITEATTTCCCCTC	0
90338	-			1		U
		1 (630 - 6336	serine			
92697	-	0800_186810	acetyitransferase	U	ATAAAAAGTAGTACGTITGTTATCG	1
				-	AAGTAGTACGTTTGTTATCGAATTTAA	
92778	+	bf638r_0087	TCS-sensor	0	AAAAAGGATGTATTTTTGTTGGGT	1
					CGCGGATTCTTGAAAGAACTACAAGA	
95605	+	bf638r_0089	hypo	0	GCGCTTTTGTATAATTTGAAGTTTTT	1
					CAGATAAAAAAGGGTTGCTATGCTTTT	
95716	+	bf638r_0089	hypo	0	ACTTTGATTGTATCTTTGTGAGGTA	1
					GGTGGCAAAGTTACATATTAAACGGA	
96426	-	bf638r_0090	exp prt	0	TATAAATGCATAAAATCGAAAGAAT	1
			1		AGTTACATATTAAACGGATATAAATGC	
96484	+			1	ATAAAATCGAAAGAATTTTATCAT	0
					AAAAAAATACCGTATTAACCGTTTTAT	-
99476	-	bf638r_0091	Alog	0	TATTACTTTTGTGCTCAAATAGTG	0
00500		Lfc20_0001		~ ~		
99520	+	pt638r 0092	octaprenyl-	0	AAGTACAAAAAAATACCGTATTAACCG	1

			diphosphate synthase		TTTTATTATTACTTTTGTGCTCAA	
					ΑΤΤΟΓΛΑΛΟΑΤΛΟΓΙΑΤΤΙΤΑΛΤΟΑΤ	
102220		hfc20r 0000	D-LUI OSVI-LIKINA	0	TATECACACCECTETTATCAT	1
103330	-	00381_0038	acylase	0		1
107710		hfc20+ 0101	aidA	0	CUCUCAAAGTTACGAAAAAGTTUCCA	1
107716	-	1010_186810	gidA	0	GIIGUGGGIIIIAIGUAAIAAGIII	1
100111		1 (620 0402		0		
108414	+	bf638r_0102	lipoprotein	0	AAAGAATCGTAAGTTIGTCATCAT	1
					ATTGCTTTATATCTGTTAATCTGCTATT	_
110223	+	bf638r_0103	exp prt	0	TACAATGTTTAAGATGTTATCTC	0
					AAGACAAAGATAAGAATTTTAATTGA	
113100	-	bf638r_0107	hypo	0	GGATAAGCGCAAATTGCAGTAATAA	1
					TACTATCTTTTGAGACCGTAACTATTTT	
113416	+	bf638r_0109	hypo	0	GTTTTTTATATATTTGCAAATGA	1
					CGGTACGCAAAAACAGCATTACTCGCT	
115236	+	bf638r_0111	hypo	0	ATCAAAAATCAAGGCACGGAACAGG	0
					AGTCCGGAAAGACTGTTTGATACAACT	
117337	+			1	TTTATTATGCGTAAGTTTGTGTAT	1
			spore maturation		ACAAAATTAAGAATATGTTTCCACTCA	
118967	-	bf638r_0113	prt	0	TIGCGGCTTTTTTGACTATTTTTG	1
110507		010301_0113	pre	Ű		-
119022	+	hf638r_0114	hypo	0	GCTTTTTTGACTATTTTTGTCCGT	1
115022		510501_0114	Пуро	0		1
110027				1	GITCCGGTGCAGCGAAAGAGATCAGC	0
119937	+			1		U
						_
120062	+	bf638r_0115	ruvB	0	GCGAAAICIAIAICIIIGCIACCI	1
					ATTGTTGAAGAGTGACGGTAAGCGTG	_
124037	+	bf638r_0118	hypo	0	TCGCCAGAGAAAAGAAGATGAATAA	0
					CACGCAAAGGTAGCACTTTTAAAGACA	
127175	-	bf638r_0119	transmembrane prt	0	ATAATAAAGAGGGGAAGGATTTTT	1
					GGGTGCAAAGATACGCATTAATTGTG	
129826	-	bf638r_0121	RNA helicase	0	AATAATGAATGATAACAATAAATAA	1
					GATTGCAAAGATAGGAATTCTCGTTAC	
130975	-	bf638r_0122	hypo	0	ATGGTATAATTACTTTGCGATAAT	1
					CGCTCTTTTTCTTTTGCTATGTCCAGC	
131662	+			0	AGTTCCAATATCTTATCACGCAA	0
			lysine		CTTACAAATATCTGCAATTTTCTATAAA	
133199	-	bf638r_0125	decarboxylase	0	CGACAATAAGTTTTATTGTATTT	1
				-	ΑΤΟΤΘΟΑΔΤΤΤΤΟΤΑΤΑΔΑΟΘΑΟΔΑΤΑ	_
133258	+	hf638r_0126	nentidase	0	AGTITIATIGTATITITGTGTCCT	1
155250		510501_0120	peptidase	0		-
125072		hf629r 0127	ovo ort	0	CICITICATICACIÓN	1
155075	-	010381_0127	exp pr	0		1
405070		1 (620 0120		0	AAIGIIIAAAGACIGCIGICIICCGGC	
135279	+	bf638r_0128	acetyl transferase	0	TTATICAGCITATCTTGCTCGAA	1
			uxuB; D-mannonate		GCGCAAATATAGCTATAAAGTTGATG	_
138145	-	bf638r_0130	oxidoreductase	0	GGATGGTTTAAAAAAAGAGGGAAAT	1
			dihydrodipicolinate		AGTCGCAAAGATAAGATTTTTATTACA	
142122	-	bf638r_0134	reductase	0	TTTGTCGAGCACATTAACGTCTTG	1
					ATATCCAAAATATTAGTCGCAAAGATA	
142158	+	bf638r_0136	hypo	0	AGATTTTTATTACATTTGTCGAGC	1
					GCTGCAAAGGTAAGGAAATCATCTGA	
146534	-	bf638r_0139	hypo	0	CTGACCATAAAAAAGGAGATCCGA	1
					GCATCGGATGGAGAACGGAATACTGA	
146666	+	bf638r 0140	hypo	0	AATAAAGTATATATTTTTGCAAGAT	1
				-	GCGACAAAAGTACTCTTTATTTCTATA	_
154115	-			1	CCGTTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	1
134113				-	ΤΤΑGΤGTAAAGTATAGCATTAATTAAT	
157550	+	hf638r_0146	hypo	0	GGATAAGGCTTATTTTCCACCAT	1
137330	т	010301_0140		0		1
100000		hfc20+ 0140	cyss (LRIVA	<u> </u>		4
102209	-	0149_1028	synthetase)	U	IGGGACGIGITCIGCCGGATIATI	T

					AGTATGATGAATGATAATATACTTATA	
162692	-			1	TATAACGCGTTAATATCATGGAG	0
			haloacid		GGGTGCAAAGGTAGTGGTTTTGGGTA	
163635	-	bf638r_0150	dehalogenase	0	TATCACCCAAACAGGATGCGAGTAA	1
					TTTTTCTTTATTTTCTTTAAAATCAGAA	
163813	+	bf638r_0151	transmembrane prt	0	ATAAATACACGATATTTGTATAA	1
					TAGTAAGGAACGTTTTCTTAATAGATA	
165319	+	bf638r 0152	mem prt	0	GAAAAAATCGTCTATATTTGTTAT	1
		_			GTTACAAAGGTAATGAATTTAAGTAAG	
165666	_			0	AATCAGTAGGTGCATCATTTACTT	1
					TTTCTGTCCGCATGACATTCAGGATAG	
170318	+	bf638r_0158	TCS-regulator	0	GAAAAAGTCTTAACTTTGTGCCGT	1
1/0510		010301_0130		0		-
172531	+	hf638r_0160	mσtΔ	0	GGTGGTTTGTACCTTTGTGGCGT	1
172551		510501_0100	ingen	0		-
176570		hfc28r 0162	linoprotoin	0		1
1/05/0	+	010361_0102	проргосени	0	GGIGGIIIGIACCIIIGIGGCGI	1
100505		hfc20+ 01C2		0	GGATCAAAGATACGGGATTTATGTA	4
180505	-	DT638r_0163	SINF family nelicase	0	ATTTIGCGGTATGATGGAAAAAAAC	1
			putative plant			
			auxin-regulated		CGTGCAAAAATAGCCTTAATTATCTTT	
183232	-	bf638r_0165	protein	0	TTTTCTATCTTTACGACGGAAAT	1
			pfkA2; 6-			
			phosphofructokinas		TAGTCGTGCAAAAATAGCCTTAATTAT	
183278	+	bf638r_0166	e 2	0	CTTTTTTTCTATCTTTACGACGG	1
			acpP, acyl carrier		GGTGCAAAGGAATAAATATTTATCGTC	
186844	-	bf638r_0169	protein	0	CTGCGCAAATTTTTGATTAAATAA	1
			purN,			
			phosphoribosylglyci			
			namide		ACTTTAAGTTTTTAATTAATAATTAGTT	
186848	+	bf638r_0170	formyltransferase	0	TTATTTCTTTAAATTTGCGGTGC	1
			pdxB, erythronate-			
			4-phosphate		CATGCAAAGGTAGGAAATAAAAAGCA	
188620	-	bf638r 0171	dehydrogenase	0	GGAAAGATTGGCTATATGGAAAATA	1
			, ,		AAAAGCAGGAAAGATTGGCTATATGG	
188689	+	bf638r 0172	hypo	0	AAAATATTGCATAGATTTGCCCGGT	1
			711 -	_	GATACAAATGTAATACTTATTTTGAAA	
192995	-	bf638r_0176	glycosyltransferase	0	TAAAGGACTTTTATATTGCTCTTA	1
			8.70007.0000.000	-	GTGCAAAGATAGAACGTTTATATTAGA	_
194171	-	hf638r_0177	glycosyltransferase	0	ΔΤGTTΔCTΔΔΔΔΔΔΤGGΔGΔΔΔΔG	1
1541/1		510501_0177		0	TATECEATEATTATAAATTCACTAAA	-
104521		622r 0179	hinding protoin	0	CATTICICATIATCITICACIAA	1
194321	т	00301_0178		0	GATTICIGITATCHIGIGCCCI	1
100204		hfc20+ 0100	mini, ribonuclease	0	GGGTGGTAAAGGTACGAATATATICC	4
198264	-	0810_186910	HI	0		1
10000					GGTACGAATATATICCATTACCGAACA	
198324	+	bf638r_0181	һуро	0	ACTITCGTTGTCAGTGTTTAA	0
					TACCATGTGGGTCATTCGGTGTTCTCT	
199787	+	bf638r_0184	shikimate kinase	0	CAATAAATATCTATCTTTGTGCGAA	1
			arginine		TAATGTCAATTTAATTGGCAACCTGTA	
205871	+	bf638r_0188	decarboxylase	0	GATTAATACGTATTTTTGCCGTCC	1
					AAATAGGAGTACTTCTGTAACTTTTCA	
208769	+	bf638r_0190	ecf sigma factor	0	CCAGCTCATCCGTCAACTTAATAG	0
					ATTGATTTAGACGTAAGTCGGCTATGA	
212007	-	bf638r_0194	lipoprotein	0	AAAGTTGCATCTATCTTTCTTTT	1
					TTGCATCTATCTTTCTTTTTTATGCAAA	
212088	+	bf638r_0195	hypo	0	ATAATCCGTTTATTTGTATTTAT	1
			<i>.</i> .		GTGATAAAGATAGTGATTTGTTTTATT	1
213391	-	bf638r_0196	transmembrane prt	0	CATTACAAGAATAACGATACCTTT	1
					AAAGATAGTGATTTGTTTTATTCATTAC	-
212//7	+	hf638r 0197	transmembrane prt	0	ΑΔGΑΔΤΑΔCGΔΤΔCCTTTGCTGΔΔ	1
213447	•	5.0301_0137		Ŭ Ŭ	COTTOTIGITGITGITTTTTATTCCTTTTCT	-
211664	+	hf638r 0100	evn nrt	0	TTTTCCATAGATTTGTAACCGT	1
214004	т	010201_0120	evh hir	0	TITICATAGATTIGTAACCGT	T

					AGTGGCAAAATTAGCAAATTACGGGG	
225803	-			1	ACTTACCTTCGGGATTTACCCAGTT	1
				-	ACCATTTTTAGGGATTGATTATGTAAA	-
229623	+	bf638r_0211	tetR regulator	0	GAGATATTGCGAACTTTGCAAACG	1
		010301_0211	tettriegulator	Ŭ		-
240103	+	bf638r_0219	nentidase	0	ΔΑΤΑΔΑΤΤΟΑΤΤΤΑΤΤΤΙΘΟΙΟΤΙΤΑΤ	1
240103	т	010381_0219	peptidase	0		1
242575		hfc20, 0222		0		4
243575	-	DT638r_0223	exp prt	0		1
			C · C ·		CCAAATATACGAAAAGTITATAATCCT	
245937	-	bf638r_0227	ect sigma factor	0	ICCAAGAAACCGCAGIGCGIIGIG	1
					GTGTTCAAAAATACGATTTCCCACTCT	
246591	-	bf638r_0228	mem prt	0	CTTAATCAAATAAAAGGTCTACCC	1
					TTTCGGATAGCTCTGTATCTTTTCGCA	
265519	+			1	ATAAATCAAGTATATTTGCGTTAT	1
					AATTTGGAGAAAATTCTTTTTTTCACG	
271932	+	bf638r_0200	hypo	0	ATATACTCTTATCTTTGCAACAG	1
					TTTTCTCTAATATTTTGTAGTCGAACAG	
284377	+	bf638r_0273	hypo	0	ATTATTTATATCTTTGCACCCGA	1
					AATGAAGGATTCCTGCAACCTTTTCTT	
295744	+	bf638r 0282	hypo	0	TCTTTATCGTCTAATATTAATAT	0
		—			CCTCCCTGCCTTATGACAAGGAATTGC	
303118	+			1	TTTCTTTTCATACATTTACATTGA	1
					GCTGCAAAAATATAAAATATAAACTTC	
305077	-	bf638r_0287	ecf sigma factor	0	TTTTCTTAATATTTATTACATTGT	1
			aga alnha	Ŭ	GTGTGCAAAGTAAGATAAACTTCATTA	-
307/17/	_	hf638r 0288	galactosidase	0	ταττοαραατοαραοοσο	1
50/4/4		510301_0200	guidetosidase	Ŭ	TCATTCCGGTACTTGTTGTTGTTACATAAA	-
207666	<u>т</u>	hf628r 0280	linoprotein	0	TAAAAATATGTAATTTTGAGGAT	1
307000	т	010381_0289	inorganic	0		1
200222		hfc28r 0200	nuranhasahatasa	0	TTACATTCAATACTTTACCCTT	1
506552	+	010381_0290		0		1
210705		hfc20+ 0201	rnnz, ribonuciease	0		4
310765	+	D1638r_0291	HZ	0		1
		1 (600 0000			AGCGCAAAAATAAGGAAATCATTTCA	
312450	-	bf638r_0292	cationic transporter	0	AATCIGCGGTATTTTCTTCCTTT	1
			gpml,			
			phosphoglycerate	-	AACATAGATTAAACGTGTTCGTAATTA	
312573	+	bf638r_0293	mutase	0	ACTITITIGTACCTITIGCACCCGA	1
					TTTATCTAAATGCTTGTTGCTTCATATT	
314252	+	bf638r_0294	TCS sensor	0	TAATGAGTTATCTTTGCTAACCT	1
					CCCGGCGAAAACGATCTGTCGAACCAT	
317437	+			1	ATATTTCTGTAACTTTGTCTTTAA	1
					GAGTGCAAAGGTAGGGCTTTTTTGA	
323879	-		tRNA glu	0	AACTACCAAACTATTCGCGGAAAAAT	1
					GATAGTAGTATTCGATTGTCTATTTCCT	
324087	+	bf638r_0300	recO	0	CTTTTTTGTAGCTTTGTTACCG	1
					GACCGTAAAAGTAGGTATTTCCCCACA	
341181	-	bf638r_0314	mraZ	0	ATTCCCCACAATTTTCCACCAAAA	1
					AGACAAAGGTATGTGAAATAATGGAG	
341951	-	bf638r 0316	hypo	0	ATATACAAGGAAAATAAGCTGGAAA	1
		-			ATGCAGGAAGTAATGCTATTTATTAAA	
342168	+	bf638r 0317	exp prt	0	AAATATGTTATATTTACGATTTAG	1
				-	GATGCAAGTTTACGGCATTTTTTAGAC	
346772	_	hf638r 0322	sigE ecf	0	ΔGTGΔCGGGGGΔΔΔΔΤΤΔΔGCTTT	1
540772		510301_0322		Ŭ	TGATAGTITTIGGGTGTTTTTGGGACG	-
246016		hf628r 0222	mem prt	0	CIGGGITTICIAICITTECETCE	1
240910	т Т	010301_0323		U		1
250254	Ι.	hfcoor oppo	huno	0		4
350251	+	0326_1826	liypo	0	AAAGAALAGTTAATTTIGUGUAAT	1
			ugiueoxyguanosine			
			tripnosphate			
			triphosphohydrolas		AACIGCAAAAGIAIGAATTTTAGGCTC	
353464	-	bt638r_0328	e	0	AAAITGCGTATTTCGCCCGTTAA	1

			dut, deoxyuridine			
			5'-triphosphate			
			nucleotidohydrolas		AACTGCAAAAGTATGAATTTTAGGCTC	
353514	+	bf638r_0329	е	0	AAATTGCGTATTTTCGCCCGTTAA	1
					ATTGCAAATTAAATACGTTTTGGGACG	
362986	-	bf638r_0334	exported hydrolase	0	AACGGAGACACGTCCGGCTCAAGT	1
					GATTTGCAAAATAATAAAATAGCAGAT	
366957	-	bf638r_0336	glycosylhydrolase	0	AACAGTTGAAAGCCTCCCTTTCAT	1
					TGAGCAGTATTTATCCCTTTATTCAACG	
373369	+	bf638r 0340	lipoprotein	0	AAAATGTTTTTTCTTTGTAGCAT	1
					TGAACGAAAATTATCGTCTTATTAGTT	
385493	+	bf638r_0345	omn	0	AAAAATAACTTTCCTTTGCAATGT	1
	-		0p	0	ΤGAATAATAATTATCCTCCTTTCTCCAA	-
394047	+	hf638r_0352	glycosyl bydrolase	0	TATTTCCCCAATCTTTGTAACAT	1
554047	•	510501_0552	exported alpha 1.2	0		1
200008		hfc20+ 0255	exported alpha-1,2-	0	ALAAGATGCTTGAGAAGAAGTTGAA	0
399908	+	0355_0355	mannosidase	0		0
			galM, aldose 1			
403846	+	bf638r_0357	epimerase	0	ATGAATGAGATTCACCACAGAGT	0
					CAAATTTTCGGTAGATAACGGAAAATA	
405168	+	bf638r_0358	mem prt	0	ACACAAGCGTTTTTTAGTTGT	0
					TATTGTTATTTTCTTTTAAGGATATGTT	
413636	+	bf638r_0367	hypo	0	TGTAGTTATTATCTTTGTCAGAC	1
					GTTTACAAACTTACATAATTTTATCAAT	
					TCCTAAAAATTATCGATCTTAAATCCG	
416778	-	bf638r 0370	cAMP binding prt	0	сссстт	1
				-	TTAACGCCTCTATGTGCTTATATTCAGA	
417039	+	hf638r_0371	exp prt	0	CCTTTCCGTTAACTTTGTCTGAA	1
41/035	•	510501_0571		0		-
410505		hfc20r 0272	regulator	0		1
419595	-	010301_0372	regulator	0		1
440722		hfc20+ 0272	la una a	0	ATACATACCAGTICGTATCAGTIACGA	4
419723	+	DT638r_0373	пуро	0	TAGGITICATTATCTTTGCACTGT	1
			peptidase/deacetyl		GGAIGCAAAIGIACAAAIAAIACIIGA	_
428215	-	bf638r_0376	ase	0	ATCTTTCAGTTTGTCAGACAACTA	1
			AMP binding long			
			chain acyl-CoA		TTCAGTATTCACACCTGATAATTCCAA	
428365	+	bf638r_0377	synthetase	0	ATTAAACGATACCTTTGCAGACGA	1
					TTTTATTTCCTTTCTTTGTCCGTCATTTT	
431468	+	bf638r_0379	hypo	0	ATTCTCTATATTTTTGGCAGGT	1
					TTATTCTCTATATTTTTGGCAGGTTAAA	
431496	+	bf638r_0379	hypo	0	AGATTTGTTCTTACTTTGTTAGC	1
		_			AAAACCGTATACTACCTGGTCGTAGCT	
433594	+	bf638r_0382	mem prt	0	AACAAATAATCCGTATATTTGTTT	1
			· ·		AAAGTAACACAATTTATTGCTATTTTAT	
447012	+			0	CTTACTAAATGGTTCTTAATGCT	0
14/012				5	CTCTTAATAATCTGGGTTCTGTACCAG	
461952				1		0
401003	-			1		U
46000		hfc20+ 0402	h	<u> </u>		
468384	+	bfb38r_0402	пуро	0	GGAAATTATGTGCACCTTTGTGTGT	1
				-		
469458	+			1	AGATATTATGTGCACCTTTGTATGT	1
					TTITATCCGTTTGCTATGGTAATTCAAA	
469758	+	bf638r_0403	hypo	0	AATAATCACCATCTTTGTGGTGA	1
					CTTTAATCTTTCATGATCAATTTTCTTTT	
470398	+			1	ATAATTGGCCTTGAATCTAAAT	0
					GCTGCAAAGATAGATACTTTTTCCGAT	
471463	-	tRNA-leu		0	TTTACAAATTTATAGGCAATAAAG	1
					GCTTACTTCACCAGTATTTTTTGAGGTA	
471795	+	bf638r_0406	exp prt	0	TAATTATTGGAGTATAAATGCAA	0
					ΑGGCAAAAATACGAATTTAATTGAAA	-
481212	-	bf638r_0410	narC	0	ΑΔΑΔΤΟΑΤΤΤΑΟΤΤΤΩΟΔΟΔΤΤΔΤΤ	1
101212		~	P	Ň		

					TGTGCAGGCAAAAATACGAATTTAATT	
481258	+	bf638r 0411	glyS	0	GAAAAAATCATTTACTTTGCAGAT	1
			nitroimidazole			
			resistance-like		TAACAGTATTATATTTAGTAAATATTGT	
486731	+	bf638r_0416	protein	0	CTCATCTTTATATTTTTGCTTAT	1
100731		510501_0110	nanC/nirT	<u> </u>		-
			cytochrome c-type		TGTAATCTGGATTACATTCTTTTAAAT	
187121	<u>т</u>	bf638r 0417	protein	0	GGAAATCCCTTTCTTTGCATAAA	1
407421	•	510501_0417	protein	0		1
406021		hfc29r 0425	TCS concor	0	TAAAATTICTAAAATTAAAGTGTCAATCAT	1
490921	+	010561_0425		0		1
507000		hfc20+ 0422	FINR Tarminy	0		4
507330	+	bf638r_0432	regulator	0	GGAGAAAAIGCIAICIIIGCICAA	1
					GTAGCAAAGATACTTTTTATTTTAATAT	
529869	-	bf638r_0446	exp prt	0		1
					GATACAAATATATAATATTTTTTGTAAT	
536453	-	bf638r_0449	hypo	0	TTGATTTGTTTTGATCGGAAAG	1
					GCTGCAAAATTATAACATTTTGCAATA	
537804	-	bf638r_0450	asd	0	TAATCAGCATTTTAGAGAGAAGAT	1
					CTTTCCTTATGAATTGGCGGTGTGATA	
537921	+	bf638r_0451	Na+/H+ antiporter	0	ACTTTTTGTTATTTTGCAGATAA	1
			sodium-dependent		GTGCAAATATAGAAAATGTTCCTTATA	
543762	-	bf638r_0455	transporter	0	TTTGCGATTCATCTGTAATTTATT	1
					TTTCTCGCTTTAAACGTGCAAATATAG	
543798	+	bf638r 0456	mem prt	0	AAAATGTTCCTTATATTTGCGATTCA	1
		-	•		GGGTGCAAAATTACATTTTCTATTTCA	
545537	-	bf638r 0457	murF	0	GATTATCATTAAACAAGAAAGAAT	1
				-	GTGTGAAGAACAAACGATCCGTTAGA	
546820	-	bf638r_0458	transporter	0		1
510020		510501_0150		0		-
546000	<u>т</u>	bf638r 0450	andB	0	TCCTCTCACTGTTGTGTGGGAA	0
540333	т	010301_0433	gaub	0		0
551507		hf628r 0461	TCS concor	0		1
551597	-	010581_0401	dbac	0	GIGCIGATAGCATTAGGACATTA	1
			dips,		TTACTOTOTOATACCATTACCACATT	
554660		hfc20+ 0462	ainyaropteroate	0		4
551669	+	bf638r_0462	synthase	0		1
553457	+			1		0
				_	GAAAAATAATATTTTATTTGTTACCAA	
554213	+	bf638r_0466	mem prt	0	CTCTTTTTTGATTTTCTTTGCAG	1
					ATCAGTCTTTCTCACTGGCGGTGGGCG	
555354	+	bf638r_0467	exp prt	0	GGATAAGCCATACCTTTGCAATAA	1
					GTGCAAAAGTAGCAAATTTTATCAAAA	
555915	-			1	CAGGAAAAGGTTTTTGATTCCACC	1
					TTCGAATTTATCATTTGGTCCTGTTAAG	
557687	+			1	CATCATTTGTATCATTGTTAGGT	1
					AAAGGATGTTTCCGTTTCCTTTCTTTGG	
558154	+			1	TTTCTACTATATTTTTTATAACT	0
					ATCAGTCTTTCTCACTGGCGGTGGGCG	
558843	+	bf638r 0473	exp prt	0	GGATAAGCCATACCTTTGCAATAA	1
				-	TTTTATGAACTCAAATAGTTTAAATCTT	
561707	+	bf638r_0477	exp prt	0	ΑΤΤΑCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	0
501/0/		510501_0177	cop pre	0		Ű
567895	_	hf638r_0481	acetyl transferase	1		1
507095		510301_0401		1	TTATATATAACAAAGATAAAGCTATT	1
ECOE07		hf620r 0402	hypo	0		1
105695	-	0482	Πγρο	U		1
570500		hfc20= 0404	Irra hali-			4
570593	-	0484	Liga, noin	U		1
			Ι.		AAAAIAAAGAAAAAGIAAACGAAATG	
570724	+	DT638r_0486	пуро	U	GATTACTTATATATATTGCAAAG	1
			ptaA, phosphate		ATACCCCGAATTGCAATGTTGATATTG	
573968	+	bf638r_0489	acetyltransferase	0	CAATATTGTGTACTTTTGCGGCGT	1

576439 + bf638r_0491 phosphatase 0 AATTITACTITACTICATACCA 1 577928 + bf638r_0492 hypo 0 AAGAATTICTTATATTICCGATTACCA 577913 + bf638r_0492 hypo 0 AAGAATTICTTATATTICCGATTACCA 579113 + bf638r_0495 glycoxyl transferase 0 TATCCTTTATATTATTICCGATTACCA 580862 - bf638r_0495 glycoxyl transferase 0 AATCCATTTAATATTATTICCGATTACCA 580948 + 1 TGTTTAATCACATATTATTTTCCGATTACCAC 1 581907 - bf638r_0495 glycoxyl transferase 0 AAATCGTTTTAATCACATTATATTATTCCGATT 582006 + bf638r_0497 34 0 AAAGGATAATATTATTCCGATTCCGC 1 58207 - bf638r_0505 hypo 0 AAACGAAAATAGTATCTTGTGTATTTCTT 1 589373 - bf638r_0506 hypo 0 AACGAAATAGTATCGTACGAGAGTT 1 599451 - bf638r_0508 prob 0 CACAAATATAGCATACGAGAGTT				alkaline		CATATCTCTTTCTCCTTTTCTTCTTTTA	
577928 + bf638r_0492 hypo 0 AATTATCCTCANTATTCCA 1 577928 + bf638r_0494 radC1 0 TGCTATTGCCGATTATTTCCA 0 579113 + bf638r_0494 radC1 0 TGCTATTGCCGTCAGATAAGCC 0 580862 - bf638r_0495 glycosyl transferase 0 AATGCTTTTTGCGATTAGCCT 1 580948 + 1 TGCTTTGATGCGTCAGATAGCCTTTGGGGTA 1 581907 - bf638r_0496 efp.elongation GGGTCAAAAGTATCTATATGGCA 1 582066 + bf638r_0497 34 0 AAAAGACAAAAGTATCTATATCGCT 1 582071 bf638r_0497 34 0 AAAGGAAAAAGTATCTTTTTTAA 1 582061 bf638r_0505 hypo 0 AAAGGAAAAAGTATCTTTTTTTAA 1 582062 - bf638r_0505 hypo 0 AAAGGAAAAAGTATCTTTTTTTTAA 1 582073 - bf638r_0505 hypo 0 AAACGAAAAAGAAGATCTTTTTCCA 1	576439	+	bf638r_0491	phosphatase	0	AAATTTTTATCTTTGCTATCAC	1
577928 + bf638r_0492 hypo 0 AAGAATTCTTTAGCTTGTCT 1 579113 + bf638r_0494 redC1 0 TCGTTATGCCGGTCAGATAAGCC 0 580862 - bf638r_0495 glycosyl transferase 0 AATCCTTTTTGGCGTTCGGAT 1 580948 + - TTATGCACTCTTTGGGGTCAGATAGCTTTT 1 580948 + - CGTCTAAAACTCAATTGGGCA 1 581907 bf638r_0496 factor P 0 AAAACACCAAAATTGGCATTTGGCAT 1 582006 bf638r_0499 rpmH, ribosme prt 0 AAAACCACAAATTGTTGTTGTTGTTTCG 1 582007 bf638r_0505 hypo 0 AAACCACAAATTGTCATTTGCCGC 1 582031 bf638r_0506 exp prt 0 CTACAAACAATATCTAATTGTCTTTCCA 1 590451 bf638r_0508 proB 0 GTTTTTAAAGAATACCAACAGGGTTT 1 590452 bf638r_0508 proB 0 CTACAAAGATATATCAAGGGATTTCT 1 593625 bf638r_0511 ompH	0.0100	-	0.00000.101	phoophacase	Ŭ	ΑΤΤΤΑΤΟΟΤΟΑΑΤΑΤΤΟΤΟΤΑΤΟΤΤΤΟΑ	-
277313 Hobs.p.252 Hypo C AcCAACTTAATTTTCCGATTAGCC C 579113 Hof38r_0495 radC1 0 TCGTTATGCCGGTAGATAGCC C 580862 - bf638r_0495 plycosyl transferase 0 AATCCTTTTATTTCCGATTAGCCT 1 580948 + 1 TGTCTGAATACCTTGGCATTAGCCAT 1 580948 + 1 TGTCTGAATACCTTGCCATTTTTTAT 1 580948 + 1 TGTCTGAATACCTTGCCATTTTAT 1 58097 - bf638r_0498 mmp nt 0 AAACAAATACTATCTGCGTGTAATATCTTGCCGC 1 58206 + bf638r_0498 mem prt 0 AACGAAAATAGTATCTTGGTGTATATCTCGCG 1 589373 - bf638r_0506 exp prt 0 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	577928	+	hf638r_0492	hypo	0	ΔΔGΔΔTTTCTTTΔGCTTTGTCTT	1
579113 + bf638r 0494 radC1 0 TCGTTATGCCGGTCAGATAMGCC 0 580862 - bf638r 0495 glycosyl transferase 0 AAATGCTTTATGCATT 1 580862 - bf638r 0495 glycosyl transferase 0 AAATGCATCATTATGCATT 1 58097 - bf638r 0496 factor P 0 AAAAACGTATAATGCATAAA 1 581907 - bf638r 0497 34 0 AAAAAGCTATAATGCTTTTGATAAA 1 582402 + bf638r 0497 34 0 AAAAAAGTACTATTATCATGCTT 1 582402 + bf638r 0505 hypo 0 AAAAAAGTACTATATATATGGATT 1 590451 - bf638r 0506 exp prt 0 TTGTCTGATATACAATATGGATT 1 590451 - bf638r 0508 proB 0 GTTACCTCCCATACGAAGTAGGATT 1 590452 - bf638r 0508 proPB 0 <td>577520</td> <td>•</td> <td>510501_0452</td> <td>Пуро</td> <td>Ŭ</td> <td></td> <td>-</td>	577520	•	510501_0452	Пуро	Ŭ		-
37313 - 0038_043-7 10021 0 1001110000000000000000000000000000000	E70112		hf628r 0404	radC1	0		0
S80862 bf638r 0495 glycosyl transferase 0 AATGCITTAGCACTCITTT 1 580962 - bf638r 0495 glycosyl transferase 0 AATGCITTAGCACTCITTTGCCATAGCTT 1 580968 + - fct, elongation GGGTGCAAAAGTATTGCAAATGGCA 1 580907 - bf638r_0496 fctor P 0 AAAAACACTAACTTGGCAAATGGTGTAAATGGTGT 582002 + bf638r_0497 34 0 AAAACACTAACTGTGTTATTTAA 582002 + bf638r_0498 mem prt 0 AAACGAAATAACGTTTTGTCCCATT 1 582002 + bf638r_0505 hypo 0 AAACGAAATAGCATTGTTCATT 1 582073 - bf638r_0506 exp prt 0 TTGTTGCAAAATGGATTGTTGTCCATT 1 590451 - bf638r_0506 exp prt 0 GTGTTGTAAACAGTCGACAGCGGAGGTT 0 590829 - 1 CACAAATATAGTACAATCCGACAGCTT 1 1 1 1 593625 bf638r_0509 hypo 0 AAAGTC	579115	+	0494	Tauci	0		0
S80862 - DHS37 (J495 glycosyl transferase 0 AALCELTITIAALGAALCHTTIGGET S80948 + - TATEGACTELTITITGTCCATTAGECT 1 S80948 + - TATEGACTELTITITGTCCATTAGECT 1 S81907 - bf638r_0496 fector P 0 AAAAACACAAAATGETTITGAATCGGTTAATTAA S82006 + bf638r_0493 a4 0 AAAAAGTECTAATCTTIGGTTAATTAA S82006 + bf638r_0498 mem prt 0 AAAAGAAATAATCGTTGTAATCAATCTTIGTCCGC 1 S82002 + bf638r_0505 hypo 0 AAACGAAATAATAGTCTTGTATCCA 1 S90451 - bf638r_0506 exp prt 0 TGTCTCGTATACTAATAATATT 0 S90452 - - 1 AAAGAAATATAGTACTAATATATATAT 1 S90451 - bf638r_0508 pro8 0 GTTACCTCCCATACGAATAGATA 1 S93625 - bf638r_0509 hypo 0 AAGTACATATAGAATAGAATTATT 1 S93625 -			1 (200 0 105			GGCAAGATAAATTATTATTTCCGAT	
580948 + Intercent of the second sec	580862	-	bf638r_0495	glycosyl transferase	0	AATCICIIIIAAIGCACICIIII	1
380948 + - 1 TGTCTGATAACTTGATACGGCA 1 S81907 - bf638r_0496 factor P 0 AAAAACAAAAGTATTGAATACGGCA S82006 + bf638r_0497 34 0 AAAAACACAAAGTATTGACTAACT 1 S82006 + bf638r_0498 mem prt 0 AAAAAGCAAAGTATTGACGCA 1 S82002 + bf638r_0505 hypo 0 AAAAAAGAATATGTGCAAGTTCATCA 1 S99451 - bf638r_0505 hypo 0 AAACAAAATAATTGTCATTTAA 1 S90451 - bf638r_0506 exp prt 0 TGTCTGCTGATTACTAATCGATTTTA 1 S90452 - bf638r_0508 proB 0 GTGTCAAAATATGGAAATTTGATATT 1 S92264 bf638r_0511 ompH 0 ATATGCAAATATGGAAATTTGATAT 1 S93625 - bf638r_0515 ompH 0 GGGTGCAAATGTGAAATGAGAACTTTGAT 1 GGTGCAAATAGGAAATTTGCACCCCCC 1 GGTGCAAATAGGAAATTTGCACCCCCT 1 1 1<						TAATGCACTCTTTTTGTCCATTATGCTT	
shipor bf638r_0496 fractor P 0 AAAAACAAAATGTTTAATCGGCA S2006 + bf638r_0497 34 0 AAAATGACTAATCTGGTTTATTAA 1 S2006 + bf638r_0497 34 0 AAAAGCACAAAATGTTTGGTCGCC 1 S2006 + bf638r_0505 mem prt 0 AAACAAAATGTTGTCGCC 1 S82402 + bf638r_0505 hypo 0 AAACAAAAATGTTGTCCGTTATTCCA S9373 - bf638r_0506 exp prt 0 TGTTCTGTTAATGGATTAGTAGGAGGGTT 1 S90829 - - 1 AAGTCAAGCTTGAACCGGAGGTT 1 S93624 - bf638r_0508 pro8 0 GTTACTCTCCCCATAGGATATG 1 S93625 - bf638r_0517 mpH 0 CACAATATACAAAGGAACTTGAGTT 1 S93625 - bf638r_0517 mpH 0 GTTGCCAAACTTGACGAACTTATGTT 1 GGTGCCAAATGTAAGACACTTAAGGACTT 1 GGTGCCAAACTTGACGAACATTTAGGACCTT 1 1 S9365 <td>580948</td> <td>+</td> <td></td> <td></td> <td>1</td> <td>TGTCTTGAATACCTTTGGGGTCA</td> <td>1</td>	580948	+			1	TGTCTTGAATACCTTTGGGGTCA	1
581907 - bf638r_0496 factor P 0 AAAAACACAAAATTITTGACTAAAA 1 582006 + bf638r_0497 34 0 AAAAAGCATTAACTCTTGTTGACTAACA 1 582006 + bf638r_0498 mem prt 0 AAAAAGCAAAATTATTGCAACC 1 582402 + bf638r_0505 hypo 0 AAACACAAATTATTGTCGATTCA 1 589373 - bf638r_0506 hypo 0 AAAACAAATTATGTCGATTCATA 1 590451 - bf638r_0506 exp prt 0 TTGTTCTCGATTACTAATCATTTT 1 590829 - 1 AAGCAAAATATGGATTGCAAAGCAGGGATT 1 AAGTACAAAGAATAGGAAATCAGAAATGAGAAATTGGATAATT 593264 bf638r_0509 pro8 0 GTTACCTCTCCCATAAGCAGATTGAT 1 593265 bf638r_0515 hypo 0 AAGTTGTAAATAGAAATAGGAACTTTGAT 1 600505 bf638r_0515 hypo 0 ATATGGAAATGAAAATGGAAGCTTT 1 601701 bf638r_0519 hypo 0 ATATGGAAATGTGAAGGAAGTTT				efp, elongation		GGGTGCAAAAGTAATCTAAATCGGCA	
S82006 + bf638r_0497 34 0 AAAAAGCTCACTCGGTTATTTAA S82002 + bf638r_0498 mem prt 0 ACCGAAAATAGTATCTTGCCCC 1 S82002 + bf638r_0505 hypo 0 AACCAAAATAGTATCTTGTCCC 1 S99373 - bf638r_0506 exp prt 0 CTCCGTATACTCATTTAA 1 S90451 - bf638r_0506 exp prt 0 TTGTTCTCGTTTATTCAC 1 S90252 - - 1 AAGTCAAACCTTCACCATTAGTTTT 1 S93264 - bf638r_0508 proB 0 GTTACCTCTCCCATAGGATT 1 S93625 - bf638r_0509 hypo 0 AAGAATATAGCAAACGAAATAGTAGATA 1 S95165 bf638r_0517 ompH 0 GGTGCCAAACTGTAGACAATTGAGACATTTT 1 G00505 - bf638r_0517 hemK 0 TTATCTCCTCTAGTAGCAACTGAGAGATT 1 G03081 + bf638r_0517 hemK 0 TTATGTGACTTATTGCGCGAAAGGTT 1 </td <td>581907</td> <td>-</td> <td>bf638r_0496</td> <td>factor P</td> <td>0</td> <td>AAAAACACAAAATGTTTTGACTAAA</td> <td>1</td>	581907	-	bf638r_0496	factor P	0	AAAAACACAAAATGTTTTGACTAAA	1
S2006 + bf638r_0497 34 0 AAAAAGTGCCTATTTTTGCAGCC 1 582402 + bf638r_0498 mem prt 0 AACGAAAATATTGTGTGT 1 589373 - bf638r_0505 hypo 0 AAAAAATATTGTCCATTTATTCCATTTCAT 1 599351 - bf638r_0506 exp prt 0 TTGTTCTCGTATTACTAATTATT 0 590829 - 1 AAGGAAAGCTTGCAAAGTTATTTT 1 1 593264 - bf638r_0508 proB 0 GTTACTCTCCCATAGGATTATT 1 593265 - bf638r_0519 hypo 0 AAGTGCTAAGAACTTGGGATAGT 1 600505 - bf638r_0511 ompH 0 ATATCCAAATATAGGAAGGTTAGCAAGGGAAGCTTTA 1 600505 - bf638r_0515 hypo 0 ATATGGGAAAGTTAGGAAGGTAGGAAAGGTAGCAAAGGTAGCAAAGGTAGGAAGGT 601701 + bf638r_0519 hemK 0 TCTTCCAATTTGCACCCCCA 1 6030738 + FreAse 0 CATTCCGAATTTTGCACC				rpmH, ribosme prt		AAAATGACTTAACTCTTGGTTTATTTAA	
582402 bf638r_0498 mem prt 0 ACTCGGTGAAAATAGTATCTGTGCGC 1 589373 - bf638r_0505 hypo 0 AAACAAAATATATTGGCGC 1 599373 - bf638r_0506 exp prt 0 TIGTTCGTATAGTGGATTGTCCATTTA 1 599451 - bf638r_0506 exp prt 0 TIGTTCTGTATATCATATATATT 1 599829 - - 1 AAGCAAGATATAGACAAGGGGTT 1 593625 - bf638r_0508 proB 0 GTTATCTGTATAGACGATTATT 1 593625 - bf638r_0510 mprB 0 ACAAATATAACAAAGAGACTTAGATAT 1 593655 - bf638r_0511 ompH 0 ATATGAAAATAGAAGAGATTAT 1 601701 + bf638r_0517 hypo 0 ATATGAAAATAGAGAAGGTT 1 603081 + bf638r_0517 hemK 0 TTATTGTAGAGTATAGCTGT 1 603081 + bf638r_0527 hypc 0 AAGGAATACTATTAGAGAGAGTT	582006	+	bf638r_0497	34	0	AAAAAGTGCCTATTTTTGCAGCC	1
582402 bf638r_0498 mem prt 0 AACGAAAAGATACTTGTCTCCG 1 589373 - bf638r_0505 hypo 0 AAACAAAAATATATCTTGTCCGA 1 590451 - bf638r_0506 exp prt 0 TTGTTCTCGTATTACTAATATT 1 590451 - bf638r_0506 exp prt 0 TTGTTCTCGTATTACTAATATGGATATT 1 590829 - 1 AAGCAAAGCTATACAATCCGGAAGT 1 590829 - CACAAATATATAGGAATATT 1 CACAAATATACGGATATAT 1 593625 - bf638r_0509 hypo 0 AAGTGTTTTACCGAAGCATTAGTATA 593655 - bf638r_0511 ompH 0 ATATCCAAATTAGAACAATGGAAGCATTTTTT 1 600505 - bf638r_0517 hypo 0 ATATCTAATTAGAAAGACATTTT 1 601701 + bf638r_0518 hypo 0 ATATCGGAATATTGCAAGAAGTTAGT 1 603081 + bf638r_0523 hypo 0 AATACGGAAAGATACTTGTTTGTCGT 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>ACTCGGTGAAAGTCTGTGATACTGTGT</td><td></td></t<>						ACTCGGTGAAAGTCTGTGATACTGTGT	
589373 bf638r_0505 hypo 0 AAACAAAATAATGGCGATTCTATTCA 1 590451 bf638r_0506 exp prt 0 GTTTTTTATAAGGATTAGCAAGGGGTT 1 590451 bf638r_0506 exp prt 0 TTGTCGTATATAATATTT 1 590451 bf638r_0508 proB 0 GTTATCTCGATATCAATCAATCGGAGGTT 1 593264 bf638r_0508 proB 0 GTTACCTCCCAAAGATAGACGAGTTAGT 1 593265 bf638r_0509 hypo 0 ACAAATATACAAGAAGGACTTAGATT 1 593165 bf638r_0511 ompH 0 ATATCGAAAGTTGGAAATTATATTGA 1 600505 bf638r_0511 ompH 0 ATATGAAGAATGGAGAAATTAGCGAATGCTATA 1 601701 bf638r_0517 hemK 0 TTATTGTCGATTGGACCCA 1 603081 bf638r_0529 sferase 0 CATCGGAAAAATGGCAAAGGGT 1 606731 bf638r_0523 hypo 0 AAAGAGAACTGCTTTTGTGACCCA 1 606731 bf638r_0522 proC 0	582402	+	bf638r 0498	mem prt	0	AACGAAAATAGTATCTTTGTCCGC	1
589373 - bf638r_0505 hypo 0 AAACAAAATAATTGTCTCATTTA 1 590451 - bf638r_0506 exp prt 0 TGTTTTTATAGGAATGCAAGAGGGTT 0 590452 - 1 AAGTCAAACTTGTACATATATTT 0 CTACAAAGATAGTCAATCCGAAGGGTT 1 590829 - 1 AAGTCAAACTTGTGAATCCGATAGTT 1 593264 - bf638r_0508 proB 0 GTTACCTTCCGATAGGAATTATATT 1 593265 - bf638r_0519 mpoB 0 AAGTAATTAACGAAAAAGAACTTAGATCA 1 595165 - bf638r_0511 ompH 0 ATATCCAATGAAGGAACTTTA 1 600505 - bf638r_0515 hypo 0 ATATCCAATGAAGGAACTTTA 1 601701 + bf638r_0517 hemK 0 TGTTTCATAAAAGGAACTTTTAGCTCAGAAGGTT 1 603081 + bf638r_0529 hemK 0 TGTTTCTGTTTTTTAGCTGTAAGGTCT 1 606731 + bf638r_0523 hypo 0						GGCGCAAAGATACGGATTTCTATTCCA	
59333 0 <td>589373</td> <td>-</td> <td>bf638r_0505</td> <td>hypo</td> <td>0</td> <td>ΔΑΔΟΔΑΔΑΔΤΑΔΤΤΩΤΟΤΟΔΤΤΤΑ</td> <td>1</td>	589373	-	bf638r_0505	hypo	0	ΔΑΔΟΔΑΔΑΔΤΑΔΤΤΩΤΟΤΟΔΤΤΤΑ	1
590451 - bf638r_0506 exp prt 0 TITTITICGGTATIAGATATTT 0 590829 - - 1 AAGTCAAGCTTGAACAATCCGGAGGTT 1 590829 - 1 AAGTCAAGCTTGAACACTCGGATATT 1 593264 - bf638r_0508 proB 0 GTACCATCTCCCCCATACCGATATC 1 593264 - bf638r_0509 hypo 0 AAGAATTATAACAAAAGAACTTAGATA 593265 - bf638r_0511 ompH 0 AAGTGTTTACCGATAAGTAATATT 1 600505 - bf638r_0515 hypo 0 ATATCGAAAATAGAACAAGAGGAAGTTT 1 601701 + bf638r_0517 hymo 0 ATATCGAAAATAGGAACAGGAAGTTT 1 603081 + bf638r_0519 sferase 0 CCATTCCGTATTGCTGTATAGCTCT 1 6040731 + bf638r_0523 hypo 0 AAAACGGAATATTGCACCGT 1 604731 + bf638r_0524 hypo 0 AAAAACTACTTTTGTCTTTTTTTTTTTTTTTTTTTTTTT	303373		0.0001_0000	nypo	Ŭ	GTTTTTTATAAGGAATAGCAAGGCGTT	-
39031 0.0039_0300 eppt 0 Instructional actional actionactional actional actional actionactional actional actional actio	E004E1		hfazer 0506	ovp.prt	0		0
590829 - 1 AAGTCAAGCTTIGAACCGATATT 1 593264 - bf638r_0508 proB 0 GTTACCTCTCCCAAGGATTATGGAATT 1 593264 - bf638r_0508 proB 0 GTTACCTCTCCCAAGGATATT 1 593265 - bf638r_0509 hypo 0 ACAAATATAACAAAAGGAACTAGGATATT 1 595165 - bf638r_0511 ompH 0 ATATCCAAAGGTTAGAATATATTTCA 600505 - bf638r_0517 hypo 0 ATATCCAAATTGTCAAGGAATATT 1 601701 + bf638r_0519 hypo 0 ATATCGAAATGTAGAGGAACATTT 1 601701 + bf638r_0519 hemK 0 TTATTGTAACTTATTTGCATAGGATATA 603081 + bf638r_0519 sferase 0 CCATTGGGAAAAGTTATCTTTTTTTACCCA 1 605738 + tRNA_gly 0 AGAAGTCTATCTTTTTTTTACCTT 1 606731 + bf638r_0523 hypo 0 CATTGGGAAAAGTATAGTAAAGGAATATAGCTAGA 612	590451	-	0000	exp pr	0	CTACAAACATACTACAATCCCCACCTT	0
39029 - 1 AdGICHIGAACOTTIGACITIATIT 1 593264 - bf638r_0508 proB 0 GTTACCTCCCATAGGATTTTGTCGATAT 1 593265 - bf638r_0509 hypo 0 AAAATATAGGAATTAATGAAAAAGAACTTAGATA 5935165 - bf638r_0511 ompH 0 ATATCCAAAGATGTAGGAACTTTAC 1 600505 - bf638r_0515 hypo 0 ATATCGAAAGTTGAAGGGAAAGTT 1 601701 + bf638r_0517 hemK 0 TTATTGAAAAGTGGAAGGTATA 1 603081 + bf638r_0519 sferase 0 CATTGGAAAAGTTGGGAGAAGGT 1 605738 + tRNA-giy 0 AAAAAGTACTACTTTTTGTCACCGT 1 605738 + bf638r_0523 hypo 0 AAAAAGTACTACTTTTGTCAGAAAGTT 1 605731 + bf638r_0524 hypo 0 AAAAAGTACTACTTTTGTACCGT 1 609522 > bf638r_0524 hypo 0 AAAAGGAAAGTTGGCAAAGGTAAAGTAAAAGTGGAAA 1	500930				1		1
593264 - bf638r_0508 proB 0 GTTACCTCTCCATAGGATATC 1 593265 - bf638r_0509 hypo 0 AAGAATATAACAAAAGAACATTGGATA 1 593655 - bf638r_0510 ompH 0 ATATGCAAAATGTAGAAATTATTTGA 593655 - bf638r_0515 ompH 0 ATATGAAAGGACTTGAAATGATGAGGAAGTTT 1 600505 - bf638r_0515 hypo 0 ATATGAAACATGAAGGGAAGTTT 1 601701 + bf638r_0517 hemK 0 TTATTGACATTGAGGAAAGTTT 1 603081 + bf638r_0519 hemK 0 TATTGCAAAAATGATGAGGAAAGTT 1 603081 + bf638r_0519 sferase 0 CATTGCGAAAAGTTTGCCAGAA 1 605738 - tRNA-gly 0 AAAACACTTCTTCTTTTTTACCCTGAAAGGT 1 606731 + bf638r_0527 proC 0 CATTGAAAAGTTAGCAGTTTGAAA 1 609522 - bf638r_0527 proC 0 ATAAGAGA	590829	-			1		1
593264 - bf638r_0509 pro8 0 GTTACCTCTCCCCATACGGATATC 1 593625 - bf638r_0509 hypo 0 ACAAATTATACAAAAAAAATTAGATTA 593625 - bf638r_0511 ompH 0 ATATCTAAATTGGAAAATTAATTTGAA 595165 - bf638r_0511 ompH 0 ATATCTCAATTTGGCAACACTTG 1 600505 - bf638r_0515 hypo 0 ATATGAACATGGAAAGTATAGTTAA 601701 + bf638r_0517 hemK 0 TTATTGACATTGGAAGGACATT 1 603081 + bf638r_0519 sferase 0 CATTGGAAAACTGGAAAGGT 1 603081 + bf638r_0523 hypo 0 AATACGGATTGCTTTTTAGCTCGTT 1 605738 + tRNA-gly 0 AGAAACTACTTACTTTTAGCTAA 1 606731 + bf638r_0523 hypo 0 AAAAGTACTTACTTTTTAGCTGAG 1 605732 - bf638r_0532 proC 0 ATACGGAAAAGGTTTAACTTAA 1				_	-	CACAAATATATGGATTTTGTCGATAT	
ACCAAATATAACAAAAAGAACTTAGATA 593625 - bf638r_0509 hypo 0 AAGTTGTTTACCGATAGATTATT 1 695165 - bf638r_0511 ompH 0 ATATCCCTAATTCGCACAGCATTC 1 600505 - bf638r_0515 hypo 0 ATATGAACATTGAAGGAACTTTGATAGGAAA 1 601701 + bf638r_0517 hemK 0 TTATTGACATTGAAGGGAAGTTT 1 601701 + bf638r_0517 hemK 0 TTATTGACTTTAGGCACATGATAGCTATA 601701 + bf638r_0517 hemK 0 TTATTGACATTGAAGGAAAGGTT 1 603081 + bf638r_0519 sferase 0 CCATTCGGAAAAGTTTGGCAGAAAGGT 605738 + tRNA-giy 0 AAAAGTACTACTTTTTTTTTCCCCCCGCT 1 606731 + bf638r_0523 hypo 0 AAAAGGTACTACTTTTTAGCTAAGAAGGTTTCTTT 609522 - bf638r_0532 argR 0 ATACGAAAGATAGGAAAGATTGGAAAAA 1 617244 bf638r_0532 argR	593264	-	bf638r_0508	proB	0	GTTACCTCTCCCATACGGATATC	1
593625 - bf638r_0509 hypo 0 AGGTGTTTTACCGATGATTATTT 1 595165 - bf638r_0511 ompH 0 ATATCCAATTTACCCAACATTATTTGA 600505 - bf638r_0515 hypo 0 ATATCGAAAATAGGAACATTTTCTCT 1 601701 + bf638r_0517 hemK 0 TTCTTCACCATTGACGAAGGTT 1 601701 + bf638r_0517 hemK 0 TTATTGAACATTGACGAAGGTT 1 603081 + bf638r_0519 sferase 0 CCATTTCGCTAAAAGTTGGCAGGAAAGGT 603081 + bf638r_0523 hypo 0 AGAAACTACTTTTTGCACCCCA 1 605738 + tRNA-gly 0 AGAAACTACTTTTTACAGAAAGTTTGGCAGGAAAAGT 1 606731 bf638r_0524 hypo 0 CATTCAGAAAAGTTTGCAGGAAAAGT 1 606732 bf638r_0527 proC 0 ATAAGGACAAAAGTTTGGCAGGAAAAGT 1 607712 bf638r_0532 argR 0 ATAGGACAAAGGTATAGTAAAAAAAGTTGGAAAA 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>ACAAATATAACAAAAAGAACTTAGATA</td><td></td></t<>						ACAAATATAACAAAAAGAACTTAGATA	
S95165 bf638r_0511 ompH 0 ATATCCTAATTGAAATTGAATTGAA 600505 - bf638r_0515 hypo 0 ATATTCAAAATGGAACATTTGAAGGGAAGTTT 1 600505 - bf638r_0515 hypo 0 ATATTGAACATTGAAGGGAAGTTT 1 601701 + bf638r_0517 hemK 0 TTATTGTACTTTTGAGCTGATAGCTATA 601701 + bf638r_0517 hemK 0 TTATTGTACTTTTGAGCTGCAT 1 603081 + bf638r_0519 sfrase 0 CATCTGGAAAAGTGTATGCCCCA 1 603081 + bf638r_0523 hypo 0 AATACGGAAAAGTTTGCACCCGA 1 605738 + tRNA-gly 0 AGAACTACTATGTTGCACCCGT 1 6066731 + bf638r_0524 hypo 0 CATTTAGAACTAGCTTGCACCGGT 1 609522 - bf638r_0527 proC 0 ATACGAGCAAAAGTATGTACAAAGTGGAAAA 1 617244 - bf638r_0532 argR 0 ATAGTGCAAAGATAGGTAAGGTAAAAAGTAGAAA	593625	-	bf638r_0509	hypo	0	AAGTTGTTTTACCGATAGATTATT	1
595165 - bf638r_0511 ompH 0 ATATCCTAATTCGCACACTTC 1 600505 - bf638r_0515 hypo 0 ATATTGAACATTGAGGAACATTTTTCTT 1 601701 + bf638r_0517 hemK 0 TTCTTCATCTTTAGGCTGATAGCTATA 1 601701 + bf638r_0517 hemK 0 TTATTGAACATTGAACGTGATAGCTATA 1 603081 + bf638r_0519 sferase 0 CCATTTCGCATTTTGCATCCT 1 605738 + tRNA-gly 0 AAAAAGTATGCAAAAGTTTGCACCAGGAT 1 606731 + bf638r_0523 hypo 0 AAAAAGTACTAATTTGCAACCTA 1 609522 - bf638r_0524 hypo 0 CATTTAAGAACATTGCAATATTAGCAGGTTGTTT 1 612732 - bf638r_0527 proC 0 AAAAGTACTAAGTAAAAGTAGAAATTTTTAAG 1 612732 - bf638r_0527 proC 0 ATACGACAATAGTAAAGTAAAGTAAGATATTTTT 1 612732 - bf638r_0532 argR </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>GGGTGCAAATGTATGAAATTAATTTGA</td> <td></td>						GGGTGCAAATGTATGAAATTAATTTGA	
600505 - bf638r_0515 hypo 0 ATATGAACATTGAAGGAACATTTAGGAAGATTT 1 601701 + bf638r_0517 hemk 0 TCTTTCATCTTTTAGGCTGATAGCTATA 1 601701 + bf638r_0517 hemk 0 TTATTTGAACTTTGAAGGAAGTTT 1 601701 + bf638r_0517 hemk 0 TTATTTGAACTTTGAAGGAAGCTT 1 601701 + bf638r_0519 sferase 0 CCATTTCGTATTTTGCACCCGT 1 603081 + bf638r_0519 sferase 0 CCATTTCGGAAAAAGTTTGCACGAAA 1 605738 + tRNA-gly 0 AGAAACTACTTACTTTTTGCACCCGT 1 605731 + bf638r_0523 hypo 0 AGAAACTACTTACTTTTGCACCGT 1 605732 - bf638r_0524 hypo 0 CATTTAAGAAACGGTTTATAA 1 605732 - bf638r_0527 proC 0 ATACGGAAACGTGCAAATATTAGGAAAACGTTTTCGTTGAA 612732 - bf638r_0532 argR 0	595165	-	bf638r_0511	ompH	0	ATATCCTAATTTCGCCAGCACTTC	1
600505 - bf638r_0515 hypo 0 ATATTGAACATTGAAGGGAAGTTT 1 601701 + bf638r_0517 hemK 0 TTATTTGACCTTTAGGCTGATAGCTATA 601701 + bf638r_0517 hemK 0 TTATTTGACTTTTAGGCTGATAGCTATA 601701 + bf638r_0519 sferase 0 CCATTCCGAAAAGTTTGGCAGAAAGGT 603081 + bf638r_0529 sferase 0 CATCGGAAAAAGTTTGGCAGAAAGGT 605738 + tRNA-gly 0 AGAAACTACTTATTTTGCACCGGT 1 606731 + bf638r_0523 hypo 0 AAAAAGGTATATATAGCAGGGTGTTTGT 1 609522 - bf638r_0524 hypo 0 CACTAGGACAAATTAGCAGGGTATATA 1 612732 - bf638r_0532 argR 0 ATACGAGCAAACGTGGCAGGAATT 1 617244 - bf638r_0532 argR 0 ATGGCAAAGGTATACATAAAGGTGAAAA 1 618074 + bf638r_0534 TCS-sensor 0 CTGTTTCTTATTATAGGCAAAA 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>GTTGCAAAAATAGGAACATTTTTCTCT</td> <td></td>						GTTGCAAAAATAGGAACATTTTTCTCT	
601701 + bf638r_0517 hemk 0 TCTTTCATCTTTTAGGCTGATAGCTATA 601701 + bf638r_0517 hemk 0 TTATTTGTACTTTTGGACCCCA 1 603081 + bf638r_0519 sferase 0 CCATTTCGATAGCTATT 1 603081 + bf638r_0519 sferase 0 CCATTTCGAAAAGTTGGCAGAAAGGT 1 605738 + tRNA-gly 0 AGAAACTACTTATCTTTGGACCCGT 1 6066731 + bf638r_0523 hypo 0 AAAAAGTACTACTTTTTGAACAA 1 609522 - bf638r_0524 hypo 0 GAACAAAGGTATAAGAAAGGTGGAAAA 1 617244 - bf638r_0527 proC 0 ATACGAGAAACGTGGCAAAGGTATTT 1 617244 - bf638r_0532 argR 0 ATAGGAACAAGGTATAAGAAAAAGTTGGCAAAAAGTTGGCAAAAGTTTT 617717 - tRNA-phe 0 ACTGCAAAGATAGGCAAAAGGTTTAACAAGATATT 1 617244 - bf638r_0534 TCS-sensor 0 CTATTTCATTTAACAAGGTTAACAAGTTTACCGGAA 1 617717 - tRNA-phe 0 ACTGCAAAGATAGCAAAAGTTACTATAAG 1 621007 - bf638r_0535 gadC 0 ATGTTTACAACAGGTTAACAAGTGTGAAA	600505	-	bf638r 0515	hypo	0	ATATTGAACATTGAAGGGAAGTTT	1
601701 + bf638r_0517 hemk 0 TTATTTGTACTTTTGCACCCCA 1 603081 + bf638r_0519 sferase 0 CATTGGAAAAAGTTGGCAGAAAGGT 1 603081 + bf638r_0519 sferase 0 CATTGGAAAAAGTTGGCAGAAAAGGT 1 605738 + tRNA-gly 0 AGAAACTACTATTTTGCACCCGT 1 606731 + bf638r_0523 hypo 0 AAAAAGTACTACTTTTGTAACAAA 1 606731 + bf638r_0524 hypo 0 AAAAAGTACAAATTAGCAAGGTTGTTGTT 609522 - bf638r_0524 hypo 0 CATTGAGAAAAATTGGAAAAGTGAAAA 612732 - bf638r_0522 proC 0 ATACGACAAGGTATAAGTAAAAATGGAAA 617712 - bf638r_0532 argR 0 ATAGTGAAAAGATTGCAAAGATATTGGAAAGAAT 617717 - tRNA-phe 0 ACTGCAAAGATAGGAAAGAATGCAAAAA 1 618074 bf638r_0535 gadC 0 ATGTTTACAACAGGTTATAACAAGGTAAAAA 1 62110			_			TCTTTCATCTTTTAGGCTGATAGCTATA	
Dot Solo 1Dot Solo 2DyrE, orotate phosphoribosyltran sferaseAATACGGATTCTTTTTAGTCTCGTT CCATTTCCGTATTTTTGCATCCT603081 +bf638r_0519sferase0CCATCGGAAAAGTTTGCCAGAAAGGT CCATTGCGAAAAGTTTGCCAGCAAAAGGT TTGAGATTCTCTTTTTTACCTTA AAAAAGTACTACTTATCTTGCACCCGT1600731 +bf638r_0523hypo0AAAAAGTACTACTTATCTTTGCACCCGT AAAAAGTACTACTTTTGTAATAA1600731 +bf638r_0523hypo0AAAAAGTACTACTTTTTTTTTTATACCTA AAAAAGTACTACTTTTTTTTTTTTTTTTTTTTTTTTTTT	601701	+	bf638r_0517	hemK	0	TTATTTGTACTTTTGCACCCCA	1
prosphoribosyltran fosphoribosyltran 603081 +AATACGGATTCTTCTTTTAGTCTCGTT CCATTTCCGTAAAAAGTTTGCATCCT603081 +bf638r_0519sferase0CCATCGGAAAAAGTTGGCAGAAAAGGT AGAAACTACTTATCTTGCACCCGT1605738 +TTGAGATCATTATCTTGGCAGAAAAGGT AGAAACTACTTATCTTTGCACCCGT11606731 +bf638r_0523hypo0AAAAAGTACTACTTTTGCACCCGG AAAAAGTACTACTTTTGTAATAA1606731 +bf638r_0524hypo0AAAAAGTACTACTTTTGTAATAA1609522 -bf638r_0524hypo0CATTTAGAAACAGTTGTTGAG1609522 -bf638r_0527proC0ATACGAGCAAAACGTGGCAGGTATTAA1617244 -bf638r_0532argR0ATACGAGCAAAAGTTGCCAATATTTTGAA617717 -tRNA-phe0ACTGCAAAGATAGGTATAATTTTAAT1618074 +bf638r_0534TCS-sensor0CTATTTCCTTATCTTAACAACGTGAAA1621107 -bf638r_0535gadC0ATGGTGTAAACAACGTTTAACGACAAA06221257 +bf638r_0536ion transporter0GTGTAGGACTCTTGTCTTTACGTAAA0623324 +bf638r_0536ion transporter0GTTTTAGGAACAAATCATTAGGGGGAG1623324 +bf638r_0538hypo0GTTTTTTATTTTTGGATAA1623324 +bf638r_0538hypo0GTTTTTATTATCTTTGGGAAAT1624256 +bf638r_0538hypo0GTTTTTATTATCTTTGGGAAAT1624256 +bf638r_0539hypo0TTCCCACCCTATTTTTGGATAA1624256 +bf638r_053				nyrE orotate	-		
603081+bf638r_0519sferase0CCATTICGTATITITGATCCT1605738+tRNA-gly0AGAAACTACTTATCTTGCACCCGT1605738+tRNA-gly0AGAAACTACTTATCTTGCACCCGT1606731+bf638r_0523hypo0AAAAAGTACTACTTTTTGTAATAA1609522-bf638r_0524hypo0CATTTAAGAACAATTTGGCAGGAAA1609522-bf638r_0527proC0ATACGAGCAAACGTGGCAGGAAA1612732-bf638r_0527proC0ATACGAGCAAACGTGGCAGGAAA1617244-bf638r_0532argR0ATAGATGCATAAGAAAAGGGGAAA1617717-tRNA-phe0ATGGCAAAGATAGGAAAAAAGT1618074+bf638r_0534TCS-sensor0CTATTTCATACGGCAAG1621107-bf638r_0535gadC0ATGGTATAACAACGTTGAAAGAAAACG0621257+bf638r_0536ion transporter0TGTAGGACTAAACATAAGTTGCAAA0621257+bf638r_0536ion transporter0TGTAGGCGCAAAAAATGG0621257+bf638r_0538hypo0TTTCGGCGGCAAAGTAGGTAAAATTAACGTCA0621257+bf638r_0538hypo0TTTCGGCGCAAAGTATAGGGGGGGGGGGGGGGGGGGGGG				nhosnhorihosyltran		ΔΑΤΑΓΟΘΑΤΤΟΤΤΟΤΤΤΤΑΘΤΟΤΟΠΤ	
00000100000_00100000_00116005738+tRNA-gly0AGAAAAGTTTGGCAGAAAAGGT605738+tRNA-gly0AGAAACTACTTATCTTTGCACCCGT1606731+bf638r_0523hypo0AAAAAGTACTACTTTTGTAATAA1609522-bf638r_0524hypo0CATCGGAAAAAGTTAGCAGGTTGTTGTT1609522-bf638r_0527proC0ATAAGAAGGTATAAGCAGGTAGTAAA1612732-bf638r_0527proC0ATACGACCAAAGTGGCAGGAAAGTT1617244-bf638r_0522argR0ATAGTATGCATAAAAAGGTGGCAGGAAA1617717-tRNA-phe0ATAGTATGCAAAAGATAGTGAAAAAA1618074+bf638r_0534TCS-sensor0CTATTGCATAAACGTTAACGAAAAA1621107-bf638r_0535gadC0ATGTTTTATATAGTAAACGTTAACGTCAAA06221257+bf638r_0535gadC0ATGTTTTATAACAACGTTAACGTCAAA0623224+bf638r_0538hypo0TTTCGGCGGCTAATCATTCTTGCGCAA1623224+bf638r_0538hypo0GTTTTTATTATGTTCGGATA1623224+bf638r_0538hypo0GTTTCTTATCTTTGCGATAA1623224+bf638r_0538hypo0GTTTCTTATCTTTGGGAAAT1623244+bf638r_0538hypo0GTTTTTTTTTTTGGATAT1623247+bf638r_0539hypo0TTTCCTCATCCTTATT	603081	+	hf638r_0519	sferase	0	CCATTTCCGTATTTTGCATCCT	1
605738+tRNA-gly0AGAAACTACTTATCTTGCAACCGT1606731+bf638r_0523hypo0AAAAAGTACTACTTTTTTTACCTA1606731+bf638r_0523hypo0AAAAAGTACTACTTTTTGCAACCAGT1609522-bf638r_0524hypo0CATTTAAGAACAATTTCGTTCAG1609522-bf638r_0527proC0ATACGAGCAAAAGTAGTAAAAAGTGAAA1612732-bf638r_0527proC0ATACGAGCAAAAGTAGCAAGTTGGCAAGATATTT1617244-bf638r_0532argR0ATACGAGCAAAAGGTAGAAGTATAATTTTAGT617717-tRNA-phe0ACTGCAATAGGTAGAAGAAAA1618074+bf638r_0534TCS-sensor0CTATTTAGCTAAACAGTTTAACGGAGA1621107-bf638r_0534TCS-sensor0CTATTTCTTTACTTAACGGCAA1621257+bf638r_0538ion transporter0AGTGTCTTAAACAACGTTTAACGTGAG0621257+bf638r_0538hypo0TTTCGGCGGGTAATCAAAAAATCG0621257+bf638r_0538hypo0GTTTTTTTTTTTTTCGCGATA1623324+bf638r_0538hypo0GTTTTTTTTTTTTTGGATAAT1624256+bf638r_0538hypo0TTTCCTCACCCTATTTTGGATAT1624256+bf638r_0538hypo0TTTCCTCACCCTATTTTGGATAT1624256+bf638r_0538hypo0TTTCCTGCCCCAAGTTATACAATTCCGGG <t< td=""><td>005001</td><td>•</td><td>510501_0515</td><td>5101030</td><td>Ŭ</td><td>CATCEGAAAAAGTTTGGCAGAAAGGT</td><td>-</td></t<>	005001	•	510501_0515	5101030	Ŭ	CATCEGAAAAAGTTTGGCAGAAAGGT	-
003738+Chikargiy0NAAAAGTACTACTTRETTIGACCCG1606731+bf638r_0523hypo0AAAAAGTACTACTTTTGTATACCTA1606731+bf638r_0524hypo0CATTTAAGAACAATTTTGTTACCTA1609522-bf638r_0524hypo0CATTTAAGAACAATTTGTTGTT1609522-bf638r_0527proC0ATACGAGCAAACGTGGGCAGGTATTT1612732-bf638r_0527proC0ATACGAGCAAACGTGGCAGGTATTT1612732-bf638r_0532argR0ATAGTATGCATAAAAGGTGAAAA617244-bf638r_0532argR0ATAGTATGCATAAAAAGCTGTTTT1617717-tRNA-phe0ACTGCAATAGTTGGCAAAGAAAA1618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTACGCAA1618074+bf638r_0535gadC0ATGTGTTGTTTACAACAAGGTTAAACGGAGG0621107-bf638r_0536ion transporter0CTATTTCCTAACAACGGTAAAAAACGG0621257+bf638r_0538hypo0GTTTTTATACTTACGTCT0623324+bf638r_0538hypo0GTTTTTTATCTTGGAAA1624256+bf638r_0539hypo0TTCCTCACCCTATTTGTGAATA1628607+bf638r_0544mismatch repair prt0AAAAATTATATATTCTTGGGAAAAT1628607+bf638r_0545hypo0TTCCTCACCCATATTAGGAAAAATT1629	605729			+PNA abu	0		1
Index definition of the second	003738	т		trina-giy	0		1
b0b731+bfb38f_0523nypo0AAAAAGAGIACIACITACITITIGIAAIAA1609522-bf638r_0524hypo0CATTTAAGAACAATTAGCAGGTTGTTTGTT1609522-bf638r_0527proC0ATACGAGCAAAAGTAAGAAAAAGTGAAA1612732-bf638r_0527proC0ATACGAGCAAAAGTAGGAAAGTGGAAA1617244-bf638r_0532argR0ATAGTATGCATAAAAAGCTGTTTT1617717-tRNA-phe0ACTGCAAAGATAGGTATAATTTTAAT617717-tRNA-phe0ACTGCAATAGTTGGCAAAGAAAA1618074+bf638r_0534TCS-sensor0CTATTICCTTATCTTAACAAGGTGAAG621107-bf638r_0535gadC0ATGGTCTATAACAACGTTAACAAAGGTGAAA0621107-bf638r_0536ion transporter0TGTAGGACTCTTGTTCCTTGTGCAT0623324+bf638r_0538hypo0TTTCGGCGGCTAATCATTCTTACGGTAA1623324+bf638r_0539hypo0TTTCCTCACCCTATTTTTGCAAA1623324+bf638r_0538hypo0TTTCCGGCGCGAAATCATTCTTGCGCT1623324+bf638r_0539hypo0TTTCCTCACCCTATTTTTGCAAAA1624256+bf638r_0539hypo0TTTCCTCACCCTATTTTGGGAAAAT1624256+bf637r_0544mismatch repair prt0AAAAATATTATACAATTCCTGG1629974+bf637r_0545hypo0TGTAACGACCTTTAAGGAAAAATTG<	606724		hfc20+ 0522	he was	0		4
GGATIGCAAATATIAGCAGGTIGTITGTT609522-bf638r_0524hypo0CATTTAAGAACAATTTCTGTTCAG1612732-bf638r_0527proC0ATACGAGCAAACGTGGCAGGTATTT1612732-bf638r_0532argR0ATACGAGCAAACGTGGCAGGTATTT1617244-bf638r_0532argR0ATAGTATGCATAAAAAGGTGTAAAATTTTAGAA617717-tRNA-phe0ACTGCAAAGATAGGTATAAATTTTAAT618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTACGCAAA1621107-bf638r_0535gadC0ATGGTGTCATAACAACGTTAAACTGGAG1621107-bf638r_0536ion transporter0TGTAGGACTCTTGTCTTGTCCTTCGCAT0621257+bf638r_0536ion transporter0GTTTTTATTTATAGGAAAAAATTG1623224+bf638r_0538hypo0GTTTTTATTTTTGCGGAAA162324+bf638r_0538hypo0GTTTTTTTTTTTTTTTTTGGGGAAAT162324+bf638r_0536ion transporter0GTTTTTTATTTATCTTTGCGATA162324+bf638r_0538hypo0TTTCCTCACCCTATTTTTGGGAAAT162324+bf638r_0539hypo0TTTCCTCACCCTATTTTGGGAAAT162324+bf638r_0539hypo0TTTCCTCACCCTATTTGGGAAAT162324+bf638r_0539hypo0TTTCCTCACCCTATTTGGGAAAT162974+bf637r_0544mismatc	606731	+	010381_0523	пуро	0		1
609522-bf638r_0524hypo0CATITAAGAACAATITCTGTTCAG1612732-bf638r_0527proC0ATACGAGCAAAAGGTAAAAAAGTGAAAA612732-bf638r_0527proC0ATACGAGCAAAAGTAGCAGGCAGGATTT1617244-bf638r_0532argR0ATAGTATGCATAAAAAGGCTGTTTT1617717-tRNA-phe0ACTGCAAAGATAGGTATAATTTATATT1618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTACGCAAA1618074+bf638r_0535gadC0ATGGTCTATAACAACGTTTAACGTGAG1621107-bf638r_0535gadC0ATGTTTTAGTTTACTAACGTCAAA0621257+bf638r_0536ion transporter0TGTAGGACTCTTGTCCTTCTGCAT0623324+bf638r_0538hypo0GTTTTTATTATATTATCTTACGAGAA1623324+bf638r_0538hypo0TTTCCGGCGGCTAATCAATCGGTGGGGAGG1623324+bf638r_0538hypo0TTTCCTCACCCTATTGTTGCGCTAAA162324+bf638r_0538hypo0TTTCCTCACCCTATTTATGGGTGGGGAGG162324+bf638r_0539hypo0TTTCCTCACCCTATTTATGGATAAT1628607+bf637r_0544mismatch repair prt0AAAAATATTATATCTTTGGGAAAT1629974+bf637r_0545hypo0TGTAACTGACTCTTATAGGATAAATTT1					_	GGATGCAAATATAGCAGGTTGTTTGTT	
612732-bf638r_0527proC0ATACGAGCAAAGGTATAAGTAAAAAGTGAAA612732-bf638r_0532argR0ATACGAGCAAAAGTATGCAATAGTTTGGAA617244-bf638r_0532argR0ATAGTATGCATAAAAAGCTGTTTT1617717-tRNA-phe0ACTGCAATAGTTGCAAAGAAAAA1618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTACGCAAA1618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTACGCAAA1621107-bf638r_0535gadC0ATGGTGTATAACAACGTTTAACGTGAGG0621257+bf638r_0536ion transporter0TTTCGGCGGGGTATCAAACAAATCG0623324+bf638r_0538hypo0GTTTTTATTATCTTGCAGTAA1623324+bf638r_0539hypo0TTTCCGCCGCTAATAGCAGGGGGAGG162324+bf638r_0539hypo0TTTCCTCACCCTATTTGGGGGAGAG1624256+bf638r_0539hypo0TTTCCTCACCCTATTTAGGGGGAGG1628607+bf637r_0544mismatch repair prt0AAAAATATTATATCTTGGGAAAATTG1629974+bf637r_0545hypo0TGTAACTGACTCTTATAGGAAAAAATTG1	609522	-	bf638r_0524	hypo	0	CATTTAAGAACAATTTCTGTTCAG	1
612732-bf638r_0527proC0ATACGAGCAAACGTGGCAGGTATTT1617244-bf638r_0532argR0ATAGTATGCATAAAAAGCTGTTTT1617747-tRNA-phe0ACTGCAAAGATAGGTATAGTATAATG618074+bf638r_0534TCS-sensor0CTATTTCCTTATCATAACGACAAA1618074+bf638r_0534TCS-sensor0CTATTTCCTTATCACGCAAA1621107-bf638r_0535gadC0ATGTTTACAACGTCAAACGAAAA1621257+bf638r_0536ion transporter0AATCGGGGTGGGTATCAAACAAATCG0621257+bf638r_0538hypo0TTTCGGCGGCTAATCATTCTTACGCAA1622324+bf638r_0538hypo0GTTTTTATTATGTGATAA1624256+bf638r_0539hypo0TTCCGCCGCAAAGTAAGTTACAATTCCGGG1628607+bf637r_0544mismatch repair prt0AAAAATATTATATCTTTGGGAAAATTG1629974+bf637r_0545hypo0TGTAACGACTCTTATAGGAAAAATTG1						GACAAAGGTATAAGTAAAAAGTGAAA	
GACGCAAAAGTATGCAATATTTTGGAA617244-bf638r_0532argR0ATAGTATGCATAAAAAGCTGTTTT1617717-tRNA-phe0ACTGCAATAGTTTGGCAAAGAAAA1618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTACGCAA1621107-bf638r_0535gadC0ATGGTGTCATAACAGTTAAGTTAACGTGAA1621107-bf638r_0535gadC0ATGTTTTAGTTAACAGTGCAAA0621257+bf638r_0536ion transporter0TGTAGGAGCTATTGCTTTATCTTACGTCAT0623224+bf638r_0538hypo0GTTTTTATTATTGTACATAGGTGAGAA1623224+bf638r_0539hypo0TTTCCGCGGGCTAATCATTTGGAGAAA162324+bf638r_0539hypo0TTTCCTCACCCTATTTTGGATAT1624256+bf638r_0539hypo0TTCCGGCTGCAAAGTTAACAATTCCCGG628607628607+bf637r_0544mismatch repair prt0AAAAATATTATATCTTTGGGAAAATTG1629974+bf637r_0545hypo0TGTAACTGACTCTTATAGGAAAAATTG1	612732	-	bf638r_0527	proC	0	ATACGAGCAAACGTGGCAGGTATTT	1
617244-bf638r_0532argR0ATAGTATGCATAAAAAGCTGTTTT1617717-tRNA-phe0ACTGCAAAGATAGGTATAATTTTAAT617717-tRNA-phe0ACGGCAAAGATAGGTATAATTTTTAAT618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTACGCAAA621107-bf638r_0535gadC0ATGGTGTATAACGACGTTAACGTCAAA621107-bf638r_0536ion transporter0AATCCGGGTGGGTATCAAACAAATCG621257+bf638r_0536ion transporter0TGTAGGACTCTTGTCCTTCTGCAT623224+bf638r_0538hypo0GTTTTTATTATAGGTGGGGAG624256+bf638r_0539hypo0TTTCCGCCGCAAAGTATAAATTACAATTCCCGG628607+bf637r_0544mismatch repair prt0AAAAATATTATATCTTTGGGAAAATTG1629974+bf637r_0545hypo0TGTAAACTGACTCTTATAGGAAAAATTG1						GACGCAAAAGTATGCAATATTTTGGAA	
617717-tRNA-phe0GGTGCAAAGATAGGTATAATTTTTAAT617717-tRNA-phe0ACTGCAATAGTTTGGCAAAGAAAA1618074+bf638r_0534TCS-sensor0CTATTTCCTTATTATATGTATAATG618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTACCGCAA1621107-bf638r_0535gadC0ATGTTTTAGTTTACTAACGTCAAA0621107-bf638r_0536ion transporter0ATGTTTTAGTTAACAACGTCAAAA0621257+bf638r_0536ion transporter0TGTAGGACTCTTGTCCTTCTGCAT0623324+bf638r_0538hypo0GTTTTTATTTATCTTGCAGTAA1624256+bf638r_0539hypo0TTTCCTCACCCTATTAGGGTGGGGAG1624256+bf638r_0539hypo0TTTCCTCACCCTATTTGGCAAATT1628607+bf637r_0544mismatch repair prt0AAAAATATTATATCTTTGGAAAAATT1629974+bf637r_0545hypo0TGTAAACTGACTCTTATAGGAAAAAATTG1	617244	-	bf638r_0532	argR	0	ATAGTATGCATAAAAAGCTGTTTT	1
617717-tRNA-phe0ACTGCAATAGTTTGGCAAAGAAAA1618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTATCGCAA1618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTTACCGCAA1621107-bf638r_0535gadC0ATGTTTTAGTTACAACGTCAAA0621257+bf638r_0536ion transporter0TGTAGGACTCTTGTTCCTTCGCAT0623224+bf638r_0538hypo0GTTTTTATTATTATCTTTGCAGTAA162324+bf638r_0539hypo0TTTCCGCCGCTAATCATTCTTACGTCT0624256+bf638r_0539hypo0TTTCCTCACCCTATTTTGGATAT1628607+bf637r_0544mismatch repair prt0AAAAATTTATATCTTGGGAAAATTG1629974+bf637r_0545hypo0TGTAACTGACTCTTATAGGAAAAATTG1						GGTGCAAAGATAGGTATAATTTTAAT	
618074+bf638r_0534TCS-sensor0AACGTTTGTCTTTATTATATGTATAATG CTATTTCCTTATCTTTACCGCAA1621107-bf638r_0535gadC0ATGTTTAGTTTACCAACGTTAACGTGAG ATGTTTAGTTACTAACGTCAAA0621257+bf638r_0536ion transporter0TGTAGGACTCTTGTTCCTTCGCAT0623324+bf638r_0538hypo0GTTTTTATTATTATCTTTGCAGTAA1623324+bf638r_0538hypo0GTTTTTATTTATCTTTGCAGTAA1623324+bf638r_0538hypo0TTTCCGCGGCTAATCATTCTTACGTCT1623324+bf638r_0538hypo0TTTCTCACCCTATTTTGCAGTAA1624256+bf638r_0539hypo0TTTCCTCACCCTATTTTTGTGATAT1628607+bf637r_0544mismatch repair prt0AAAAATATTATATCTTTGGGAAAT1629974+bf637r_0545hypo0TGTAACTGACTCTTATAGGAAAAATTG1	617717	-		tRNA-phe	0	ACTGCAATAGTTTGGCAAAGAAAA	1
618074+bf638r_0534TCS-sensor0CTATTTCCTTATCTTTACCGCAA1621107-bf638r_0535gadC0ATGTTTTAGTTTACTAACATGTCAAA0621257+bf638r_0536ion transporter0TGTAGGACTCTTGTTCCTTCGCAT0621257+bf638r_0536ion transporter0TGTAGGACTCTTGTTCCTTCTGCAT062324+bf638r_0538hypo0GTTTTTATTTATCTTTGCAGTAA162324+bf638r_0538hypo0GTTTTTATTTATCTTTGCAGTAA1624256+bf638r_0539hypo0TTTCCTCACCCTATTTTGGATAT1628607+bf637r_0544mismatch repair prt0AAAAATATTATATCTTTGGAAAATT1629974+bf637r_0545hypo0TGTAACTGACTCTTATAGGAAAAATTG1						AACGTTTGTCTTTATTATATGTATAATG	
621107-bf638r_0535gadC0AGTGTCTATAACAACGTTTAACGTGAG ATGTTTTAGTTTACTAACGTCAAA0621257+bf638r_0536ion transporter0TGTAGGACTCTTGTTCCTTCGCAT0623324+bf638r_0538hypo0GTTTTTATTATCTTAGGGGGGAAA1623324+bf638r_0538hypo0GTTTTTATTTATCTTTGCAGTAA162324+bf638r_0538hypo0GTTTTTATTTATCTTTGCAGTAA162324+bf638r_0539hypo0TTTCCGCGGCTAATCATTCTTGCAGTAA1624256+bf638r_0539hypo0TTTCCTCACCCTATTTTGGATAT1628607+bf637r_0544mismatch repair prt0AAAAATATTATATCTTTGGGAAAT1629974+bf637r_0545hypo0TGTAACTGACTCTTATAGGAAAAATTG1	618074	+	bf638r 0534	TCS-sensor	0	CTATTTCCTTATCTTTACCGCAA	1
621107-bf638r_0535gadC0ATGTTTAGTTAGTTAGTGAAAGAACGTCAAA0621257+bf638r_0536ion transporter0TGTAGGACTCTTGTTCCTTCGCAT062324+bf638r_0538hypo0GTTTTATTATCATTGGAGAAA162324+bf638r_0538hypo0GTTTTTATTAGTAGGGGGGGGGGGGGGGGGGGGGGGGG						AGTGTCTATAACAACGTTTAACGTGAG	
621257 + bf638r_0536 ion transporter 0 AATCCGGGTGGGTATCAAACAAATCG 623324 + bf638r_0538 hypo 0 TTTCGGCGGCTAATCATTCTTACGTCT 624256 + bf638r_0539 hypo 0 TTTCCGCCGCTAATCATTCTTGGGGAG 624256 + bf638r_0539 hypo 0 TTTCCGCCCCATTTTTGGAGTAT 1 628607 + bf637r_0544 mismatch repair prt 0 AAAAATATTATATCTTTGGGAAAT 1 629974 + bf637r_0545 hypo 0 TGTAACTGACTCTTATAGGAAAAATTG 1	621107	-	bf638r 0535	gadC	0	ATGTTTTAGTTTACTAACGTCAAA	0
621257+bf638r_0536ion transporter0TGTAGGACTCTTGTTCCTTCGCAT0623324+bf638r_0538hypo0GTTTTTATTTATCTTTGCAGTAA1623324+bf638r_0538hypo0GTTTTTATTTATCTTTGCAGTAA1624256+bf638r_0539hypo0TTTCCGCCCCATTTTTGGATAT1628607+bf637r_0544mismatch repair prt0AAAAATATTATATCTTTGGGAAAT1629974+bf637r_0545hypo0TGTAACTGACTCTTATAGGAAAAATTG1				8	-	ΔΑΤΓΓΩΘΩΤΩΘΩΤΑΤΓΑΔΑΓΑΔΑΤΓΩ	-
623227 1 biosci_0550 isin transporter 0 isin transporter 0 isin transporter 0 623324 + bf638r_0538 hypo 0 GTTTTTATTTATCTTTGCAGTAA 1 624256 + bf638r_0539 hypo 0 TTTCGGCTGCAAAGTTATAGGGTGGGGAG 628607 + bf637r_0544 mismatch repair prt 0 AAAAATATTATACTTTGGGAAAT 1 629974 + bf637r_0545 hypo 0 TGTAACTGACTCTTATAGGAAAAAATTG 1	621257	+	hf638r 0536	ion transporter	Ο	TGTAGGACTCTTGTTCCTTCTGCAT	Ο
623324 + bf638r_0538 hypo 0 GTTTTTATTTATCTTTGCAGTAA 1 623324 + bf638r_0538 hypo 0 GTTTTTATTTATCTTTGCAGTAA 1 624256 + bf638r_0539 hypo 0 TTTCCTCACCCTATTTTGGGGAGG 1 628607 + bf637r_0544 mismatch repair prt 0 AAAAATATTATATCTTTGGGAAAT 1 629974 + bf637r_0545 hypo 0 TGTAACTGACTCTTATAGGAAAAATTG 1	021237				<u> </u>		5
023324 + 010381_0338 hypo 0 GTTTTATTATCTTGCAGTAA 1 624256 + bf638r_0539 hypo 0 TTTCCTCACCCTATTTTGGATAT 1 628607 + bf637r_0544 mismatch repair prt 0 AAAAATATTATATCTTTGGGAAAT 1 629974 + bf637r_0545 hypo 0 TGTAACTGACTCTTATAGGAAAAATTG 1	622224	l .	hfc20r 0520	huno	0		4
624256 + bf638r_0539 hypo 0 TTTCCTCACCCTATTTTGTGATAT 1 628607 + bf637r_0544 mismatch repair prt 0 AAAAATATTATATCTTTGGGAAAT 1 629974 + bf637r_0545 hypo 0 TGTGACTGACCTCTTATAGGAAAAATTG 1	023324	+	0530_0538	Πγρο	0		1
624256 + bf638r_0539 hypo 0 TTTCCTCACCCTATTTTTGTGATAT 1 628607 + bf637r_0544 mismatch repair prt 0 AAAAATATTATACAATTCCTGGGAAAT 1 629974 + bf637r_0545 hypo 0 TGTAACTGACTCTTATAGGAAAAATTG 1				1.			
628607 + bf637r_0544 mismatch repair prt 0 AAAAATATTATACAATTCCCGG 629974 + bf637r_0545 hypo 0 TGTAACTGACTCTTATAGGAAAATTG 1	624256	+	bt638r_0539	пуро	0	THECHCACCETATTTTGTGATAT	1
628607 + bf637r_0544 mismatch repair prt 0 AAAAATATTATATCTTTGGGAAAT 1 629974 + bf637r_0545 hypo 0 TGTAACTGACTCTTATAGGAAAAATTG 1						TCGGCTGCAAAGTTATACAATTCCCGG	
629974 + bf637r_0545 hypo 0 TGTAACTGACTCTTATAGGAAAAATTG 1	628607	+	bf637r_0544	mismatch repair prt	0	AAAAATATTATATCTTTGGGAAAT	1
	629974	+	bf637r_0545	hypo	0	TGTAACTGACTCTTATAGGAAAAATTG	1

					TGAATAATAGATATATTTGTAGAT	
					ATTTACGATTTTACTTGTTTTTATCAGA	
640334	+			1	GTGTTTTTCATACATTTGTACAC	1
	-			-	GCCGCAAGGTATGAAAAAAAAAAAGCAA	-
642105	-	bf638r_0551	ecf sigma factor	0	AAGAGGATTAATAGTTGTGAGTATT	0
012105		510501_0551		Ŭ	ΤΤΤΤΔΔΔΔΔΔΔGΔΤΤΤΤGΤΔGΔCTCΔΔ	Ū
648454	+	bf638r_0558	glcK repressor	0	τοττοττταοσταλιτηστοτοιο	1
010131		510501_0550	Bien repressor	Ŭ	GGTGCAAAGTAACGAATTATTTGCCG	-
650664	_	bf638r_0559	50s ribosomal nrt	0	GATAGCCAAATGTTTTGTATATT	1
030004		510501_0555		0		-
650721	+	bf638r_0560	hydrolase	0	ΔΑΤΩΤΤΤΤΩΤΑΤΑΤΤΤΟΕΕΟΟΑΤΑΘΕΕΑ	1
050721	•	510501_0500	Tiyarolase	Ŭ		-
667/89	_	bf638r+0568	hypo	0	GGTTCGCAAAGAATAATGTTAAAA	0
007405		51050110500	Пуро	0		0
667586	<u>т</u>	bf638r 0560	nentidase	0		1
007380	т	010301_0303	peptidase	0		1
669064				0		0
008904	т		pyridina pyclaatida	0	AGITACAGAGGIGITITCACCACA	0
671029		hf629r 0572	ovidoroductaco	0		0
071936	-	010301_0372	UXIUUI EUUCLASE	0		0
672956		bfc20r 0575	atoC TCS regulator	0		1
075650	+	00001_0070		0		1
602507		hfc20+ 0502	rpoe, ect sigma	0		4
683597	+	DT638r_0582	Tactor	0		1
605242		hfc20+ 0504	fC	0	ATTATATAGATTAAGGCIIGGCIIAI	4
685312	+	DT638r_0584	TrrG	0		1
605040					ATTATATAGATTAAGGCTTGGCTTAT	
685312	+			1		1
					ΤΤGTTTAACTAAAAAAAATAATATAT	
685370	-			1	GAACAAAAATCGATCAATCCGAGT	1
					CATTCAGAATGAAGGATACTAATGCTT	
690348	+	bf638r_0586	frrl	0	CTTAAGAGATTATTATAAATTAAT	0
				-	AACAGTTTCTGTAGTAAGCTTGAAAAA	
692978	+	bf638r_0587	hypo	0	TAGTAGGAATACGTATCTTTGCAT	1
					TTATGCAAAAATAAATGTTTTGTTTTG	
698657	-			1	ATATACAATATATTCTTTGGGATC	1
				-	GGGTGCAAAGATAGAGCCTTTTTTTA	
699097	-		tRNA-met	0	ATCTCCAAAACATTTTCTATCTTT	1
					AGTGAATTAATTATGCCTTGTAATTAG	
699282	+	bf638r_0591	hypo	0	AAAAAAGTATTTATCTTGGCACAC	1
					TCGACCAAAAATTTTTCGCACTCCTTTT	
699749	+	bf638r_0592	permease	0	TTTGTGCTAATTTTGTATCTTAA	1
			ribA, riboflavin		GGATGTGGAATTGACAATAAAAGATA	
701680	+	bf638r_0593	biosynthesis	0	TTAATAACGAAAACAAGATATAAAA	0
					ACTGTCTATTTGCTTTCATATATCAAAT	
702948	+	bf638r_0594	aspC	0	ATTATAGTTTATTTTGCAATCAA	1
					AGGTACAAAAATAGAGTTTTTAATCAT	
707327	-			0	TAGTTGGTATCGTTTTTGATTAAA	1
					TGTTTTAATTTGTATATCTTCTAAATAA	
707429	+	bf638r_0596	metA	0	GGAAAACACTATTTTTGCATTGA	1
					GTTTGCAAAGATGCAGCAAAAAATGTT	
713726	-	bf638r_0599	tonB receptor	0	AAACGGCAATCCTCATTTATTAGG	1
					GTCTCAAAGTTACGCATTTCGTCTTTT	
717864	-	bf638r_0603	radA, dna repair	0	CTGCCAAACAGAATATAGCTTTT	1
					GTTGCAAAGATAATGATATATCTTGTA	
719577	-	bf638r_0604	ansA, asparaginase	0	AATGGCAGCAAAGTGTCAAGAAAGT	1
					TAATCGCAAAAAGTGATAGATTGAAT	
719785	+			1	GAAATTATTCTTATTTTTGCAACAT	1
					ATCAACAAAGATGGTTTTGTATGCCTG	
720032	+	bt638r_0605	aspartokinase	0	AAAGAGCGTACAAGGCATTCCATT	0
723728	+	bf638r_0607	thrC	1	AATTTATTAAAGAGTTTATGAACCGTT	1

					AAGGAATAGGAACAGAGTTTGTTCA	
					TCGTCCTTCTTTCTCCGAACTTTCCGTC	
725544	+	bf638r_0608	mem prt	0	TCCCTCTTTTGTTGTACGGGAAT	0
			·		GGCGGCAAATTTACGCTTTTTGCTTGT	
729969	-	bf638r_0611	tonB receptor	1	GTAAAGCAAGAAACACTTCGCTAT	1
					AGCAAGAAACACTTCGCTATTTGATAA	
730050	+	bf638r 0612	mscS, ion channel	0	AAACATTGTAGCTTTGTCCGCTGT	1
		_			ACAGTTAAAACATTCTCAAAGAGGATA	
731322	-	bf638r 0613	hypo	0	AGGTTCAAACTGTTTTTTCTTATC	1
		_			ATTCTCAAAGAGGATAAGGTTCAAACT	
731383	+	bf638r 0614	ecf sigma factor	0	GTTTTTCTTATCTTTGCCATTTC	1
		_	Ŭ		CTTTCAATCTGTGGCGATTTCAGGTAT	
748134	-	bf638r 0622	hypo	1	ATGGCACATTTACCAGAACTTATT	0
					GGCTGCAAAGATACGGTAACTCTGTG	
748367	-	bf638r 0622	hypo	1	TATCCTGCAAGAGCACTTCTTTCTT	1
					CCTATTAATGGGGATTGTACCGATGTA	
752285	+	bf638r 0626	araC	0	TGGGTTATCGTAATTTTGTATCAG	1
					GGGACAAAAGTAGAGCCTTATCGGCT	
752297	-			1	TTTACTGCTTACGCGAAAAGGAACT	1
					GGGTGCAAAGGTAGTGACTTTTTTAT	
753915	-		tRNA-lvs	0	ATTTGCAAGCTTTTGGATGAAAAA	1
			tdk. thymidine	-	GCTTGCAAAAGTAATAGTTTTATTGGC	
755795	-	bf638r_0630	kinase	0	TTCTCAGTGTTTTTTCATTATTTA	1
					TTTATTGGCTTCTCAGTGTTTTTTCATT	
755863	+	bf638r_0631	hypo	0	ATTTATTTCTACATTTGCCAAGT	1
			amino acid		GTTGATGGAACTATTGTAACATTTATA	
759020	+	bf638r_0635	transporter	0	GATATATTGTATTTTTGCGTTCAA	1
/00020	-		transporter	0	ΑΑΤΑΤGATTATTACAAATTCAGATTGA	-
764405	-	bf638r_0637	surface nrt	0	ΑΓΤΤΑGTGTAGAAAGAAACTGTAT	1
701105		510501_0057	Surface pre	0	ΤGCAAATATATTAAGAAATATGAAACG	-
769529	-	bf638r_0639	tonB receptor	0	GACAATCATTTTTATAAAAAAATC	1
100020				0	ΤΑΑΑΤΟΤΤΑΤΤΟΑΑΤΤΟΤΑΑΤΑΤΑΓΑ	-
769904	+	bf638r_0640	integrase	0	CCAAGCACGTCTTATTTGTCCAT	1
700001				0	AAACTCTTATAATAAAGAAGTTATGAT	-
771721	+	bf638r_0641	tonB receptor	0	ATAATTGTAGTTCTGCAAAGACTT	0
					GGGCGATTTTTCTTTTAGTATGTTACG	-
776167	+	bf638r_0643	gtp binding prt	0	AAAATAGCTATATTTGTCGCCAT	1
				-	TAACCGCATCGGGCAATTGGCGTGAG	
779487	+	bf638r 0645	pepN	1	AGAGGGTACGAGTTATATAATATTTA	0
					AATCTGCCACTTTATTCATACTTTGGAA	-
782395	+	bf638r 0646	fumB	0	AACTATTCTTACCTTTGCCTCAC	1
					CTTTAAGCAGATAAAACCCCGTTGCGG	
784078	+			1	TTCTTGCAGCAACAAATAAGAAAT	0
			amino acid		AGTTGCAAAGATAATTAATTCATAACA	
789369	-	bf638r 0649	transporter	0	CATACGGTCATAGGATGTTCACTT	1
		_			TTGTTTCTTGACTTTTTCGTGAAGCAGT	
800289	-	bf638r 0657	hypo	0	ATTTTTTGCTTTTCGACCTGTTG	0
		_			TTTGTTAATATATGACTTTTTTATATG	
803347	-	bf638r_0659	hypo	0	AACATCCTCCAAAAAGATTTTTT	0
			frr, ribosome		AAAACAAAAGTAGATTATTTTTGATT	
805903	-	bf638r 0662	recycling factor	0	ATCTGCAACTATCTATAGAGAGAA	1
					ATACCGATTATCGGGGCTATTGATGAT	
815277	+			1	AAAAGGTCTGCTGTAAGAAAAAGA	0
					TGCAAAGATACGCGATTCCTTTTAATG	
816122	-	bf638r_0669	pyrH	0	GACTATCTTTTTGCTAAAAAAG	1
		_			ATGCAAAGTTACATGAAAAACAGAGA	
817461	-	bf638r_0670	dinF, dna repair	0	ATATGAAAATGATGTGAACAATCAT	1
			1		ATTGGTTCGCAACGTTCTCGATACAGG	
817570	+			1	AATTAATATTATTTTTGTCTGCAT	1
<u><u>817079</u></u>	+	hf638r_0672	endo heta	0	ΤΑΑΓΩΤΤΩΑΓΩΤΔΔΔΤΩΔΤΑΩΤΑΤΑΩ	Ο
01/5/8		510301_0072		U		5

			galactosidase		TATTCTTTCATTAAAGACATCTTC	
			-		AGTGAGTATGTGACTTGGGAATACAC	
819068	+	bf638r_0673	hypo	0	AATATAAATACTATCTTTGTAGGGA	1
010000			,po	Ŭ		-
821139	-	bf638r_0674	hypo	0	TAAATCTCAATTTTAAAGAATGTAT	1
01100			,po		TCTGCAAATTTACTCTTTTTATTCTTTG	_
822720	-	bf638r_0677	hypo	0	AAATTACAGAAGTAAAAGTAAAT	1
					TTACTCTTTTTATTCTTTGAAATTACAG	
822779	+	bf638r_0678	hypo	0	AAGTAAAAGTAAATTTGCAAAGA	1
011/10			,po		GTAGTACAACAAACGTGCCAGAAGGA	_
823794	-	bf638r 0680	hypo	0	ΤΤGTTTATTTATTTTTTTTTTTTTTTTTA	0
			psd.			-
			phosphatidylserine			
			decarboxylase		ΑΤϹϹĠĊAAAAĠTATAĊTTATTTTAAAA	
825252	-	bf638r 0682	proenzyme	0	ATCCAGCAAGCATTTGCAGGTAGA	1
		_	, ,		TTTTGATGTTTATCTTTGTTAGTAGCTG	
825373	+	bf638r 0683	dnaE	0	TAGACATTGTAATTTTATGGCTT	1
		_			AAGGAACGTCCCGAACTTGCGTTTCAT	
829203	+	bf638r 0684	trxA	0	ATAAATTGATTATCTTTGCCGCAT	1
					GCTGCAAATATATCATAATTCTCTTACT	
830906	-	bf638r 0686	mem prt	0	TTTGCTTCCGGTTTCGGACAAAA	1
					TTTTTAGTTTTGGTTGCAAATATATCAT	
831785	+	bf638r 0688	mem prt	0	AATTCTCTTACTTTTGCTTCCGG	1
					GCAAAGGTACTTATTAATTTGTATTATT	
839899	-	bf638r_0697	hypo	0	CCGTATATTTGTCCTTGCAATGTG	1
					TTTTCGCAAAGGTACTTATTAATTTGTA	
839944	+	bf638r 0698	amino peptidase	0	TTATTCCGTATATTTGTCCTTGC	1
					AATCGGCGCATACGTTTGCCAATTCTA	
844648	+	bf638r 0701	mem prt	0	TAATTTTCGTATTTTTGTTGCAC	1
					TTTIGCIGICTITCIGAAACCTIGGTIC	
847891	+			0	TTCTTTGTGCTATCTTTGTGTAT	1
					GGTTGCAAAAATAGGAAATCTATTCTT	
860500	-	bf638r 0708	aroA	0	TTTTGCCTCTATCCTCTTCCTAAA	1
					AAAGACTTGTGTAGTTACGGGGTTAAT	
860742	+	bf638r 0709	araC	0	GTAGTTATTTTACTTTTGTATCAA	1
		_	beta-N-			
			acetylhexosaminida		TTTTAGACAGAATGTTGGAGAATCGGT	
863049	+	bf638r_0711	se	0	AGATTTACACTACTTTTGGTACCA	1
					ACGCAAAGATAGAAAAAACTTGAGAT	
866490	-	bf638r_0712	acyl transferase prt	1	ACTGAGCAACAAACGGAAAGAATCC	1
					GGATGCAAAAGTAGGATTTTATTTTGA	
866804	-			0	ATAAGCAAAATATTCGGATGGTTT	1
					ACTGCAAAGATAGGAGTTCGGAGATA	
868576	-	bf638r_0714	aroB	0	AATAGTGAAACTTAGCACTTAAAAA	1
					AAATGTAAAACATGGGGTTCTGTTTGT	
868674	+	bf638r_0715	mem prt	0	GAGAAAAAGCTATCTTTGTGACAT	1
			cls2, cardiolipin		TCGGGACAGTTGTTGTTCGTATCCGAT	
872220	+	bf638r_0717	synthetase	0	ATTTTCCATACATTTGTTCTTTGT	1
					AGCGGCAAATTAAGGAAAATTTTCTT	
875823	-	bf638r_0720	hypo	0	ATCAGCCAACTTTTGAGCAAGAAA	1
			putative ATP-			
			dependent			
			exodeoxyribonuclea		AAATACTGTTTTCATGATAAATATGTTT	
875743	+	bf638r_0721	se	0	TTTTTAGTTTATATTCGTAGCGC	1
					AATTAGTTAACTTTAAAAACATACAAG	
882557	+			1	GTTTAAGCATTGTATTTATAATAT	0
					GTTAATAAAACAAGTGTCCCGAAAGA	
882584	-	bf638r_0723	tonB receptor	0	AACACTTACTTCAGTTACTAACTTT	0
					ΑΤΑΑΤΑGAAACAACTAAATCTTTAAAA	
888421	-	bf638r_0726	anti sigma factor	0	ACACTTATCTATTTGATAAAAAAT	0

					TGTGCAAAGGTAGAGAATATAAATGT	
891307	-	bf638r_0728	alnha mannosidase	0		1
051507		510501_0720		0	GGTTGCAAAATTACTCCATCTGTTAGG	-
802080	_	bf638r 0720	offlux transporter	0		1
092900	-	010301_0729		0		1
000000		1 (620 0720		0		
893093	+	btb38r_0730	arac	0	AAAATAAACCTACATTIGTIGCCT	1
			alaS, alanine		AGTGCAAAGATAGCTTGTTTTTATTAT	
896870	-	bf638r_0731	synthetase	0	TTTTGCCGTATTAACAAGCGAAAT	1
			membrane		TTCTGAAAAAAGCAGTGCAAAGATAG	
896907	+	bf638r_0732	peptidase	0	CTTGTTTTTATTATTTTTGCCGTAT	1
					GCAAAAATAATCAAATTTAAACATCAG	
900602	-	bf638r_0734	relA	0	GCAAGCGAAAGGCGATTTATTTGT	1
				-		_
904646	_	hf638r_0739	nar∆	1	TATCGATTCCTTTTTTTACTCACT	1
504040		0/33	pur A	-		-
004070		hfc20+ 0744	sure, stationary	0		4
904970	+	D1638r_0741	phase phosphatase	0	GITCHTIGHACHTIGIGCAT	1
			IpxB, lipid		ATGGATACGTAGCGATTACACCTACTG	
905741	+	bf638r_0742	disaccharide	0	TAGTGGATATGACCGCTTATCATT	0
					TTACAAATATACGCTGATTTATTGTATC	
911198	-	bf638r_0746	hypo	0	AATGAAAGTAATGTGCTAAATCT	1
					AAGAGCGAAAAGTATTTGTGATTAAA	
911371	+		tRNA gln	0	AAAAACTTTGTACCTTTGCAACCGC	1
			U		AGATCACAAATTAATGAAATAAAATGA	
913715	-	bf638r_0747	hypo	0	ΤΤΑCΤΤCΑΤΑCΤΑΤΤΤΤCCΤΤΤΑΤ	1
515/15		510501_0747	kça	0	Плетекілегіні есітілі	-
			KSBA,			
01 (072		hfc20+ 0740	dimethyladenosine	0	AGCAGACAAAGGTAATTCTTTTAAATG	4
916072	-	bf638r_0749	transferase	0	AAGAATAAAGAATTAGGGATGAAG	1
					TTAGGCTTTACTAATTTCATTTATCAAC	
916077	+	bf638r_0750	membrane prt	0	TAAATAACTACTTTTGCAGCAGA	1
			pepD, aminoacyl		TCTTCCGGTAATTCTTTCTTTTCCATTCT	
917231	+	bf638r_0751	histidine peptidase	0	TTTTAGTAGCTTTGACCTTTAG	1
					TATCTTGCTTTTGAGTACAACGTATCTG	
919023	+			1	TTTTGGCTTTACTTTTGTGTTGT	1
					ATTACAAAGATACCCGAAAAAGTTTTG	
925763	-	bf638r+ 755	hypo	0	CTATTTTGATTTTTGTGTTAAAAG	1
520700					ΤΤΤΑΔΟΓΤΑΔΑΔΑΘΑΔΓΔΑΔΤΓΤΤΤΑΔ	-
025015		hf629r 07E6	hupo	0		0
923913	т	010301_0730	Пуро	0		0
021072		hfc20, 0757	h	0		4
931873	+	10381_0757	пуро	0		1
					AATATGTAATCAATGGCAGAATCTCAC	
934037	+	bf638r_0760	hypo	0	TGAAAACCCCTATTTTTGTACTCT	1
					GATGCAAAAGTAACCAATTTATCGTTT	
937225	-	bf638r_0762	permease	0	GAATTTTCTATATTTGTTTAATTT	1
					ACTGATGCAAAAGTAACCAATTTATCG	
937272	+	bf638r_0764	ABC transport	0	TTTGAATTTTCTATATTTGTTTAA	1
					TTCGGGAGTGGAATAGAAGAAATTAA	
940399	+	bf638r 0766	araC	0	AAAAGTGTGTTATATTTGTGGCTAA	1
				-	ΑΑΑΓΑΑΑΑΑΤΑΓΤΑΑGTΑΤΤΤGTTTGA	
9/12773	_	bf638r_0770	dna hinding nrt	0	ΤΑΑGCAAGGAAATTCCCAATATAT	1
542775		DI0301_0770		0		-
045255		P3-G inverteu		1		1
945255	-	promoter		1		1
					ATTATGGTTAGCAAAACCGATAATTAA	
972143	+	bf638r_0814	һуро	0	GAATAATCTTGTATATTTGTGAGT	1
			aldo_keto-		GATGCAAAGATAATCGATTTATGGAG	
974815	-	bf638r_0815	reductase	0	CAACATAGGTTATCAAAATAATAAT	1
					GGATAAAATAATACTGGATGGTTTGAT	
974928	+	bf638r 0816	glycosyl transferase	0	GGAATCCCGATAATTTTGCATTAT	1
				-	TGTTTCCTGTTTCGTTAGATTGTTTTCC	
1002481	+	bf638r_0833	membrane prt	0	AAACTTTTTGTACTTTTGGGCAC	1
4040000		htcac_0000	тос	~		-
1010920	+	pt638r_0840	ICS	0	TATTIAATCCATTCTCTTGGTGTGAATG	1

					GATAATTTCCTAAATTTGCGTAC	
					GGTTGCAAATATAGAATTTAATTTTAT	
1026321	-	bf638r 0851	hypo	0	CTCTTTTGCAAACTCCACGTGACA	1
			dxs. 1-deoxy-D-			
			xylulose-5-		AATGCAAATTTAGTAAAAGAAAGCGG	
1031290	-	bf638r_0854	phosphate synthase	0	AAGGAGCATCTTTTTGATTGGAAAT	1
		-	,		ΤΤCACAAACTTAAAATATTTTCTTTGAA	
1033461	-	bf638r_0856	transmembrane prt	0	AAAGGAGCTTTTCGGACTGATTC	1
		-	gph, putative			
			phosphoglycolate		AGGTGGGATGGCAGTAAAGTTACCGC	
1033595	+	bf638r_0857	phosphatase	0	TGAATTATCCGTATCTTTGTCGTAA	1
					GTATAAAGATATGAAGAAACTGATAA	
1033604	-			1	TATTCGATTTGGATGGTACTTTATT	0
					GCTGTAAAGTTACTCTTTTTTGGGTAG	
1040843	-	bf638r_0861	sulfatase	0	AATACAATTTTTATTGAAAATAAT	1
					TTTTTTTGAATCTCTTTTGTATGTTTAG	
1046307	+	bf638r_0864	TCS	0	GCTTTATTTCGTTCTTTTGCAA	1
					TTCTTCCTTTTATTTTGTATTTTAAGATA	
1052439	+	bf638r_0866	fucosidase	0	GATATTTTATCTTTGCCTTAAT	1
		_			AGTGCAAATATAGCGGTTTGCAATATA	
1055321	-			1	CTGAGGTGTTAACGAAGTTCAGAA	1
					ACAGCAAAAATACATGATAATTCCCGG	
1058848	-	bf638r_0868	hypo	0	ATTTTCATGCGGACGGATGAAAAT	1
		-	mdmB, acetyl		ACTGCAAATATATGGAAAGTATAGTTA	
1060060	-	bf638r 0869	transferase	0	GTATGAATCAAGAAGTATGCTTTT	1
		-	tatA-sec			
			independent		GTGCAAAGATAGACTATTTTGAATGAA	
1061326	-	bf638r_0871	translocase	0	AAAAGAAAGGCAGAATCATAAAAG	1
		_			AGTACAAAGGTACATGATAATTTCGG	
1065001	-	bf638r 0873	hypo	0	GAAACGTATGCAAGCAGCTGAAAAT	1
		-			GCTTTATAAGTATAGCAAAATTAAGAT	
1065938	+			0	GTTTATTTACTTAATTGGCAGGAT	0
					CTTTATGACAAAGCCGTGAGCATATAA	
1066582	-			1	CTAAATTATATGCTCTTGGCTGTT	0
					ACTACAAAGGTGAGAATTATTTTGAT	
1066689	-			1	TTAGCATAGCAAACGGTTAAAAAA	1
					CTGATCGTGGAAATCGATCTGGAGAA	
1071124	+	nf638r_0881	hypo	0	TCTGGAAAAATAAAAGAGAGATAAC	0
					GGCGTAAAAGTAATAAAAAACCGAAA	
1074268	-	bf638r_0884	hypo	0	GATTGCAAATAAGATGGCTGGGTT	1
					ACGCAAATAACGGACTTTTTTTTATAT	
1077613	-	bf638r_0887	lpxD	0	ATCCTTACTCTTTGATGAATATT	0
					TTACAAATTTACGATTTACAATTGAAG	
1079735	-	bf638r_0889	pyrF	0	TAACCGTCCGTTACAATTCACTCT	1
					AACGGCAAAAGTACAGCTTTTTTCCT	
1082137	-	bf638r_0891	purM	0	TATAGCCAACAAATTGGAGGATAT	1
					GACTGCCGTCTTTTTGGTTGGTTGCGG	
1084954	-			1	AGCTGCAATGTAATAAGCATGTAG	0
					AAGTTTGGACAACTCCGAACATTTGGG	
2999613	+	bf638r2545	sodB	0	CCCTATATCCTGTTATATATTCAG	0
			thiamine		ATCCCCGATTTACTTTCTTCTTATTTTCT	
3000465	+	bf638r2546	biosynthesis	0	TTTTCACTTACTTTGCCTCCGT	1
			thiamine		TTCACTATAAAGGTTGGTTTCTGAGTA	
3006587	+	bf638r2553	biosynthesis	0	AGTTAATTAGTAACTTTGCTAAAC	1
					GGGCGCAAAAGTATATCATATTCATTA	
3007877	-	bf638r2554	hypo	0	ATTAAACAACTATTTCGATCATT	1
					AAGATAAAGGAAATATTTTATTTGAA	
3008625	-	bf638r2555	hypo	0	TTATACAAATATTTACTCTACATT	1
					ACTACAAAAGTAGCATTAAGTTTTTAA	
3008936	-			1	TAAAATTGTTTTGGAGAAAAAGTT	1

					TTCGCAAATCTAAGGATATTTCGCAAA	
3020332	-	hf638r 2565	nndk	0	ССАБААААСТТТТАТАТБАААА	1
3020332		510301_2303	tRNΔ	Ŭ	ΤΑΤΤΤΟΑΟΤΤΟΑΤΑΓΑΘΑΘΑΑΤΑCG	-
3020472	<u>т</u>	hf628r 2566	Methytransferase	0		1
3020472	т	010381_2300	hung with Signal	0		1
2022001		hfc20+ 2500	nypo with Signal	0		1
3023961	-	010381_2509	peptide	0		1
			Methionine	-		
3024742	+	bf638r_2570	aminopeptidase	0	TTTATTCCCTACATTTGTACTA	1
					GCGCAAATATACACAAATGCCAGAAC	
					ATAAAAAAATGCGCTGATAACATATCA	
3032314	-	bf638r_2575	EF-Tu	0	ТА	1
					ACTGCAAATATAGTTATAATTATGTTA	
3032671	-	bf638r_2576	Unkown fuction	0	TATAACAGATTATTAGTAACTT	1
			Redox active		TTGCAAAATTATTAAAAAAGTATCTTT	
3033241	-	bf638r_2577	protein	0	GTCGGCAACTAATCAATGATTTT	1
					TTTATATTTTTTTTTTTTTTTTTTGCAAAATTA	
3033272	+	bf638r 2578	Unkown fuction	0	TTAAAAAAGTATCTTTGTCGG	1
			natrual resistance			
			associated			
			macrophage		AATAACAAGCGAGAACCTTGTTCGGTT	
3035792	_	hf638r 2580	nrotein	0		0
5055752		510301_2300	protein	Ŭ	CAAGCGAGAACCTTGTTCGGTTCACTT	0
2025944		hf620r 2501	Unkown fuction	0		1
5055644	т Т	010301_2301	onkown ruction	0		1
2020096		hfc20r 2504	prieriyalariyi tKNA	0		1
5059960	-	010301_2364	synthetase subunit	0	GATGGGGAATGAATGGTTATAAAAAA	1
					AGCACAAAGGTATAAACTAAATTTGA	
305/1//	-	bf638r_2600	NusG	0	IGIGCAAAAIAIIIIIAGAIGAAAAA	1
					AGCACAAAGGTATAAACTAAATTTTGA	
3057338	+			1	TGTGCAAAATATTTTTAGATGAAAAA	1/2
					AGGCAAAGATAATTCTCTATTATCAAT	
3062979	-	bf638r_2603	DnaB	0	TTTCCATTATCAAATCTGAATTATT	1
			4-diphosphocytidyl-			
			2-C-methyl-D-		ATCAATTTTCCATTATCAAATCTGAATT	
3063049	+	bf638r_2604	erythritol kinase	0	ATTTATTTAACTTTGCGTCCA	1
					TTGCAAATGTAACAAAATTAATTTAGA	
3067983	-	bf638r_2607	galE	0	TAAATGCACAAAAAACGAATATT	1
					GGGCAAATTTACATTAAATAGTTTAGA	
3075909	-	bf638r_2616	Unkown fuction	0	TTACATAAAATTTGCTCGATTTTA	1
		-			TTTGTTTTGTAGAAAGCATCCGTTCTTC	
3076222	+	bf638r 2618	CTP synthetase	0	CCCATTTTTTGTAATTTTGCGGT	1
				-	AACTGGCAGAAAAAGCAGATTTGACC	
3081229	+	hf638r 2621	Pentidase	0	TGATTTTTGCTTATCTTCGCAGCA	1
3001223		510301_2021	Transcriptional	Ŭ	GCAGCAAATATAGGCATTGCTATGGT	-
3086078		br638r 2624	regulator	0		1
3080078	-	010301_2024	regulator	0		1
2006107		h.coo. 2025		0		4
3086197	+	Dr638r_2625	acyl transferase	0		1
				-	GCAAATATATACIIIITACIGAAATTA	
3088526	-	bf638r_2626	transmembrane	0	AACAGTATATAATACACAAA	1
3092131					GCTGCAAAATTAATGTTTCCGCCCGAA	
	-	bf638r_2628	uvrA1	0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA	1
	-	bf638r_2628	uvrA1	0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA TTAACTCAATATATTATGTGAATGTAT	1
3092240	- +	bf638r_2628 bf638r_2629	uvrA1 Unkown fuction	0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA TTAACTCAATATATTATGTGAATGTAT GACATTATTCGTACCTTTGCCGTAA	1
3092240	- +	bf638r_2628 bf638r_2629	uvrA1 Unkown fuction	0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA TTAACTCAATATATTATGTGAATGTAT GACATTATTCGTACCTTTGCCGTAA GCGCAAAGTTAAAGATTCGCGCTGAA	1
3092240 3096575	- +	bf638r_2628 bf638r_2629 bf638r_2633	uvrA1 Unkown fuction YfiO	0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA TTAACTCAATATATTATGTGAATGTAT GACATTATTCGTACCTTTGCCGTAA GCGCAAAGTTAAAGATTCGCGCTGAA TAAACCAATTAATCAATGTTTTTTAAG	1
3092240 3096575	- + -	bf638r_2628 bf638r_2629 bf638r_2633	uvrA1 Unkown fuction YfiO	0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA TTAACTCAATATATTATGTGAATGTAT GACATTATTCGTACCTTTGCCGTAA GCGCAAAGTTAAAGATTCGCGCTGAA TAAACCAATTAATCAATGTTTTTTAAG TGTGCAAAGTAAAGGATTTATTTTAAA	1
3092240 3096575 3098526	- + -	bf638r_2628 bf638r_2629 bf638r_2633 bf638r_2635	uvrA1 Unkown fuction YfiO paak1	0 0 0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA TTAACTCAATATATTATGTGAATGTAT GACATTATTCGTACCTTTGCCGTAA GCGCAAAGTTAAAGATTCGCGCTGAA TAAACCAATTAATCAATGTTTTTTAAG TGTGCAAAGTAAAGGATTTATTTTAAA ATTTGATTTG	1 1 1 1
3092240 3096575 3098526	- + -	bf638r_2628 bf638r_2629 bf638r_2633 bf638r_2635	uvrA1 Unkown fuction YfiO paak1	0 0 0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA TTAACTCAATATATTATGTGAATGTAT GACATTATTCGTACCTTTGCCGTAA GCGCAAAGTTAAAGATTCGCGCTGAA TAAACCAATTAATCAATGTTTTTTAAG TGTGCAAAGTAAAGGATTTATTTTAAA ATTTGATTTG	1 1 1 1
3092240 3096575 3098526 3100804	- + -	bf638r_2628 bf638r_2629 bf638r_2633 bf638r_2635 bf638r_2635	uvrA1 Unkown fuction YfiO paak1 Unkown fuction	0 0 0 0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA TTAACTCAATATATTATGTGAATGTAT GACATTATTCGTACCTTTGCCGTAA GCGCAAAGTTAAAGATTCGCGCTGAA TAAACCAATTAATCAATGTTTTTTAAG TGTGCAAAGTAAAGGATTTATTTTAAA ATTTGATTTG	1 1 1 1 1
3092240 3096575 3098526 3100804	- + - +	bf638r_2628 bf638r_2629 bf638r_2633 bf638r_2635 bf638r_2635	uvrA1 Unkown fuction YfiO paak1 Unkown fuction	0 0 0 0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA TTAACTCAATATATTATGTGAATGTAT GACATTATTCGTACCTTTGCCGTAA GCGCAAAGTTAAAGATTCGCGCTGAA TAAACCAATTAATCAATGTTTTTTAAG TGTGCAAAGTAAAGGATTTATTTTAAA ATTTGATTTG	1 1 1 1 1
3092240 3096575 3098526 3100804 3103067	- + - + +	bf638r_2628 bf638r_2629 bf638r_2633 bf638r_2635 bf638r_2637 bf638r_2640	uvrA1 Unkown fuction YfiO paak1 Unkown fuction Chaperone	0 0 0 0 0	GCTGCAAAATTAATGTTTCCGCCCGAA ATATAGTTTTAAAAAAACACAATA TTAACTCAATATATTATGTGAATGTAT GACATTATTCGTACCTTTGCCGTAA GCGCAAAGTTAAAGATTCGCGCTGAA TAAACCAATTAATCAATGTTTTTTAAG TGTGCAAAGTAAAGGATTTATTTTAAA ATTTGATTTG	1 1 1 1 1 0

311.0151 brf33r_2647 with signal peptide 0 CTCRCGATTGTTACGGTAA 1 311.0151 brf33r_2647 with signal peptide 0 TTATATGGGGCTGTTAACGGTAAA 1 311.0128 brf33r_2652 with signal peptide 0 TATATGGGGCTGTTATACGGTAA 1 311.0128 brf33r_2652 glutamine 0 CATAMAGATAGGCTATATGGGT 1 312.3177 brf33r_2652 glutamine 0 CATAMAGATAGGTTTCGATA 1 attast phospholises C- link phospholises C- link phospholises C- link 1 1 312.8576 + bf638r_2655 Unkown fuction 0 ATTAATATCAGAGTATTGGATT 1 312.841 bf638r_2655 Unkown fuction 1 GTAGGGTATTTAGTGGAATT 1 312.841 bf638r_2650 Unkown fuction 0 ATTACCAGGTATTGGAATT 1 312.842 bf638r_2670 Unkown fuction 0 AGGGATTGTGAAGATTTTGGAGT 1 312.8420 bf638r_2672 Unkown fuction 0 AGGGATTGTGAAGATTTTGGAGGAT 1						CTAACGTACATTTACAGAGAAAT	
3114151 - bf638r_2647 with signal peptide 0 CTCCC6ATTGTTTGTACGATAAA 1 3114438 + bf638r_2652 Unkown fuction 0 TATTTAGGGCCTGTTAAAATCGTA 1 3123377 - bf638r_2652 amidotranGrase 0 CATAAGATAAGCTTTCCTATATGA 1 3123377 - bf638r_2654 apperfic phospholiseterses 0 CATAAGATAAGCTTTCCTATA 1 3125376 + bf638r_2655 Linkown fuction 0 ATAGCAAGGCTTTAGTGGCGTAATTGCG 1 3126766 + bf638r_2655 Linkown fuction 1 GTAGGATTTAGTGCAAT 1 312841 bf638r_2655 Linkown fuction 1 GTAGGATTTAGTGCAAT 1 3128811 bf638r_2670 dapf 0 ACTAGGGATTTAGTGCAAT 1 3139492 bf638r_2670 dapf 0 AGAGATTTGTATATTGGTGAATT 1 3140799 + bf638r_2672 hopbo or SRNA CATCAGCGGATTTATGGATTATAGTATA 1 3143704 - bf638r_2672						ACTAACAAATATACGAATAGTTCGTAA	
3114438 + bf38r_2654 Unkown fuction 0 TTATRICEGEGCTCTTATAATCGAT 1 312377 - bf38r_2652 amidotransferzace 0 CATAAAGATAAGCTTTCCGAT 1 312377 - bf38r_2652 amidotransferzace 0 CATAAAGATAAAGCTTTCCTATA 1 3123819 + bf638r_2655 uhcom fuction 0 TTAGCTTCTCCAATATTCCAA 1 3126766 + bf638r_2655 Unkown fuction 0 ATTAATCTCAGATTTCCAATATTCCAA 1 3128434 - bf638r_2655 Unkown fuction 1 GATAGGCAACATTTCGCAATTTCCAATATTCCAAT 1 3128434 - bf638r_2650 Unkown fuction 1 GATAGGCAACATTTCGCAATTTCCCAAT 1 3128434 - bf638r_2650 Unkown fuction 0 AGAGCATTCTTTATAGCAGGCAAATTTCCTCAATTTCCGGGGTAAT 1 3140799 + bf638r_2670 dopf 0 TTAGCATCCTTATACGCGGGTAAAT 1 3143786 + bf638r_2672 dopf 0 TCAAAGAAGACATTCTATATCTT 1/2 <td>3114151</td> <td>-</td> <td>bf638r_2647</td> <td>with signal peptide</td> <td>0</td> <td>CTCCGGATTGTTTGTACGGATAAA</td> <td>1</td>	3114151	-	bf638r_2647	with signal peptide	0	CTCCGGATTGTTTGTACGGATAAA	1
3114438 + bf638r_2648 Unkown fuction 0 TATTTACTAAGTTTACCTA 1 3123377 . bf638r_2652 amidotransferase 0 CATAAAGATAACAATCATATGA 1 3123377 . bf638r_2652 amidotransferase 0 CATAAAGATAACAATGATGA 1 3125819 . bf638r_2654 superfamily 0 TTACTTACTAAGGTTCCAATGCG 1 3125819 . bf638r_2655 Unkown fuction 0 ATTAATTATCTGAAGATTACCAATTACCG 1 3126766 . bf638r_2655 Unkown fuction 1 CATACGGGATTTACCGAAGATA 1 3128431 . bf638r_2656 Transposase 0 ATTACTATACTGAAGATA 1 3128431 . bf638r_2659 Unkown fuction 0 AAGACATGCTTTTTACATAACAATA 1 3128431 . bf638r_2670 dapf 0 TTACAAAGAAGAACAATTCTTTACGGGTATTC 1 3140799 . bf638r_2672 unkown fuction 0 AGACATTACTTTACAAGAGTACCAAATTCAAACAATACAATACAATACAAAA 1			_			TTATATCGGGCCTGCTTATAAATCGTA	
3123377 bf638r_2652 glutamine GCGTGCAAAGATACACATTCTATAGA 1 3123377 bf638r_2652 phosphoinositide-specific 0 CATAAAGATAACACATTCTATAGA 1 3123377 bf638r_2654 specific phosphoinositide-specific 1 3125819 bf638r_2655 unkown fuction 0 TTACTTTTATCGGCTAATTCGA 1 3126766 bf638r_2655 Unkown fuction 0 ATTAATTATCACATTACCGGCTAAT 1 3128781 bf638r_2655 Unkown fuction 0 ATTACTTTTACGTAGATTACTCGTAGATTA 1 3128811 bf638r_2656 Transposse 0 ATTCCAAAGACATACGTTTATATCGTAGATTA 1 3129492 bf638r_2670 dapF 0 CAACCGGTAATTATCTGAAAT 1 3140799 bf638r_2672 dapF 0 TCAAAACAAATATCTTTATACTCCGG 1 3143704 bf638r_2673 bufnom GATCATAGACAATATCTTTATACATCT 1/2 3143786 bf638r_2675 bufnom GATACAAAAACACATATATCTATACATCAT 1 3143786 bf638r_2675 bufnom	3114438	+	bf638r_2648	Unkown fuction	0	TATTTTACCTAAGTTTGCCGT	1
3123377 bf638r_2652 amidotransferase 0 CATAAAGATAAGCTTTCCTATA 1 3125819 bf638r_2654 specific phospholipase C- like TTAGCATCCTTATCGGGCTAAATTGCG 1 3125819 bf638r_2654 superfamily 0 TTAGCATCCTTATCGGGCTAAATTGCG 1 3126766 bf638r_2655 Unkown fuction 0 ATTAATTATCTACTTGCAAT 1 312841 bf638r_2656 Traspose 0 ATTACTATCTACCTGCAAT 1 312841 bf638r_2650 Unkown fuction 0 ATTACTATCTACTTGTAAA 1 312841 bf638r_2650 Unkown fuction 0 AGACATGCTTTTACTAGGGGTATTCC 1 3128414 bf638r_2670 dapF 0 TCAAAAGACAATACTTTATCTTAACTTGTAAA 1 3140709 bf638r_2672 Unkown fuction 0 GTTCAAAGACAATATCTTTGTGCAGG 1 3143706 bf638r_2672 Unkown fuction 0 GTTCAAAGACAAGATATCTTTGTGCAGG 1 3143764 bf638r_2678 thofbyporshke CAAAGCAGCATATTGTATACATGTGTAAA 1 3143764				glutamine		GCGTGCAAAGATACACAATCTATATGA	
phosphonostide- specific phospholepse C- like phospholipse C- like 3125819 bf638r.2654 superfamily 0 TTACETTATCGGCTAATTTCGA 3126766 + bf638r.2655 Unkown fuction 0 ATTAATTATCACATTACGGCTAAT 1 312841 - bf638r.2655 Unkown fuction 1 GTATGGTAAGATTTATCTGGTAGATTA 1 312841 - bf638r.2656 Transposse 0 ATTATCTATAACTTGTACATT 1 312841 - bf638r.2656 Transposse 0 ATTATCTATAACTTGTAATAAT 1 312492 - bf638r.2670 dapF 0 CATACGGGAAGACATCTTTTGTAGAGT 1 3140799 - bf638r.2672 dapF 0 TCAAAAGACAAGATGTTTTGTAATACT 1/2 3143704 - bf638r.2673 kinnise 0 CAACGTTGTATACCAATCTTGTGGGG 1 3143764 - bf638r.2673 kinnise 0 CAACGTGTATATCTGTAACACTGG 1 3143846 - bf638r.2678 trpB 0 CAACGCTATCTTTGCAAAAA	3123377	-	bf638r_2652	amidotransferase	0	CATAAAGATAAGCTTTCCTATA	1
specific specific specific 3125819 + bf638r_2654 superfamily 0 TTAGCATCCTTATCCGGCTAAATGCG 1 3126766 + bf638r_2655 Unkown fuction 0 ATTAATTATCTTGAAGTTCAA 1 3126766 + bf638r_2655 Unkown fuction 0 ATTAATTATCTGAATTACGGTCAT 1 3128414 - bf638r_2656 Transposase 0 ATTAATTACTTGAATAT 1 3128412 - bf638r_2656 Transposase 0 ATTATATTACTTGAATAT 1 3128412 - bf638r_2670 Unkown fuction 0 AGACATCTTTTTATAATACATTAGT 1 31240799 - bf638r_2672 Unkown fuction 0 GTTCATAGCAGATTATATTGTATACT 1/2 3143704 - bf638r_2673 kunae 0 CAAGCGTATTTCCAATATCTT 1/2 3143704 - bf638r_2675 blwon fuction 0 GTTCATACACACATATAATACTCAT 1/2 3143764 - bf638r_2675 kuhaniae 0 <				phosphoinositide-			
phospholipase C- like phospholisterases TTAGCATCCTTATCCGGCTAAATTGCG 3125819 + bf638r_2655 Unkown fuction 0 TTAGCATCCTTATCGGGCGAATTGCGATTTCGAATTGCGA 3126766 + bf638r_2655 Unkown fuction 0 ATTGCAACAGATTGCCAATTGCGATTATCGGGTCAT 3128434 - bf638r_2655 Unkown fuction 1 GTATGGTAGATTTATGTAGATTAT 1 3128413 + bf638r_2656 Transposse 0 ATTGCGAGAGTTATCCGGGTCATTC 1 312842 + bf638r_2659 Unkown fuction 0 AGAGATTGTATATATTGTAAA 1 3140799 + bf638r_2627 dapF 0 TCAAAAGAGATGTATTGTATAAT 1 3143704 - bf638r_2670 dapF 0 AAAAGAGACAATGTAATTGTATAAT 1 3143704 - bf638r_2673 Unkown fuction 0 GTACAAAAAGATTGTAATATCT 1/2 3143764 bf638r_2673 Butanol GATACAAAAAGATTGCAACATG 1 1/2 3143174 bf638r_2673 butanol GATACAAAAAGAATTGCAACTTCCAAA				specific			
like TTAGCATCCTTATCCGGCTAAATTGCG 3125819 + bf638r_2654 superfamily 0 TTAGCATCCTTATCCGGCTAAATTGCG 3126766 + bf638r_2655 Unkown fuction 0 ATTAGTATTATGCAGTCTTCCAATTTTCAA 3128434 - bf638r_2655 Unkown fuction 1 ATTAGGAAGATTAGATTTTGCAATT 1 3128431 + bf638r_2656 Transposase 0 ATTAGCGAACTTTGATATTTGTGAAATT 1 3128431 + bf638r_2670 dapf 0 AGGCATTCTTCTATATTTGTGAGG 1 3140799 + bf638r_2670 dapf 0 TCAAAAGCAAAGCAATGATTTTCTATATAT 1/2 3140799 + bf638r_2672 Unkown fuction 0 GTTCATGCAGAACAATGATTTTTCTATATA 3143704 - bf638r_2673 kninase 0 CAAAGCAAACAATGATATATA 1 3143764 bf638r_2675 blopphosphate CAAAGCAAATGAATTATAACTCTTTCCAATA 1 3148164 - bf638r_2675 blopphor or SRNA or ATTGTGAAAACAATGAAATATAACCGATAT 1 31				phospholipase C-			
phosphodiesterases TTACATCCTTATCCGGTANATTGCG 3125819 bf638r_2654 superfamily 0 TTACTTTTATATCTTGATGGGC 1 3126766 bf638r_2655 Unkown fuction 0 ATTAGTTTATCTAACTTTGAA 1 3128434 bf638r_2655 Unkown fuction 1 GTATGGTAGATTTATGACATTTGGAATT 1 3128434 bf638r_2656 Transposase 0 ATTATCGTAGATTTATGAGATTATC 1 312841 bf638r_2669 Unkown fuction 0 AGAGATTGTGAAATATC 1 313942 bf638r_2670 dapf 0 TCAAAAGACAATGAATTGTAAA 1 3140799 bf638r_2670 dapf 0 TCAAAAGACAATGAATGAATTATA 1 3143704 bf638r_2673 kiniase 0 CAAAGACAATGAATGAATATA 1 3143786 bf638r_2673 kiniase 0 CAAAGAATGAAAAGATTGAATTCAAA 1 3148164 bf638r_2678 trype 0 CAAAGAAAGAATGAAATGAATTGAAAAGAATTGCAAAA 1 3149137 bf638r_2678 trype 0 CAAACAAAAAGAGATTGAATTCCAAA				like			
3125219 + bf638r_2654 superfamily 0 TTACHTTTTATATCTTGAAGGC 1 3126766 + bf638r_2655 Unkown fuction 0 ATTAATTATCAACATTCGAAGCTTTTACGGTCAAT 1 3128474 - bf638r_2655 Unkown fuction 1 GTATGGAAGATTTATGGTGAAGTT 1 3128474 - bf638r_2655 Unkown fuction 1 GTATGGAAGATTTTATGGTGAAGTT 1 3128474 - bf638r_2650 Unkown fuction 0 ATTAGTGAAGCTATTTGTAGATTTTCA 1 312892 + bf638r_2670 dapF 0 TCAAAAGAGACATATGTTGTAAAAGT 1 3140799 + bf638r_2670 dapF 0 TCAAAAGAGACATATGTTGTAATAGT 1/2 3143704 - bf638r_2673 kninase 0 CAAGGTATGTTATATCTATTTGATATAT 1/2 3143704 - bf638r_2675 dehydrogenase 0 AAAGAAAATATGCGTCTATTTCAAA 1 3148164 - bf638r_2675 dehydrogenase 0 AAAGAAAACTTTATATGGTCGAAGAT 1				phosphodiesterases		TTAGCATCCTTATCCGGCTAAATTGCG	
3126766 + bf638r_2655 Unkown fuction 0 ATTAATCACATATTCCAATTTCCAAT 1 3128434 - bf638r_2655 Unkown fuction 1 GTATGGTAGATTTTATTGTAGAATA 1 3128414 - bf638r_2655 Unkown fuction 1 GTATGGTAGATTTATTCGTAGATTT 1 3128414 - bf638r_2656 Trensposase 0 ATTATCTATTAACT 1 3128414 - bf638r_2650 Unkown fuction 0 AGACATTCGTATATTTGTAGA 1 3129492 + bf638r_2670 dapF 0 TCAAAAAGAACTATATTTGTACATATA 1 3140709 + bf638r_2672 Unkown fuction 0 GTTATAGCAATTCTATATACATATATA 1/2 3143704 - bf638r_2673 kiniase 0 CAAGCGTACTTTGCAAAAAAA 1 3143764 + bf638r_2673 kiniase 0 CAAGAAAAAAGATTCATATACCTCATG 1/2 3148164 - bf638r_2678 tryps 0 AAAGAAAAAAGATTCATATAGCAACAAAAAGATTTCATACAGA 1 <td< td=""><td>3125819</td><td>+</td><td>bf638r_2654</td><td>superfamily</td><td>0</td><td>TTACTTTTTATATCTTTGAAGGC</td><td>1</td></td<>	3125819	+	bf638r_2654	superfamily	0	TTACTTTTTATATCTTTGAAGGC	1
3126766 + bf638r_2655 Unkown fuction 0 ATTATTATCAGAAGATATTACGGACTAT 1 3128434 - bf638r_2655 Unkown fuction 1 GTATGGTAGATTTAGTGACATA 1 3128434 - bf638r_2655 Unkown fuction 1 ACTACGGGATTTATCGTGATTTITT 1 312841 + bf638r_2650 Unkown fuction 0 ACTATCTATTATTATGTACTTIGTACA 1 3128492 + bf638r_2670 dapF 0 TCAAAAAGACATTGTATTTGTACA 1 3140799 + bf638r_2672 Unkown fuction 0 GTCATAGCAAGATTGTATTGTACA 1 3143704 - bf638r_2672 Unkown fuction 0 CTAAGAAGACATTATTTTGAAGAAA 1 3143764 bf638r_2673 kinase 0 CAAGCTTATTATCGAAAAAA 1 3148164 - bf638r_2673 kinase 0 CAAGCGTATTATATGCAAAAAA 1 3148164 - bf638r_2678 trpB 0 CAAAGTATTATATGCAAAAAA 1 3148164 - <						TCAAAACCAAGTCTTCCAATATTTCAA	
ATTCCAAAGATAGACTTTTCTGCAAT 312843 - bf638r_2655 Unkown fuction 1 GTATGGTAGATTTAGTGAGAATA 1 3128431 + bf638r_2656 Transposase 0 ATTTATCTATACTTGTGAAAT 1 3128431 + bf638r_2656 Transposase 0 ATTTATCTATACTTGTGAAAT 1 312842 + bf638r_2670 dapF 0 AAGACATCCTTTTTGTAAAAACAAAAG 3140799 + bf638r_2672 Unkown fuction 0 GTCATAGCAAGATATATCTTTGTGCGG 1 3143704 - bf638r_2672 Unkown fuction 0 GTCATAGCAAGATATATCTTTTGTGAAAA 1 3143704 - bf638r_2672 Unkown fuction 0 GTCATAGCAAGATATATTCTTTGCAAAAAAA 1 3143704 - bf638r_2675 dehydrogenase 0 AAGCAAATTCATATATCATCATG 1/2 3143164 - bf638r_2678 trpB CATACAAAATTAAATAAAAAA 1 3148164 - bf638r_2678 trpB CATACAAAATTAATATACAAAAA 0 3149137<	3126766	+	bf638r_2655	Unkown fuction	0	ATTAATTATCTACATTTACGGTCAT	1
3128434 - bf638r_2655 Unkown fuction 1 GTATGGTAGATTTATCTAGAATA 1 3128811 + bf638r_2656 Transposase 0 ATTTATCGTATTTACTTTGTAGATT 1 3128811 + bf638r_2656 Transposase 0 ATTTATCGTATACTTTGTAGGTATTTTC 1 313492 + bf638r_2670 dapF 0 TCAAAAAGACATACTTTTGTGCGG 1 3140799 + bf638r_2670 dapF 0 TCAAAAAGACATACTTTTGTGACGG 1 3143704 - bf638r_2670 dapF 0 TCAAAAAGACATTGTATTACATCATT 1/2 3143704 - bf638r_2673 kinase 0 CAAGCATGTATTACTATACATCATG 3143164 - bf638r_2675 dehydrogenase 0 AAACAAAAAGATTCCATTACAAAA 1 3148164 - bf638r_2678 trpB 0 CAAAGATACAAAATAATCAAAAA 1 3143137 + bf638r_2695 trpB 0 CAAAGATACTACATATAATAACAAAA 1 3163550 + br638r_278 <td></td> <td></td> <td></td> <td></td> <td></td> <td>AATGCAAAGATAGACTTTTTCTGCAAT</td> <td></td>						AATGCAAAGATAGACTTTTTCTGCAAT	
Prophage ACTACGGGATTATCTCGTAGTTTTTT 3128811 + bf638r_2656 Transposse 0 ATTTATCTATACTTTAGAA 1 3139422 + bf638r_2669 Unkown fuction 0 AGAGATTCTTTGTAAA 1 3140799 + bf638r_2670 dapF 0 TCAAAAGACATACTTTGTACC 1 3143704 - bf638r_2672 Unkown fuction 0 GTCATAGCAATATCTTATACTATG 1/2 3143704 - bf638r_2672 Unkown fuction 0 GTCATAGCAAATATCTATACTATG 1/2 3143704 - bf638r_2675 kninase 0 CAAGCGATATATATCTATACCTAG 1/2 3143164 - bf638r_2675 dehydrogenase 0 AAAACAAAAAGATTCAAAAA 1 3148164 - bf638r_2678 trpB 0 CAAAGCAAATATAATATAAATACAAAA 0 3149137 + bf638r_2678 trpB 0 CAAAGAAACAATATAATAAATAAAAAA 1 3163550 + hypo or sRNA 1 CCCTAAAAAGGATACATATATATATACTACAGA 1 3165554 + bf638r_2695 Unkown fuction 0 GAAACAATACACAATATATATATCCGCGG	3128434	-	bf638r_2655	Unkown fuction	1	GTATGGTAGATTTTATGTAGAATA	1
312811 + bf638r_2656 Transposase 0 ATTTATCTTATACTTTGTAAA 1 3139492 + bf638r_2669 Unkown fuction 0 AGAGATTCTATATATTTGTACC 1 314079 + bf638r_2670 dapf 0 TCAAAAAGACAAAGCATATCTTGTGCGG 1 314079 + bf638r_2670 dapf 0 TCAAAAAGACAAATGAATTTGTAATAC 1 3143704 - bf638r_2673 Unkown fuction 0 GTTCATAGCAAAGTGTAATATCT 1/2 3143786 + bf638r_2673 kninase 0 CAAGCGTATATGCAAAGAATTAATCGATCATGG 3148164 - bf638r_2675 kninase 0 AAACAAAAAGAAGTGCCAAGGTA 1 3148164 - bf638r_2678 trpB 0 CAAAGCAAAACAATAAATAAAAAA 0 3148164 - bf638r_2678 trpB 0 CAAGGATGTAAAGATTCAAAAAAAAAAAAAAAAAAAAAA				Prophage		ACTACGGGATTTATCTCGTAGTTTTTT	
3139492 bf638r_2669 Unkown fuction 0 AGAGATTICGATATTIGGAC 1 3140799 + bf638r_2670 dapF 0 TCAAAAAGACATATTIGTAC 1 3143704 - bf638r_2672 Unkown fuction 0 GTCATAGCAGACATATICTTATAAA 1 3143704 - bf638r_2673 kninase 0 GTCATAGCAGACATTIGTATATACT 1/2 3143786 + bf638r_2673 kninase 0 CAAGCGTACTTGTAAAAAA 1 3148164 - bf638r_2675 dehydrogenase 0 AAAACAAAAATATCGCTICCCAGG 1 3148164 - bf638r_2675 dehydrogenase 0 AAAACAAAAAGAGTTTCTATATACGAAA 1 3148164 - bf638r_2678 trpB 0 CAAGAGAACAATATACGCAACAAA 0 3149137 + br638r_2678 trpB 0 CAAGAAAAATAATCGCAAGGT 1 316550 + hypo or sRNA 1 CCGAAACGATCTATAATTGCAGGT 1 31655387 bf638r_2695 Unkown fuction 0	3128811	+	bf638r_2656	Transposase	0	ATTTATCTATTAACTTTGTAAA	1
3139492 + bf638r_2669 Unkown fuction 0 AGAGATTICATATATTICTAC 1 3140799 + bf638r_2670 dapF 0 TCAAAAAGACAATACTITTGTACAAAAG 3140799 + bf638r_2670 dapF 0 TCAAAAAGACAATGATTITTGTAATACT 1/2 3143704 - bf638r_2672 Unkown fuction 0 GTCATAGCAAGATATGTATATCT 1/2 3143704 - bf638r_2672 Unkown fuction 0 GATACAAAAGATTGTATAATCATTCAT 1/2 3143766 + bf638r_2675 dehydrogenase 0 AAAACAAAAGATTTGTATAATACAAAA 1 3148164 - bf638r_2678 trpb or sRNA or ATCTGAGAAAATATATATATACACAAA 0 3149137 + br638r_2678 trpB 0 CGAAAGATATTAATATACACAAA 1 3165350 + hypo or sRNA 1 CCGTAAAAAGAACAATCATTATATATACAAA 1 3165387 - bf638r_2695 Unkown fuction 0 GGTATCAAAAACAACAATATTTTAT 1 3165554 bf638r_2705 hy						CATTCCTCCCGTTTTTCGAGGTTATTCC	
3140799 + bf638r_2670 dapF 0 TCAAAAAGACATTCTTTTGTCGGG 1 3143704 - bf638r_2672 Unkown fuction 0 GTTCATAGCAAGATGTATTTTGTAATAA 1/2 3143704 - bf638r_2673 kninase 0 GTTCATAGCAAGATGTATATCTATTACATCATG 1/2 3143786 + bf638r_2673 kninase 0 CAAGATGTAATATCTATTATCATCATG 1/2 3148164 - bf638r_2673 dehydrogenase 0 AAAACAAAAAGATTGCAAGATGTATATAACAAAA 1 3148164 - bf638r_2678 trp8 0 CAAGAGTATTATATATGCAAAA 1 3148169 - else 1 TGTTAAAAGAGATTATATATGCAAA 1 3149137 + br638r_2678 trp8 0 CAAGAGTATCTATATTGCAAAA 1 3163550 + hypo or sRNA 1 CCGAAACAGATTATATTGCAGAT 1 3165587 bf638r_2695 Unkown fuction 0 GGTATACAATCACTATAATTGCGGATCCCGTAT 1 3172202 bf638r_2702 peptide 0	3139492	+	bf638r_2669	Unkown fuction	0	AGAGATTTCTATATATTTGTAC	1
3140799 + bf638r_2670 dapF 0 TCAAAAGACATATCTTTGTGCGG 1 3143704 - bf638r_2672 Unkown fuction 0 GTTCATAGCAAGATTGTAATAAT 1/2 3143704 - bf638r_2673 Unkown fuction 0 GTTCATAGCAAGATTGTAATATCT 1/2 3143766 + bf638r_2673 kninase 0 CAAGCATGTAATATCGTATTGCAAGAAA 1 3148164 - bf638r_2675 dehydrogenase 0 AAACAAAAGACATATTAATAACACAAGA 1 3148164 - bf638r_2678 trpB 0 CACAGATTGTAATATCAAAAA 0 3149137 + bf638r_2678 trpB 0 CAAAGTATCTATATTTGCCAGA 1 3149137 + bf638r_2678 trpB 0 CAAAGTATCTATATTTGCCAGAT 1 3163550 + hypo or sRNA 1 CCCGAAACGCAATATTAATTGCAGGAT 1 3165554 bf638r_2695 Unkown fuction 0 GGATCACAATCAGTATATAATCAGGAT 1 3171242 bf638r_2702 peptide						AAGACATGCTTTTTATAAAAACAAAAG	
AAAAAGAACAATGAATTTGTAATAA 3143704 bf638r_2672 Unkown fuction 0 GTTATAGCAAGATGTAATTTGT 1/2 3143704 bf638r_2673 kninase 0 CAAGATTGTAATATCT 1/2 3143766 bf638r_2675 dehydrogenase 0 CAAGCGCATCTTTGCAAAAAA 1 3148164 bf638r_2675 dehydrogenase 0 AAAAAAAAGATTACGTCTCTTCCAG 3148469 - else 1 TGTTTAAAAGAGTTCGTATTAAATAACAAAA 0 3149137 + br638r_2678 trpB 0 CAAAGAACAATATAATAACGATTTTCAA 0 3149137 + br638r_2678 trpB 0 CCATAAAGGGGGATGTGGCACG 0 3163550 + hypo or sRNA 1 CCGAAACCACACATTTTTTTCAA 1 3165357 bf638r_2693 Unkown fuction 0 GGTATACAATCACTATAAATAGGT 1 3165354 bf638r_2695 Unkown fuction 0 CAAAGGTAAAATCACACAATTTTTCGCC 1 317269 bf638r_2703 synthase 0 AAATCACAGATTAATAATACGGTCAA 1	3140799	+	bf638r_2670	dapF	0	TCAAAAAGACATATCTTTGTGCGG	1
3143704 - bf638r_2672 Unkown fuction 0 GTTCATAGCAAGATTGTAATATCT 1/2 3143786 + bf638r_2673 kninase 0 CAAGATTGTAATATCTATTACCTATG 1/2 3143786 + bf638r_2673 kninase 0 CAAGCGTACTTTTGCAAAAAA 1 3148164 - bf638r_2673 dehydrogenase 0 AAACAAAAAGATTGCAAGAAGA 1 3148164 - bf638r_2678 trpb ATCTGGAAAACAATATAAATACCCTTCTACAA 0 3149137 + bf638r_2678 trpB 0 CAAAGTTTGTATTATTGCCCCCGT 1 3149137 + bf638r_2678 trpB 0 CAAAGTTGTATATTGCACAAGG 1 3149137 + bf638r_2678 trpB 0 CAAAGTATCTATATTTGCCCCCGT 1 3149137 + bf638r_2693 Unkown fuction 0 GGTGTCAAAGGAACAACAATATTTGCAGTTCTTACAA 1 3165350 + bf638r_2695 Unkown fuction 0 GGTGTCAAAGAACACAATATTTAATGGTTCAC 1 3165354 bf63						AAAAAGAACAAATGAATTTTGTAATAA	
polyphosphate CAAGCATTGTAATATCTATTACATCATG 3143786 + bf638r_2673 kninase 0 CAAGCGTACTTTGCAAAAAA 1 3148164 - bf638r_2675 dehydrogenase 0 AAACAAAAAAAATATCGCTTCTTCCAG 3148469 - hypo or sRNA or - AATCTGAGAAACAAATAAATAAAAAA 0 3148469 - else 1 TGTTTAAAAAGAGTTTCGCTAACAAA 0 3149137 + br638r_2678 trpB 0 CAAACATACTATTTGCAAAAA 0 3149137 + br638r_2678 trpB 0 CCCTAAAAAGGGGATTGTGGCAACCG 1 3163350 + hypo or sRNA 1 CCCTAAAAAGGGGATTGTGGCAACCG 1 3165387 bf638r_2693 Unkown fuction 0 GGTGTACAAGGAAACACATATATAACAAT 1 3165385 + bf638r_2695 Unkown fuction 0 CACTATTTTTACCTTGCACAT 1 317242 bf638r_2702 peptide 0 AAGAGGTAAAACATATAATAACAATAACTAG 1 317249 - bf638r_2703	3143704	-	bf638r_2672	Unkown fuction	0	GTTCATAGCAAGATTGTAATATCT	1/2
3143786 + bf638r_2673 kninase 0 CAAGCGTACTTTCCAAAAAA 1 3148164 - bf638r_2675 dehydrogenase 0 AAAACAAAAATAATGCGTCTTCTCAG 1 3148164 - bf638r_2675 dehydrogenase 0 AAAACAAAAAATAATACGCTAACAA 1 3148164 - bf638r_2675 dehydrogenase 0 AAAACAAAAAAAATATCGCAAGAAA 0 3148164 - bf638r_2678 trpB 0 CAAAAGAATTATAAATAACAAAA 0 3149137 + br638r_2678 trpB 0 CAAAGTATCTATATTTGCTCAAAA 0 3149137 + br638r_2678 trpB 0 CAAAGTATCTATATTTGCTCACAA 1 3163550 + hypo or sRNA 1 CCGAAAACCACATATTTATAT 1 3165387 - bf638r_2693 Unkown fuction 0 GGTATCAATCACTATAAATAGGT 1 3165554 bf638r_2696 Flavodoxin 0 CACATATTHTTCATCATCACTATATATAGT 1 3172609 bf638r_2702 bf638r_2702				polyphosphate		CAAGATTGTAATATCTATTACATCATG	
Butanol GATACAAAAATAATCGCTTCTTCCAG 3148164 - bf638r_2675 dehydrogenase 0 AAACAAAAAGATTCGCAAGGTA 1 3148469 - else 1 TGTTTAAAAAGAATTATAATAATACAAAA 3148469 - else 1 TGTTTAAAAAGAATTATAATAATACAAAA 3149137 + br638r_2678 trpB 0 CAAAGATATCTATATTGTCCCCCGT 1 3149137 + br638r_2678 trpB 0 CAAGATACTCTATATTGCCCCCGT 1 3163550 + hypo or sRNA 1 CCGAAACCAACCAACAATATTTAATT 3165387 - bf638r_2693 Unkown fuction 0 GGTATCAAAAACACAATAATATCGCTCAC 3165387 - bf638r_2695 Unkown fuction 0 CCATATCAATAATCGCAACT 1 3165554 + bf638r_2696 Flavodoxin 0 GGACGCAACAATAATAATCGGTAT 1 3171242 - bf638r_2702 peptide 0 AAAGAGATAAAAAGATACATAATTACGGA 1 317242 - bf638r_2702 peptide 0 AAGAGATAAAAAAGATACATATATT 1 317249 - bf638r_2707 Unkown fuction 0 GGACAACAATAAATAAGTCGATAAT 1 3175499 - bf638r_2707 Unkown	3143786	+	bf638r_2673	kninase	0	CAAGCGTACTTTTGCAAAAAA	1
3148164 - bf638r_2675 dehydrogenase 0 AAAACAAAAAGATTCGCAAGGTA 1 3148469 - else 1 TGTTTAAAAAGAGTTCCTTTTCAA 0 3148469 - else 1 TGTTTAAAAGAGATTCCTTTTCAAA 0 3149137 + br638r_2678 trpB 0 CAAGTATTTATTTGTTATTCCAAA 0 3149137 + br638r_2678 trpB 0 CCATAAAAGGGATTGTGGCAACCG 1 3163550 + hypo or sRNA 1 CCGAAACCGCCTATCTTTGCGCAACG 1 31655387 - bf638r_2693 Unkown fuction 0 GGTGTCAAAGAAACACAATAATTTAATTGTCACC 3165554 + bf638r_2695 Unkown fuction 0 CACTATTTTTACAATGGGGATTTTTCCCC 3165555 + bf638r_2696 Flavodoxin 0 GGACCGCCTATCTTTGCCGTAT 1 317242 - bf638r_2702 peptide 0 AAAGAAATAAAAAAGTCAGGATA 1 3172509 - bf638r_2703 synthase 0 ATTTGGCAAAGAAATAAAAAGTCGGATA </td <td></td> <td></td> <td></td> <td>Butanol</td> <td></td> <td>GATACAAAAATAATCGCTTCTTTCCAG</td> <td></td>				Butanol		GATACAAAAATAATCGCTTCTTTCCAG	
hypo or sRNA or ATCTGAGAAACAATATAAATACACAAA 3148469 - else 1 TGTTTAAAAAGAGTTTCCTTTTCAA 0 3149137 + br638r_2678 trpB 0 CAAAGTATTAAAAGGGGATTGTGCAACCG 1 3163550 + hypo or sRNA 1 CCCTAAAAAGGGGATTGTGGCAACCG 1 3165551 + hypo or sRNA 1 CCCTAAAAAGGGGATTGTTGGCAACCGG 1 3165554 + bf638r_2693 Unkown fuction 0 GGTATACAATCACTATAATAGGT 1 3165554 + bf638r_2695 Unkown fuction 0 CCATAATAACACAATATTATTCTCACC 1 317242 - bf638r_2696 Flavodoxin 0 GGCACAAAGATAAAAAGTCCGGTCGA 1 3172609 - bf638r_2702 peptide 0 AAAGAGATAAAAAAGTCCGGTCGA 1 3172609 - bf638r_2703 synthase 0 ATTGTGGCAAAGAAAAAAAGTCCCATAAT 3176938 - bf638r_2707 Unkown fuction 0 GGCAAAAAATAAAAGGTCCCGTCAAAG 3183026 - bf638r_2710 permease 0 TTCGGCAAAGATAAAAAAGTCACAAGATACAAAGATGAA 3183026 - bf638r_2713 hypo 0 GGCACAAAAGTAACAAGATACACAAGATGACAAGAAGA 3183026 <td< td=""><td>3148164</td><td>-</td><td>bf638r_2675</td><td>dehydrogenase</td><td>0</td><td>AAAACAAAAAGATTCGCAAGGTA</td><td>1</td></td<>	3148164	-	bf638r_2675	dehydrogenase	0	AAAACAAAAAGATTCGCAAGGTA	1
3148469 - else 1 TGTTTAAAAAGAGTTTCCTTTTCAA 0 3149137 + br638r_2678 trpB 0 CAAAGTATTTATTTGTCCCCGT 1 3149137 + br638r_2678 trpB 0 CCAAAGTATCTATTTGTCCCCGT 1 316350 + hypo or sRNA 1 CCCTAAAAAGGGGATTGTGGCAACCG 1 3165387 - bf638r_2693 Unkown fuction 0 GGTATACAATCACTATAATTTACTTTTACT 1 3165554 + bf638r_2695 Unkown fuction 0 CACAATTTTTTACCTTGCACAAT 1 3165554 + bf638r_2696 Flavodoxin 0 GGACCGCCTATCTTTGCCGTAT 1 3165855 + bf638r_2702 peptide 0 AAAGAGATAAAAAGTCCGTGAT 1 317242 - bf638r_2703 synthase 0 ATATTGTTCAAAGAAGATAAAAAGTCCGAAT 1 3175499 - bf638r_2707 hypo 0 GGAACAAATCACCATTATAAGGAAATCAATAAT 1 3181057 - bf638r_2707 Unkown fuction 0 ACCGGAAAAATAAAAGGAAGATAAAAAGGAAGT 1 3183026				hypo or sRNA or		ΑΤϹΤGAGAAACAATATAAATAACAAAA	
3149137 + br638r_2678 trpB 0 CAAAGAATTTATTTGTTATTCGAAA 3163550 + hypo or sRNA 1 CCCTAAAAAGGGGATTGTGGCAACCG 3163550 + hypo or sRNA 1 CCGAAACCGCCTATCTTTGCAGTAT 1 3165387 - bf638r_2693 Unkown fuction 0 GGTGCAAAGAACACAATATTTTAAT 3165554 + bf638r_2695 Unkown fuction 0 CACTATTTTTCCTTGCACAAT 1 3166855 + bf638r_2696 Flavodoxin 0 GGCGCAAAGAAGAACAATATTTGTCCGC 3166855 + bf638r_2702 peptide 0 AAAGAGATAAAAAGAGTACATTATTCTCGGG 3172609 - bf638r_2703 synthase 0 GGCAAAGATAAAAAACACATAATTCGA 3175499 - bf638r_2707 hypo 0 GGACAAAATAAAAAGAGTATCCATAAA 3176938 - bf638r_2710 permease 0 TTCGACATATAAAAGAGATACATAAA 3183026 - bf638r_2713 hypo 0 GGCACAAAATAAAAGAGAACACACTTTT 1 3183026 - bf638r_2714 transporters 0 ACTCCACTATGCAAAAGAACACACTTTTT	3148469	-		else	1	TGTTTAAAAAGAGTTTCCTTTTCAA	0
3149137 + br638r_2678 trpB 0 CAAAGTATCTATATTGCCCCCGT 1 3163550 + hypo or sRNA 1 CCCTAAAAAGGGATTGTGGCAACCG 3163550 + bf638r_2693 Unkown fuction 0 GGTATACAATCACTATTAAATAGGT 1 3165554 + bf638r_2695 Unkown fuction 0 CCATATTTTTACCTTTGCACATT 1 3165554 + bf638r_2696 Flavodoxin 0 CACTATTTTTACCTTTGCACATT 1 3165555 + bf638r_2696 Flavodoxin 0 GGACGACCACATTATTTTCTCCCGG 3171242 - bf638r_2702 peptide 0 AAAGGATAAAAAAGTCGGTCGA 1 3172609 - bf638r_2703 synthase 0 ATATTGTGTTCAACATAATAAAAGGATACTGT 1 3175499 - bf638r_2707 unkown fuction 0 ACGCAAAAGTAATAAAAGGAATAATAATGAATTAT 3175938 - bf638r_2707 unkown fuction 0 ACGGGAAAAATAAAGAGCAATAAA 1 3181057 - bf638r_2710 permease 0 TTTCGACTATAGAAAAAAGACCGAAAGA 1 3181057 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td>AAGAAAGATTTTATTTGTTATTCCAAA</td><td></td></t<>					-	AAGAAAGATTTTATTTGTTATTCCAAA	
3163550 + hypo or sRNA 1 CCCGAAAGAAGGGGATTGTGGCAACCG 3163550 + hypo or sRNA 1 CCGAAAACCGCCTATCTTTGCAGTAT 1 3165387 - bf638r_2693 Unkown fuction 0 GGTGTCAAAGAAACACAATATTTTAAT 3165554 + bf638r_2695 Unkown fuction 0 CACTATTTTACCTTGCACAAT 1 3165554 + bf638r_2696 Flavodoxin 0 CACTATTTTTACCTTGCCGTAT 1 3166855 + bf638r_2702 peptide 0 AAAGGGGATTACAAAGATACAATATTTTTCGCG 3171242 - bf638r_2702 peptide 0 AAAGGATAAAAAAGTCCGGGTCGA 1 3172609 - bf638r_2703 synthase 0 ATATTTGTGTCAACATGATATAAATCAG 3175499 - bf638r_2705 hypo 0 GGACAAAGATAAAAAGTCCATAAT 3175499 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAGATAAGAAGATCATAAA 3176938 - bf638r_2710 permease 0 TTTCGACATTAGAAAGAGCAATGAAAGAGAGA 3181057 - bf638r_2710 permease 0 TTTCGACATAGAAAGAGAGAAGAGAAG 3182026 - bf638r_2714 transporters 0 AGAGGCAAAAAGTACCACAAAGGTACACAAGGAAGGA	3149137	+	br638r_2678	trpB	0	CAAAGTATCTATATTTGCCCCCGT	1
3163550 + hypo or SKNA 1 CCGAAACCGCCTATCT1CAGGTAT 1 3163580 + bf638r_2693 Unkown fuction 0 GGGTGCAAAGAAACAAATATTTTAAT 1 3165387 - bf638r_2695 Unkown fuction 0 GGATATACAATCACTATAAATAGGT 1 3165554 + bf638r_2695 Unkown fuction 0 CACTATTTTTACCTTTGCACAAT 1 3166855 + bf638r_2696 Flavodoxin 0 GGACGCCTATCTTTGCCGGTAT 1 3166855 + bf638r_2702 peptide 0 AAAGAGGATAAAAAAAGTCGGGTGAA 1 3172609 - bf638r_2703 synthase 0 ATATTTGTGTCAACATGATAAAAACAATAAATCAG 3175499 - bf638r_2705 hypo 0 GGAAAAATAAAAAGTAAATAAAATCGA 3176938 - bf638r_2707 Unkown fuction 0 ACCGGCAAAAGTAAAAAAGTAAATCGA 3176938 - bf638r_2710 permease 0 TTTCGACTAAGAAAGAAACGTAAAAAACGT 3181057 - bf638r_2710 permease 0 TTCGACTAAGAAAGAAAAGAAAAGAAGAAGT 3183026 - bf638r						CCCTAAAAAGGGGATTGTGGCAACCG	
3165387 - bf638r_2693 Unkown fuction 0 GGTATACAATCACTATAAATAGGT 1 3165387 - bf638r_2695 Unkown fuction 0 CACTATTATTATCATCGTCAC 1 3165554 + bf638r_2695 Unkown fuction 0 CACTATTTTTACCTTTGCCACAT 1 3165555 + bf638r_2696 Flavodoxin 0 GGACGCCCATTTTTTCGCGTAT 1 316555 + bf638r_2702 peptide 0 AAAGAGATAAAAAAGTCCGGTCGA 1 3171242 - bf638r_2703 synthase 0 AGAGGTCAAAGATACATTATTTCCGG 3172609 - bf638r_2703 synthase 0 GGCAAAGATAAAAAAGTCAATCAG 3175499 - bf638r_2705 hypo 0 GGAACAATTCCCCATTTATAAGGATAT 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAATAAAAGTCAATAAAA 3176938 - bf638r_2710 permease 0 TTTCGACTATAGCAAAGAAAGAAAGAAGAAGA 3181057 - bf638r_2710 permease 0 TTCGGCAAAGATACCAAAGAAAGAAAGAAGAAGA 3183026 - bf638r_2714 transporters 0 AGAGCCACAAAAGAAAACCAACCATTCT 3195099 + bf638r_2714 transporters 0	3163550	+		hypo or sRNA	1	CCGAAACCGCCTATCTTGCAGTAT	1
3165387 - DF638r_2693 Unkown fuction 0 GGTATACAATCACTATATCATCGTTCACC 3165554 + bf638r_2695 Unkown fuction 0 CACTATTTTTACCTTGCACAAT 1 3165554 + bf638r_2696 Flavodoxin 0 GGACCGCCTATCTTTGCCGTAT 1 3165555 + bf638r_2702 peptide 0 AAAGAGGTCAAAGATACATTATTTCCGG 3171242 - bf638r_2702 peptide 0 AAAGAGGTCAAAGATACATTATTTTCCGG 3172609 - bf638r_2703 synthase 0 GGCAAAGATAAAAAAGTCCGGTCGA 1 3175499 - bf638r_2705 hypo 0 GGAACAATCCCCATTTATAGGGATA 1 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAATAAAAGCAATAAAAACTGA 3181057 - bf638r_2710 permease 0 TTCGGCAAAAGTAACGAAGAAGAAGAAGAAG 1 3183026 - bf638r_2713 hypo 0 TGAGGCAAAAGTAACAATAAAACCTAATAATCT 1 3183026 + bf638r_2714 transporters 0 ATCCACCTACCTATGCAAAC 1 3183026	2465207		1 (620 2602		0	GGGIGCAAAGAAACACAAATATTTAAT	
AAATCACAGATATTATTCATCGTTCAC 3165554 + bf638r_2695 Unkown fuction 0 CACTATTTTTTCATCATTCATCATT 1 3166855 + bf638r_2696 Flavodoxin 0 GGACCGCCATCTTTGCCCGAT 1 3171242 - bf638r_2702 peptide 0 AAAGAGATAAAAAAGTCCGGTCGA 1 3172609 - bf638r_2703 synthase 0 ATATTTGTGTTCAACATGATAATT 1 3175499 - bf638r_2705 hypo 0 GGACAAGATAAAAAAGAATAAATCAGA 1 3175499 - bf638r_2707 hypo 0 GGAAAGATAAAAAAGAATAAAATGAATCGA 3176938 - bf638r_2710 permease 0 ATCCCCATTATAGGAAAGATAAAAAGTCAAAA 3181057 - bf638r_2710 permease 0 TTCGACAAAGTAACGAAAGAAAAAAAAGTCAATAAA 3183026 - bf638r_2713 hypo 0 TGAGAGAATAACAAAGGAAACACATCACAAGA 3183026 - bf638r_2714 transporters 0 AGACACATCCTACTAAAAAACCTACCAAGA 3183026 - bf638r_2714 transporters 0 AGTCACACAACCTACCAAAACCAACCTTTT	3165387	-	bt638r_2693	Unkown fuction	0	GGTATACAATCACTATAAATAGGT	1
3165554 + bf638r_2695 Unkown fuction 0 CACIATITITACCITIGCACAAI 1 3166855 + bf638r_2696 Flavodoxin 0 GGACCGCCTATCTTTGCCGTAT 1 3166855 + bf638r_2702 peptide 0 AAAGAGATAAAAAGACATTATTTTCCGG 3171242 - bf638r_2702 peptide 0 AAAGAGATAAAAAAGTCCGGTCGA 1 3172609 - bf638r_2703 synthase 0 ATATTGTGTTCAACATGATTACATATT 1 3175499 - bf638r_2705 hypo 0 GGCAAAAGTAAAAAAGGAGATTCCATAAT 1 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAATAAAAGTCAATAAA 1 3181057 - bf638r_2710 permease 0 TTCGACTATAGCAAAAGAGAAGAGAG 1 3183026 - bf638r_2713 hypo 0 GGCACAAAAGTAACGCAAAAGTACCACAAG 1 3183026 - bf638r_2714 transporters 0 AGCCGCAAAAGTAACCAACCACAAGGTACCAAAG 1 3183026 + bf638r_2714 transporters 0 AGCCACAAAAGTAACCACACCATTCC 1<	2465554		1 (620 2605		0		
3166855 + bf638r_2696 Flavodoxin 0 GGACCGCCTATCTTTGCCGTAT 1 3166855 + bf638r_2702 peptide 0 AGAGGTCAAAGATACATTATTTCCGG 1 3171242 - bf638r_2702 peptide 0 AAAGAGGATAAAAAAGTCCGGTCGA 1 3171242 - bf638r_2702 peptide 0 AAAGAGGATAAAAAAGATAAAATCAG 3172609 - bf638r_2703 synthase 0 ATATTTGTGTTCAACATGATATAAAAAGGAATAATAATCAG 3175499 - bf638r_2705 hypo 0 GGAAAAATAAAAGACAATAAAAGGAATTCCATAAT 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAATAAAGTCAATAAA 1 3176938 - bf638r_2710 permease 0 TTCGACTATAGCAAAAGTAAAAAGTGAT 1 3181057 - bf638r_2710 permease 0 TTCGACTATAGCAAAAGTAACGCAAGATACCACAAG 1 3183026 - bf638r_2713 hypo 0 TGAAGGCAATACCTACAAGAG 1 3183026 - bf638r_2714 transporters 0 AGTCCACCTACCTTACACCAAGG 1 <t< td=""><td>3165554</td><td>+</td><td>D1638r_2695</td><td>Unkown fuction</td><td>0</td><td></td><td>1</td></t<>	3165554	+	D1638r_2695	Unkown fuction	0		1
3166835 + bf6361_2696 Pravouoxin 0 GGACCGCCTATCTTTCCGGATAT 1 3171242 - bf638r_2702 peptide 0 AAAGAGATAAAAAAGTCCGGTCGA 1 3171242 - bf638r_2703 peptide 0 AAAGAGATAAAAAAGTCCGGTCGA 1 3172609 - bf638r_2703 synthase 0 ATATTTGTGTTCAACATGATAATT 1 3175499 - bf638r_2705 hypo 0 GGAAAAATAAAAAGATATAAAATGAGATTCCATAAT 1 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAATAAAAAGTCAATAAA 1 3181057 - bf638r_2710 permease 0 TTCGACTATAGCAAAAGTAACACAGAG 1 3183026 - bf638r_2713 pypo 0 TGAAGGCAATACCTACTATAGCAAAGAAGAAG 1 3183026 - bf638r_2714 transporters 0 TGCACAAAAGTAACCACATTGTAACACCTTTT 1 3183026 + bf638r_2714 transporters 0 AGACCACCTTCTGCACAACCATTCC 1 3195099 + bf638r_2722 reductase 0 AAAACCACACTCTCTGGACAACCATTC	2166955		hfc29+ 2606	Flavedovin	0		1
3171242-bf638r_2702peptide0AAAGAGATAAAAAGTCGGGTCGA13172609-bf638r_2703synthase0ATATTTGTGTTCAACATGATACTT13175499-bf638r_2705hypo0GGCAAAGATAAGAAGATAAGAATATTCAATAT3175499-bf638r_2705hypo0GGAACAATCCCCATTTATAGGGATA13176938-bf638r_2707Unkown fuction0ACCGGGAAAAATAAAAGTCAATAAA13181057-bf638r_2710permease0TTTCGACTATAGCAAAGAAGAAGAAGAAG13183026-bf638r_2713hypo0GGAAGAATACCTACTAATATCT13183560+bf638r_2714transporters0AGTCCACCTACCTACTAAACCTTTTT3195099+bf638r_2722reductase0AAAACACACTCTCTGGCAAAACCTTCC13195099+bf638r_2724Unkown fuction0AATTCATTATCTTGCTCCCT13195099+bf638r_2724Unkown fuction0AATTCATTATCTTGCTCCCT1	5100655	+	DI0201_2090	Flavouoxili huno with Signal	0		1
3171242 - bib3si_2702 peptue 0 AAAGAGATAAAAAGTCCGTCAA 1 3172609 - bf638r_2703 synthase 0 ATATTTGTGTTCAACATGATAATTCG 3172609 - bf638r_2703 synthase 0 ATATTTGTGTTCAACATGATAATTCG 3175499 - bf638r_2705 hypo 0 GGAACAATCCCCATTTATAGGGATA 1 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAGTAAAAAGTCAATAAA 1 3181057 - bf638r_2710 permease 0 TTTCGACTATAGCAAAAGAAGAACGATAACCAAGAGAGA 3183026 - bf638r_2713 permease 0 TGAAGGCAATACCTACCAAAG 1 3183026 - bf638r_2714 transporters 0 AGTCCACCTACCTACTATATCT 1 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTTTGCAAACC 1 3195099 + bf638r_2722 reductase 0 AAATTCTATTACTTGCACAACACTTCC 1 3199219 + bf638r_2724 Unkown fuction 0 ATTTTTTAATTCTTTGAAAAACTTTTGACCCCT 1	2171242		hf628r 2702	noptido	0		1
3172609 - bf638r_2703 synthase 0 ATATTTGTGTTCAACATGATACTT 1 3172609 - bf638r_2703 synthase 0 ATATTTGGTTCAACATGATACTT 1 3175499 - bf638r_2705 hypo 0 GGAAAAGTAATAAAAAGAAGTATTCCATAAT 1 3175499 - bf638r_2705 hypo 0 GGACAAAAGTAATAAGAAGTAATTAGGGATA 1 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAAGTAATAAAAGGCAATCGGA 1 3181057 - bf638r_2710 permease 0 TTTCGACTATAGCAAAAGTAACCAAGGAGAGG 1 3183026 - bf638r_2713 hypo 0 TGAAGGCAATACCTACTAATAACACAGAGTACCAAGG 1 3183026 - bf638r_2714 transporters 0 AGTCCACCATGCAAACCTACTAATACC 1 3183560 + bf638r_2722 reborters 0 AGTCCACCATCTGCAAACCATTCC 1 3195099 + bf638r_2722 reductase 0 AAATCTATTATCTTGCCCCT 1 3199219 + bf638r_2724 Unkown fuction 0 ATTTTTAATTATCTTGAACCTT	51/1242	-	010301_2702	Mothioning	0		1
3172009 - blo38l_2703 Synthase 0 ATATHTGOTICAACATACTT 1 3175499 - bf638r_2705 hypo 0 GGCAAAGGTAAGGAGTATTCCATAAT 1 3175499 - bf638r_2705 hypo 0 GGAACAATCCCCATTTATAGGGATA 1 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAATAAAAGTCAATAAA 1 3181057 - bf638r_2710 permease 0 TTTCGACTATAGCAAAAGAAGAAGA 1 3183026 - bf638r_2713 hypo 0 GGCACAAAAGTACCTACTAATATCT 1 3183026 - bf638r_2714 transporters 0 TCTGTTTAGGTATTGCAAACCTTTTT 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTTTGCAAAC 1 3195099 + bf638r_2722 reductase 0 AAATTCTATTATCTTGCCCCT 1 319219 + bf638r_2724 Unkown fuction 0 ATTTTTTCATTAAAAAACTTTGCACCCTG	3172600	_	hf638r 2703	synthase	0		1
3175499 - bf638r_2705 hypo 0 GGAACAATCCCCATTTATAGGGATA 1 3175499 - bf638r_2705 hypo 0 GGAACAATCCCCATTTATAGGGATA 1 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAATAAAAGTCAATAAA 1 3181057 - bf638r_2710 permease 0 TTTCGACTATAGCAAAAGAAGAAGAAG 1 3183026 - bf638r_2713 hypo 0 TGAAGGCAATACCTACTAATATCT 1 3183026 - bf638r_2714 transporters 0 TGAAGGCAATACCTACTAATACACCTTTTT 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTACCTAAAC 1 3195099 + bf638r_2722 reductase 0 AAATTCTATTATCTTTGCTCCCT 1 319219 + bf638r_2724 Unkown fuction 0 ATTTUTTAATACCTTTGTACC 1	3172003	-	010381_2703	Synthase	0	GGCAAAGATAAGAAGTATTCCATAAT	1
3173439 - bio3df_2703 hypo 0 CGAACAACCCCCTTTATAGGGATA 1 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAATAAAAGTCAATAAA 1 3181057 - bf638r_2710 permease 0 TTTCGACTATAGCAAAAGAAGAAGAAG 1 3183026 - bf638r_2713 hypo 0 TGAAGGCAATACCTACTAATAACA 1 3183026 - bf638r_2714 hypo 0 TGAAGGCAATACCTACTAATATCT 1 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTACCTAACC 1 3195099 + bf638r_2722 reductase 0 AAAACACACTCTCTGCACAACCATTCC 1 319219 + bf638r_2724 Unkown fuction 0 ATTTTTTAACCTTTGTACC 1	3175/00	_	bf638r 2705	hypo	0	GGAACAAGATAAGAAGTATTCCATAAT	1
3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAGTAAAAGTCAATAAA 1 3176938 - bf638r_2707 Unkown fuction 0 ACCGGGAAAAGTAAAAGTCAATAAA 1 3181057 - bf638r_2710 permease 0 TTTCGACTATAGCAAAAGAAGAAGAAG 1 3183026 - bf638r_2713 hypo 0 TGAAGGCAATACCTACTAATATCT 1 3183026 - bf638r_2714 transporters 0 AGTCCACCTACTAATGCAAACCTTTTT 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTATGCAAACC 1 3195099 + bf638r_2722 reductase 0 AAATTCTATTATCTTTGCTCCCT 1 319219 + bf638r_2724 Unkown fuction 0 ATTTTTTAATACCTTTGACCCTTG	3173433	-	010381_2703	Пуро	0	GGACAAAAGTAATAAAATGAATCTGA	1
3170938 - bio3df_2707 bikown fuction 0 AccoddAAAAGTACAAGTACAATAAA 1 3181057 - bf638r_2710 permease 0 TTTCGACTATAGCAAAAGAAGAAGA 1 3183026 - bf638r_2713 hypo 0 TGAAGGCAATACCTACTAATATCT 1 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTACCTAACC 1 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTACCAAAC 1 3195099 + bf638r_2722 reductase 0 AAAACAACACCTCTCTGCACAAACCATTCC 1 3199219 + bf638r_2724 Unkown fuction 0 ATTTTTTAATACCTTTGACCCCTG 1	2176028	_	bf638r 2707	Unkown fuction	0		1
3181057 - bf638r_2710 permease 0 TTTCGACTATAGCAAAAGGAAGGAAG 1 3183026 - bf638r_2713 hypo 0 TGAAGGCAATACCTACTAATATCT 1 3183026 - bf638r_2713 hypo 0 TGAAGGCAATACCTACTAATATCT 1 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTACTGCAAAC 1 3195099 + bf638r_2722 reductase 0 AAAACACACTCTCTGCACAACCATTCC 3199219 + bf638r_2724 Unkown fuction 0 ATTTTTTAATTACCTTTGACCCCTG	5170958	-	010381_2707	Onkown fuction	0		1
3183026 - bf638r_2713 hypo 0 TGAAGGCAATACGCAGATCACCAAG 1 3183026 - bf638r_2713 hypo 0 TGAAGGCAATACCTACTAATATCT 1 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTATTGCAAAC 1 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTATTGCAAAC 1 3195099 + bf638r_2722 reductase 0 AAAACACACTCTCTGCACAACCATTCC 3199219 + bf638r_2724 Unkown fuction 0 ATTTTTTAATTACCTTTGTACC 1	3181057	_	hf638r 2710	nermease	0		1
3183026 - bf638r_2713 hypo 0 TGAAGGCAATACGCAGATCACCAAGG 3183026 - bf638r_2713 hypo 0 TGAAGGCAATACGCAGATCACCAATACT 1 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTATTGCAAACC 1 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTATTGCAAACC 1 3195099 + bf638r_2722 reductase 0 AAATTCTATTATCTTTGCTCCCT 1 3199219 + bf638r_2724 Unkown fuction 0 ATTTTTTAATTACCTTTGTACC 1	5101057			permease	5	GGCACAAAAGTACGCAGATCACCAAG	-
3183560 + bf638r_2714 Memberane transporters 0 AGTCCACCTACCTTTGCAAAC 1 3195099 + bf638r_2722 reductase 0 AAAACACACCTCTTGCACAACCATTCC 3199219 + bf638r_2724 Unkown fuction 0 ATTTTTTAATTACCTTTGCACC 1	3183026	-	bf638r 2713	hypo	0	ΤGAAGGCAATACCTACTAATATCT	1
3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTTTGCAAAC 1 3183560 + bf638r_2714 transporters 0 AGTCCACCTACCTTTGCAAAC 1 3195099 + bf638r_2722 reductase 0 AAAACACACTCTCTGCACAACCATTCC 1 3199219 + bf638r_2724 Unkown fuction 0 ATTTTTTTAATTACCTTTGTACC 1	5105020		510501_2715	Memberane	, , , , , , , , , , , , , , , , , , ,	TICIGTITAGGTATTGTAACACCTTTTT	-
S105500 S1055000 S105500	3183560	+	hf638r 2714	transporters	0	ΑGTCCACCTACCTTTGCAAAC	1
3195099 + bf638r_2722 reductase 0 AAAACACACTCTCTGCACAACCATTCC 1 3199219 + bf638r_2724 Unkown fuction 0 ATTTTTTTAATTACCTTTGTACC 1	3103300		510501_2714	rihonuleotide	, , , , , , , , , , , , , , , , , , ,	ASTECACETACETTICAAAC	-
3195099 + bf638r_2722 reductase 0 AAATTCTATTATCTTTGCTCCCT 1 3199219 + bf638r_2724 Unkown fuction 0 ATTTTTTTAATTACCTTTGTACC 1				diphosphate		ΑΑΑΑCACACTCTCTGCACAACCATTCC	
3199219 + bf638r 2724 Unkown fuction 0 ATTTTTTTAATTACCTTTGTACC 1	3195099	+	bf638r 2722	reductase	0	AAATTCTATTATCTTTGCTCCCT	1
3199219 + bf638r 2724 Unkown fuction 0 ATTTTTTTAATTACCTTTGTACC 1	5155055	·			Ť	ΤΟΤΤΟΑΤΤΟΑΑΑΑΑΑΟΤΤΤΤΤΘΑΟΟΟΟΤΘ	-
	3199219	+	bf638r 2724	Unkown fuction	0	ATTITTTAATTACCTTTGTACC	1

			cabohydrate kinase		GACACAAAGATACGTAAATTTTCAGGA	
3202906	-	bf638r 2728	pfkb family	0	TTACAAAAATTGTTATATATTTGT	1
		_	Sugar transporter		AAGATACGTAAATTTTCAGGATTACAA	
3202962	+	bf638r 2729	or laci regulator	0	AAATTGTTATATATTTGTGTCCAT	1
			Transcriptional	-	GACGCAAAGATATTATTTGATTCATAA	
3205126	_	hf638r 2731	regulator	0	ΔΔΑΤΔΑΤCΑΔΑGAGGGTATGTC	1
5205120		510501_2751	hybrid Two			-
			component		TTTACTCTAAACAACACCTACAATCCA	
2205261		bf620r 2722	rogulatory system	0	TTATTATTATAATACTATCTACAC	1
5205201	т Т	010301_2732	regulatory system	0		1
2212000		hfc20, 2727	I had a sum for attack	0	TTCACAAAAGTAATGGTTCTTTGAT	4
3212086	-	DT638r_2/3/	Unkown fuction	0		1
					GAIGCAAAAIIACCGIIIIICICCCIAI	
3213295	-			1	CATICACIAICITIGCACCIC	1
					AIGCAAAAIIACCGIIIIICICCCIAIC	
3213343	+	bf638r_2738	Na+/H+ antiporter	0	ATTCACTATCTTTGCACCTC	1
					AGCAAATATATGCTATTTGTGCGAGAA	
3216662	-	bf638r_2739	Unkown fuction	0	GAGAACCAACCTCAAAGCGG	1
					CTATCGTCTTTTCTACCGGACAACTCTC	
3216816	+	bf638r_2740	Unkown fuction	0	TTTATGTGTACTTTTGCCCCCAT	1
					AAGAACCGGAAGTCTTTGTCAATCAAA	
3217306	+	bf638r_2741	rpsp	0	ACAAAACCCTTATCTTTGCACCCG	1
					GCGGTAAATATAGACATTTACAACAGA	
3220346	-	bf638r 2744	RNA binding protein	0	CTGAGAAACAAAATCATCATTTTC	1/2
		_	01		GGTGCAAAGGTACACATTTATCCGATT	
3224938	-	bf638r 2748	ABC transport	0	CGTACATACATGTTAATCTAATAT	1
012.000			, is e transport		ΔΤΔΔCΔGΔGΔΔΔΤΤCΤΔΤCCGGΔΔΤΤΔ	-
3225036	+	bf638r 27/9	Unkown fuction	0		1
5225050	•	510501_2745	Onkown raction	0		1
2221241		hfc20r 2752	alucadan sunthasa	0		1
3231341	-	010381_2752	giycogen synthase	0		1
2220122		hfc20, 2750		0		4
3239122	-	DT638r_2759	ATP synthase	0	AATAAAAGAGAAAAGAGCAAGAA	1
					GATGCAAAAGTAAGGCATTAGGAGAT	
3245007	-		rRNA	0	AAGAGACAAATATAAAAGGGGAT	1
					GAAACAAAATTAGACACTTCTGTTGAG	
3247835	-	bf638r_2760	NagA	0	ATAGAAAAATAAAATAGCTTTT	1
			responsive		CTTTTCTTTTCAGTTTTATTTCAGAAAT	
3247926	+	bf638r_2761	regulator	0	AAGCCTTTTCTTTGCAGGTAG	1
					GGAGAGAATTCCCAATTCTTTTCAGAA	
3250209	+	bf638r_2763	Unkown fuction	0	TCGACCTTCATCTTTGCATTAT	1/2
					TTCGCAAAGATAACAAAAAAAAACGC	
3253291	-	bf638r_2766	Unkown fuction	0	CCACCAAAAGATGAAGCGTTTTT	1
		_			AGTGCAAAGTTACGACTATTTATTTGT	
3254252	-	bf638r 2767	Sigma 70	0	TAACGTATAAATTTTCACAACTT	1
				-	GCAAAGATAGAAACTCTTTCCATTTTA	
3260170	-	bf638r 2773	Unkown fuction	0	GATATATATTTTCAGAAACAT	0
5200170		510501_2775	Childennaccion		ΑΑΤΟΟΤΟΟΟΤΤΟΟΘΤΤΙΘΟΤΟΑΑΔΟΑΑΑ	0
3260403	<u>ь</u>	bf638r 2774	ribonulase	0		1
3200493	т	010301_2774	TIDUTUIASE	0		1
2262600		1 (620 2776	1.5	0	AGGGGTCAAAGATACAAAGAAAATGG	
3263698	-	bf638r_2776	ride	0	GATIGGATAAAGAATCAACATAAAA	1
					AGCAAATATACAATATTAAATGATACA	
3264732	-	bf638r_2777	phoU	0	TCGAGCTGCATGCCGATCAA	1
					GCGGCACGTTTTGAAACAGGAATGTA	
3267816	+	bf638r_2781	Unkown fuction	0	ACACGCTATTGCTTTATTTGCACAT	1/2
					TATACCCGTGAAATAAGGATATACAAA	
3268828	+	bf638r_2782	glns	0	AAAAATATCCTACTTTTGCAGCAA	1
					TTTTCGTCCTCCATGCAGTACCTTTATA	
3273158	+	bf638r_2785	Unkown fuction	0	TTTTCTGCATTTACTTATTGT	0
					ATATTCTAAACAATCGGTGCAAGAACT	
3274559	-	bf638r 2786	tpx	0	TTGTTCACGATGGACAATAATCTA	0
2274600		hf620r 2707	Unkown fustion	0	TTATTTACTATATTCTAAACAATCCCTC	1/2
52/4000	+	N0201_2787	OTIKOWITTUCTION	U	TIATTIACTATATICTAAACAATCGGTG	1/2

					CAAGAACTTTGTTCACGATGGAC	
-					GCTGCAAAAATAGAGATAATAATTGA	
3277147	-	bf638r_2788	mpi recombinase	0	AACTCCACAAACAAAATGATAATT	1
					TTTTTAATAAATACTTTCCTCTTTATCG	
3303474	+	bf638r_2816	glycosyl transferase	0	GAAAAAGCATACCTTTGCAAAGA	1
					ССАСАААGGTAAAAAAAATATATCCAA	
3318366	-	bf638r_2830	phosphoesterase	0	AAGCAACGCACCACAAATAAAAGT	1
					CTTTCTCCATTTTCTCAACCTTTCAGATT	
3320356	+	bf638r_2832	Unkown fuction	0	TTCTCTTTATCTTTGTAGTAG	1
		_	signal transduction		GATGGCAAAAATAGAGAGTGACCGCC	
3341232	-	bf638r_2852	protein	0	CCGGTTACAATTTTATATTTTAAA	1
			polysaccharide		GGTGCAAAGATACACTATTTTCACTAA	
3345064	-	bf638r_2856	biosynthesis protein	0	CACGTGCGTTTTTATTTGACAA	1
					GCAACTAAGATAACAAATAAAAAGGC	
3346594	-	bf638r_2857	PhoH like	0	AAACAAAGGAAGTTGCCCGTTA	0
					TTCTTTGTTCCCATGATTCTTAGATTTA	
3346560	+	bf638r_2858	folC	0	AATGTTGATATTTGCAATCA	1/2
					GTGAACAAAGATAAGAAAAATATGGA	
3348458	-	bf638r_2859	YjgF	0	AGAGCTATGCAGTATTTGGCAAA	1
					TATGGAAGAGCTATGCAGTATTTGGC	
3348527	+			1	AAACAAACGCATTTATATATATG	0
					AGCACAAAGTTACAAAAAAGATCGAG	
3356145	-	bf638r_2865	DNA pol III	0	GCAGCACAATAAAAGAGAAGAAAAA	1
					ACAGGGGAATATTCGTCGGATATCCCT	
3356247	+	bf638r_2866	Unkown fuction	0	AAAAAATTGTAACTTCGCCGCAC	1
					AGTGCAAAAATAATAATTTCTCCAAAT	
3358377	-	bf638r_2867	Unkown fuction	0	AAAACAAAATATACTTAAAGAAAG	1
			nuleoside-			
			diphosphate		GCGCAAAGTAAGCACTTTTTTTCATTT	
3362223	-	bf638r_2872	epimerase	0	TTATACCAAATATATGTTGTTTA	1/2
			pyridoxal			
			phosphate-			
			dependent		ATACCAAATATATGTTGTTTATTCCAA	
3362303	+	bf638r_2873	acyltransferase	0	GAAAAATTGTGTCCTTTGCAAAAG	0
					ACAATCCCCGGGACGATATGCTATACT	
3377844	+	bf638r_2887	Unkown fuction	0	CTTTTTGTATATCTTTGCCGATC	1
					AAATACAAAGATAACATTTTCTTCTGT	
3380201	-	bf638r_2888	AAA-ATPase	0	ATTTTACGTGTTGTACTACAAAA	1
				-	CCTACAAATATAAGTTTTAAAAAAGAA	
3380971	-	bf638r_2890	Unkown fuction	0	CTATCCAAGCATACGGCGGAAG	1
				-	ACTACAAAAATAACAATTTTAAAAGAA	
3382635	-	bf638r_2891	ftnA	0	AGGTTGTTCGGAGAAAGTGAAA	1
				-	GGCCGCAAAGATACGATTTTAATTCGG	
3386917	-	bf638r_2896	hisl	0	GAATTITAATTICTCCGAAGTG	1
				-	GTTCGCAAAAATAACGAATTATTGCAA	
3389119	-	bf638r_2899	hisH	0	AACIACGAAAAAICAGAGCAGGA	1
2200.000				~		
3389414	+		tRNA	0	AAAAAIGCCIACCITTGCAACCG	1
2202223		hfc20+ 2000	Halimum C. II	6	GATAACAAAAGTATTCTTTTTCCCGATT	
3392221	-	bf638r_2900	Unkown fuction	0	ATAAGAGAATAAAATAGGAAA	1
2202022				_		
3392932	-			1		U
2204004		hfc20r 2002	regulator	0		1
3394604	-	DT638F_2903	regulator	U		1
2205456		hfc20+ 2005	Linkown fronting	0		4
3395156	-	01638r_2905	Unkown fuction	0		
2445202	l .			_		
3415283	+			1		
2447266		hfc20+ 2020	Ciamo Fastar	0		
341/266	-	D16381_2920	Sigma Factor	U	CGHAAICAIGIIIIAICIIIAII	U

					AAAAGTTTTGAAGATGAATTTTATCAG	
3417475	+	bf638r 2921	Unkown fuction	0	TTTTTATATTTATATTTGCATTGT	1
			pyrophosphohydrol	-	AGAGGCAAAAGTAATAAAAGAATGCG	
3419233	_	hf638r 2923	ase	0	GGAAAGAAAGAAATAAAAAGTAAT	1
5415255		510301_2323	430	0		-
2410220		hf628r 2024	Unknun fuction	0		1
5419520	+	010581_2924	UNKOWN TUCCION	0		1
3420457				1	GGCCCGATTIGCCGGCCGGAAGAT	1
					TAATCAGGCCCGATTTGCCGGCCGGA	
3420527	+	bf638r_2925	methytransferase	0	AGATTCTCCGTATCTTTGCCACAT	1
					GGGGTGCAAAGATACGGTTTTTTAGA	
3428730	-	bf638r_2930	transporter	0	GATCTTGGTTACTTTTGCGTCA	1
					GGGGTGCAAAGATACGGTTTTTTAGA	
3428778	+			1	GATCTTGGTTACTTTTGCGTCAA	1
					GAAAGGCATATAGCCAATATCGTGCC	
3431279	-	hf638r 2932	ion transporter	0		0
5151275		510301_2332	ion transporter	0		Ū
2422210		hfc20 2024	UTH regulator	0	CAATAACCCCCTCCTTTCCTTA	0
5452510	-	01056_2954		0		0
		1 (000 0005			AIGAIAICGGACGAAAIAGIAIGCAA	. /0
3432428	+	bf638r_2835	transporter	0	AAATAACGGCAACTTIGCAACCGGA	1/2
					CTTTCCACATTCCGTACCTTGTCTTATT	
3433714	+	bf638r_2936	dehydrogenase	0	TTTATTTCTTATCTTTGCCTCAA	1
			phosphofructokinas		GTCGCAAATTTCGTGTTTTTTTCCGAAT	
3442137	-	bf638r_2943	e	0	TATGAAAGAAAATGATGATTTT	1/2
			coagulation		ΑΤΑΑΑΤΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	
3445149	-	bf638r 2945	factor/attachment	0	TTTGTTCTCATAAAAGACTTCAC	1/2
				-	CTTGTAGAAATCGCAGCAATTTAGAAC	,
3453113	+	hf638r 2951	Sigma Factor	0	ΔΔΔΔΔGΔTTΔCTTTTGCΔCCTCT	1
5455115	•	510501_2551	Signia ractor	0		-
2450542		hfc20+ 2054	offlux transportan	0		0
5459545	-	010561_2954	ernux transporter	0		0
				-	AIGGCAIICGCIACIIAIIIAICAAAIA	
3459804	+	bf38r_2955	phospholipase	0	ATAGTATAAATTTGTAGTAA	1
					TTTCAAATTTATTACTCAGAACCAAAG	
3462245	+	bf638r_2956	Unkown fuction	0	AAAGTCATTATCTTTACCGAA	0
					TCTCTTGAATTATAGTATATAAATGCA	
3463976	+	bf638r_2959	NagA	0	AAAAAGTATCTAATTTTGCCAGAC	1
			glucosamine-6-			
			phosphate			
			deaminase-like		AATTTAATTTCCCTGTCAACCTTATCGC	
3465412	+	bf638r 2960	protein	0	ATAGTTGATTGTTTTTATATAT	0
0.00.111	-		nentidoglycan		ATCGGCAATTGCCGGTTTTTCATTTATT	Ŭ
3468363	<u>т</u>	hf638r 2062	aminohydrolase	0	TCTTCTACTTTTGCACCCGA	1
5400505		510501_2502	anninonyurolase	0		-
2472272		hfc20, 2005	the barrier fronting	0	TTAAATTCTATCTTTCCTCCTAC	4
34/23/3	+	010381_2905	Unkown fuction	0		1
				-	IGCITTATCCGIGCCCICGIAIAGCGA	
3473780	+	bf638r_2969	Unkown fuction	0	AATTATCCGTATCTTTGTCCCCAT	1
			Transcription-repair		ACCGCAAAAGTACTAAATTATCCTTAG	
3479137	-	bf638r_2970	coupling factor	0	TTTTAATGCGCTATCTTTGGTTAG	1
					TTAATGCGCTATCTTTGGTTAGTAGCG	
3479216	+	bf638r_2971	glycosyl transferase	0	GAAAAGCATTACATTTGTCTTCAA	1
			tonB like outer		CTGGCAGCAAACTTGCAATAAAAGTTT	
3482707	+	bf638r 2976	membrane protein	0	TCTTTCGATATATTTGTAACTG	1
			glutamate cystine		GTCCGCAAAGTTACAATATTTATCATA	
3486848	-	bf638r 2980	ligase	0	ΑΑΤΑΤΑΑCΑΑΑΑΤΑΑΑΑCΑΑΤΤ	1
5 1000-0		2300		5	GCCCCCGGAATAATAAATATTCAATA	-
2/127070	+	hf638r 2002	Linkown fuction	0	TTATCTCCCTATATTTACAGACAG	1/2
3407070	-	010301_2302		0		1/2
2400250		hfc20, 2002	History C. P.	<u> </u>	GUTTUCAAATTTAATAAATATUCGGA	
3488259	-	DT638r_2983	Unkown fuction	U	GALGAALLLLAATTALCACCAATT	1
					CACCAATTITCACTCTTATTCTGTGATT	
3488351	+	bf638r_2984	Sigma Factor	0	ATTTCCTTTTCTTTGCGACTAA	1/2

					AAACAAAGTTAGCAATTATTCAGGACA	
3499225	-	bf638r 2990	exonulease	0	GCAATATTATTTTGTTTATTTTT	0
			phospholipid		TTAGCAATTATTCAGGACAGCAATATT	
3499281	+	bf638r 2991	acvltransferase	0	ATTTTGTTTATTTTTGCACAAG	1
				-	ΑΓΤΓΩΓΑΑΑΑΑΤΑΑΤΑΓΑΤΤΤΤΑΑΑΤΤ	
3513159	-	bf638r 2999	Unkown fuction	0	ΑΤΑΑΑCACATCTTATTCGTAAAAA	1
3313133		510501_2555	Onkown raction	0		-
2522021		hfc20r 2010	Unknup fuction	0	CAUCAAAAATAAOCOAOTOCATAAAA	1
5525651	-	010201_2010		0	GCATGCAAACATTCTATGTCAACA	1
2524047		1 (620 2011	responsive	0		
3524017	+	bf638r_3011	regulator	0	CITTAAAGTAACITIGCAACAC	1
					TTCGTCAAATGTAGCGCATATTTTTCA	
3526034	-	bf638r_3013	Unkown fuction	0	GACAGCCAAAGAAATTACCCGGA	1
					GACGACAAAGGTACAACGGATTCGTA	
3528733	-	bf638r_3015	Unkown fuction	0	TGCAAATGAAACATTTTATCAAT	1
			anaerobic sulfatase-		ATCTACATAAGGACGGATTTTTCATTT	
3538875	+	bf638r_3016	maturase	0	ACTTTACCTAAATTTGCACTTTC	1
					CGGGACTTCTCTGTTATTATAATAAAA	
3536911	+	bf638r 3022	thioredoxin	0	CAAATAACTATATTTGCCCCCTGT	1
			nitroreductase		AAGCACAAATATAAAAGAATCATCAGT	
3538762	-	bf638r_3024	family	0	CAACATCTTTATTTCAAAAGAAAA	1
				-	GATGCAAAGATAAAGAGTTCTTTTATT	
3539922	_	hf638r_3026	fur	0	ττοβεαδαδαδαδατάτο	1
3333322		510301_3020		Ū		-
2540452		hfc20r 2027	Unknup fuction	0		1
5540452	-	010501_5027		0	TTTCACAAAAATACAAACATTCCATTA	1
2542726		1 (620 2020	Zn-dependent	0		
3542726	-	bf638r_3028	oligopeptidases	0	AAAIGICIACIIIIGCAACAAGAA	1
			-		ATTIGACAAAAATACAAAGATICGAT	
3542774	+	bf638r_3029	nadE	0	TAAAATGTCTACTTTTGCAACAAG	1
					GACAATAAGAACAAAACAGAACTCAA	
3544882	-			1	TTCTGTCGTCAAAAAGACATGGGA	0
					GCGACAAAAATAAAGTATTAGTTCTGA	
3555788	-	bf638r_3037	hisG	0	ATCACCAAACAATTATCAGAAA	1
					GCTCAAAGATATAAATCTTTTCGCAAA	
3556364	-	bf638r_3038	thioesterase	0	ATGCACCCATCTCACCACCAGAA	1
					CCATCTCACCACCAGAACTTTATCTATA	
3556445	+	bf638r 3039	pirin	0	ATTCGTTTGTTATACAGATGT	1/2
		-	stress responsive		AGTTGCAAAATTACTCTATTTGTTTCAA	
3559725	-	bf638r 3041	protein	0	ATATACACTATAAAAGGATGTTA	1
				-	GTTTTACCATTACGTTGTTATTTTAATT	
3559709	+	bf638r_3042	udk	0	ATTIGTTTTTATATTIGTCAGCC	1
3335705		510501_5012		Ű	TGGTGCAAATGTAAGGAATTTATTGAA	-
2562522	_	bf638r 3044	symporter	0		1
3303333	-	010381_3044	Symporter	0		1
2567122		hfc20+ 2040	matu	0	GENTITIACETTIAGECAAAGETACAA	1
350/122	-	010381_3040	meth	0		1
					GIIIGCAAAGAIAIAAAIICIAAIICA	
3568907	-	bt638r_3049	Unkown fuction	U		1
_					AGGAAACAAAAATACGGAAATATATG	
3569517	-	bf638r_3050	Unkown fuction	0	GTTCAGAAAGGCTTTTTGATAAG	1
					TCAGAAGAAACAAAGAATCAGAGTAA	
3570482	-	bf638r_3051	Unkown fuction	0	TAGTTCAACAAAACAAAGATTATC	1
			ion-sulfer cluster		ТААТААААСССGATTTGCAAAAACAAA	
3570601	+	bf638r_3052	scafford like protein	0	TAAAACGACTACCTTTGTGAGCGA	1
					AACAACCAAAGCATTGCTATTAAAAGA	
3587164	+	bf638r 3070	Unkown fuction	0	GGAATGATTACCTTTGTCTTAA	1
			Ketoacyl-acyl carrier		AGATTACAAGATATTGAATAAATCTTT	
3588559	+	bf638r_3073	protein synthase III	0	CTTTTCTGTATATTTGCGCCCGG	1
2200000			protein synthuse in	Ť	ΤΤΤGGGTAAACACAAGAAACCTTATCA	-
35807/0	+	hf638r_3074	alnha amvlase	0	ΤΔΓΔΓΤΤΓΤΤΓΓΤΑΤΤΤΤΓΓΓΘΑΤ	0
5505749		510501_5074		0	ΤΤΑΤΤΤΑΔΔΔΓΔΑΤΛΑΤΤΓΟΟΟΛΤ	5
2502546		hf629+ 2070	Linkown fuction	0		0
2287210	-	010501_3070	Onkown fuction	U	AGTICAGGAAACAGAATCICCA	U

					GCAACAAAGGTACACTTTTATGAAGAA	
3593756	-	bf638r_3077	Unkown fuction	0	AAAAAGAGTAAACGAAGACAAA	1
		_			AAGAGTAAACGAAGACAAAAACCAAA	
3593785	+	bf638r_3078	Rho	0	ATTATTATTATCTTTGCGGCGT	1
					AGTGAGATTCTGTTTGATTCTCACTCTT	
3596101	+	bf638r_3079	histidine kinase	0	TTTATTTAGCTTTGCACTAC	1
		-	Na+-driven			
			multidrug efflux		TCCCCTATCCGCTCGTCTACTTCTACAG	
3600007	+	bf638r 3081	pump	0	AAAGTTGTATCTTTGCAACCTG	1
		-			AGAACAAAAAGATATAAAGTACGAGA	
3601382	+	bf638r 3082	ffh	0	GATTTTTGTACATTTGCGGCTGA	1
					TACTCTTGACAAAAAACAGGGGATGG	
3603206	+	bf638r 3083	lpA-like family	0	TAAATGATATTACTTTTGCCCGATA	1
		_	· · ·		AGTTCGCAGAATGTTTGCAGATTCAAA	
3608099	+	bf638r	tRNA	0	AAGAATCGTTACCTTTGCATCGC	1
		-			TAGCTCGCAAAAGTATAAGATATCCGC	
3617859	-	bf638r 3094	porin	0	AGCAGAGGCAATACCAAAAATTA	1
					AGCTATTAGACGTTACAACAACACAAA	
3619219	-	bf638r 3096	Unkown fuction	0	ACGTTGCATGGCCGATCCTCTTT	0
					TTGTGCAAATGTACGCAAAAAAGTGC	
3621169	-	bf638r 3097	DNA pol III	0	AAGGATAAAAAAGGAAGCGAAATAA	1
			Septum formation	-	TAGAGCGGAAATGATACGTTTTAAGTT	
3621273	+	bf638r 3098	initiator	0	ATTAGTTTTATCTTTGCAACTGG	1
				-	GGGTGCAAATATAGACTTTTGTACTGA	
3626394	-	bf638r_3104	Unkown fuction	0	CTAAGCCTCCTTTTTTACCATA	1
			nenD aminoacyl	Ŭ	AACAGAGTTATCAGTATTGTATAGAGC	-
3626399	+	bf638r 3105	histidine peptidase	0	ATTTCTATTAATTTTGTGGGTGC	1
0020000	-			Ŭ	ΑΤΓΓΑΑΑΤΑΑΓΑΓΓΤΑΑΑΓΑGGCTTTA	-
3630415	-	bf638r_3107	ion channel	0	GGTTTAGTCCAAATAAAAAAGG	0
3030113		010001_0107		<u> </u>	GGTGCAAATATAAAGAGTTTTAACAGT	Ũ
3640227	-	bf638r_3112	sulfatase	0	CCGTCGAGTTCAAAAACAACTA	1
3010227		010001_0112	Sundtase	0		-
3640403	+	bf638r_3113	sulfatase	0	AATTTGTATATTTGCAGACAT	1
3010103	•	010001_0110	Sundtase	Ŭ	AGTGCAAAGATAGGATTTTATTTCCAT	-
3643936	-	bf638r_3114	Glycosyl hydrolase	0	TTTTTTGGTCACGTCTATGCAA	1
3013330		010001_0111	nerinlasmic ligand-	Ŭ	TTCCATTTTTTGGTCACGTCTATGCAA	-
3644004	+	bf638r_3115	hinding sensor	0	ACTGTTACTTTTGCCGGTAA	1
3011001	•	010001_0110	binding sensor	Ŭ		-
3649006	-	bf638r_3117	gnmA	0	AGTTCACGAAACTTTTTCTAAAT	0
			00000	Ŭ		Ű
3649099	+	bf638r_3118	Unkown fuction	0	TAAAAGTTACCTTTGTACACTGT	1
	-	010001_0110		Ŭ		-
3653095	-	bf638r_3119	ABC transport	0	AAAGAGACGGAATAATGCTAAAA	1
		010001_0110		Ŭ	GTCCAAAGATAAGATTTTCTCCGGACA	-
3656331	-	bf638r3121	Glycosyl hydrolase	0	GTTTTTTATCACACGGTTAAAA	1
				-	TAATCAATTAATACTGTTTAAAGTCTCT	
3661732	+	bf638r 3124	FecR	1	AAAGGTTAAAAAGTTTTTGATTG	1
				_	TTCCGCAAACATAGCAATTATTTCAGA	
3666695	-	bf638r_3128	Unkown fuction	0	ATAATACATTATATTTGCAGC	1
		0.0001_0120		Ŭ	TTCCGCAAACATAGCAATTATTTCAGA	-
3666744	+		tRNA	0	ATAATACATTATATTTGCAGCAC	1
	-		nhenvalanvl tRNA	Ŭ	TATTTCTTTCTATCCTCTTTGATTGCAAT	-
3668975	+	bf638r_3130	synthetase subunit	0	ATTATTGTTACTTTTGCAGCAA	1
	-			Ŭ		-
3672059	+	hf638r 3133	ngk	0	ΔΑΤΤΔΑΤΔΟΤΔΑΟΤΤΤGCGGTCAT	1
30,2035			1°0''	Ť	ΤΑΑΤΑΑGCΑΑCAAACCGTATATTTATT	-
3680816	_	hf638r 3140	laminarinase	0	TAGTTCATCGTCCCCCATTGTT	0
5000010		510501_5140	Acyl-protein	L Ŭ	TAATCGATTGTGCGTAGGGAGATCAG	
3681092	+	bf638r_3141	synthetase LuxF	0	ΑCCATTTCACTGTCATCTTAATAA	0
2000027		hfc20+ 2140				4
3089027	-	א422_זאנסוע	NAD(P)H:TIAVIN	U	GAGUGUAAAGATAGGUAATTTATTCCA	T

			oxidoreductase-like		CTCTCGTCAACTCGCCGGTCAGT	
					GACAGCTCAACAAAATAAGCCCTGCA	
3689639	-	bf638r_3149	Carbonic anhydrase	0	AATGTTGTAAAGAGAAATAAAAAA	1/2
					GCCCTGCAAATGTTGTAAAGAGAAAT	
3689705	+	bf638r_3150	Unkown fuction	0	AAAAAATGTAAATTTGTCCCGAT	1
			Methylmalonyl-CoA		AATTGCAGAAAAATTTCTTTATTAAAC	
3690871	+	bf638r_3151	epimerase	0	AAGAATTGATTTTCTTTGTGCTGT	1/2
					AAGAAAGAAAACGGAAAACAATCCGA	
3698825	+	bf638r_3158	amylase	0	TGATTTACCCTATATTAGCAACAT	1/2
			Transcriptional		AATAGTCAAACGTTTGACTATTATCGG	
3700839	+	bf638r_3159	regulator	0	AGAATATTCCTACCTTTGCAGCGA	1/2
			fructose-			
			bisphosphate		TATGCAAAAGTAAGAATAATCCTTTGA	
3705113	-	bf638r_3162	aldolase	0	ATAGAGAAACCCTCGGGCGGAAA	1
			Endonuclease/Exon			
			uclease/phosphatas		CCCTGCAAAAGTCTTAAAAAAAAGCG	
3706387	-	bf638r_3163	e	0	AGAATACGACTTTTTTTCCAAAAC	1/2
					TTTCCAAAACTTTTTTCCTAAGAAACAA	
3706476	+	bf638r_3164	rpmE	0	AAAAGCATTATCTTTGCAACCT	1
					ATAGGAGAAAAAACAGCGCTGTAGGA	
3708371	+	bf638r_3166	Peptidase	0	AACTTCTTTCGTATCTTCGTAACAT	0
					GTAGCAAAAATACTATTTAAACAACAG	
3719369	-	bf638r_3170	OsuA	0	TCGCTTATTTAAATTCAAACAAA	1
					AACATACTATCACTGAACTTTTCAGTCT	
3719517	+	bf638r 3171	OsuR	0	CCTTTACACTATTTTTGTGACAT	1
		-	maltose		ATCTGTTATCCACTGTCGGCACGGACT	
3722267	+	bf638r 3173	phosphorylase	0	TTTTTTGTATCTTGGGTGCCGT	1/2
		-			ACAAACCGGAAAACTGTTTTTGGTTTT	
3724800	+	bf638r 3174	efflux transporter	0	TTAGTTTTATATCTTTGCGCCCTC	1
		-			CTGAAATAAGAGTGCCCGTTCAACGCA	
3726055	+	bf638r 3176	efflux transporter	0	ATAATTAATTTCACCACAGATTA	0
		-	phosphoribosylform			
			vlglycinamidine		TATAGTATTTCCTTCTCACCACCAACGA	
3732184	+	bf638r 3179	synthase	0	ATTTGCTTATCTTTGCACGCAA	1
		-			TCCTTTCCTAAAGTTTGCACTTCTCCAC	
3736041	+	bf638r 3180	Unkown fuction	0	TCTTTTTATTAATTTTGTAAAAT	1
		-			GGTGCAAAGATACAATTTTGCTCCTCA	
3742924	-	bf636r 3183	Unkown fuction	0	TTTGCAACGGTTAAGCAAGCAATT	1
		-			GTTCCTTCCACTGTTAGGTTAAACGTT	
3743054	+	bf638r_3184	uvrA2	0	GCTGACTCACTATCTTTGCAGTCC	1
			Carbon starvation		AGCGCAAATGTAACATAATCTAAGGA	
3748206	-	bf638r_3187	protein CstA	0	AACTACACAACTTTACGAAGGGTTT	1
			Histidine kinase-like		ΑΑΑΤΑΑCCATCTTTTCTTATTTATATCA	
3750018	+	bf638r_3189	ATPases	0	TTAATATAGTATCTTTGTGAAAT	1
					CTGCAAATATATGCACAAAAACGCATA	
3753750	-	bf638r_3190	Unkown fuction	0	TAAAACCGGGAAACAGGTCACTT	1
		_			TACCGGCAGAAACTACCGAAAACAAA	
3754057	+	bf638r_3191	ATPase	0	AAACAATATTTATATTTGCAAGCAA	1
					AATTAAGTAAACAAGCCGAACGTTCAA	
3764091	-	bf638r_3198	opuAA	0	ATGGTTCATCGCATTATTTCCGG	0
					GGAGGCAAATATAACAATTTCCCTCCG	
3767308	-	bf638r 3200	sensor kinase	0	GAATCTCCCACCTGCTTGGTTTA	1
		_	Glycosyl hydrolases		GGTGGCAAATATAGCGGAGATATCTG	
3771513	-	bf638r 3203	family	0	CCACCGGCTATTAATTTTGTTTC	1
	1		outer membrane		GCCGCAAAGGAACGCGGAATCCCATT	
3773920	-	bf638r 3204	receptor protein	0	TCCCAACTAAAAGATTTGTTTCAAA	1/2
			1.		GAAGCAAATGTAGATATTATAATTATA	,=
3777198	-	bf638r 3207	Unkown fuction	0	CTAAGCAAGAGTTAAGAGAAAAAA	1
			glucose/galactose	-	CATAGCCTTTTCAACCTAAATTATATAT	
3778263	+	bf638r 3208	transporter	0	TGGTCTAACTTTGTTTATGT	1
					1	

			glutamine		GATATAGAAACGTACCTACAACCGACT	
3781123	-	bf638r 3210	amidotransferase	0	TGTTATCTTGCTAACCGGAGTTT	1/2
					ΑΑΑGΑΤΑΑΑΑCΑΑΑCCΑΑΑΑΤΑΑΑΑΑ	
3784358	-	bf638r 3212	ion transporter	0	ATAGTTTTAGAGTAAGTTTAAATC	1/2
		_	•		ATATGCAAAGTTATTGGGAAGGGAGG	
3794891	-	bf638r 3220	efflux transporter	0	AGATAGAAAGGTTGAAATGAATGA	1
					CCTGTCAGAATAAGATAAATCTGTTTC	
3794890	+	bf638r 3221	regulator	0	ATAATTTGCGTACTTTTGTATTTC	1
					GATAGACGTTCATTTCCATATTTGGGG	
3795981	+	bf638r_3222	Peptidase family	0	ATATTCAGCTATCTTTGTCGCAT	1
				Ŭ	GAATCAACGAACAGGGGGGATTTTATC	-
3799443	+	bf638r_3225	Unkown fuction	0	AGTAATTATCTATCTTTGCAGCCC	1
3733113		510501_5225	Childenn Accion			-
3800599	-			1	ΑΤΑGΑΤΑΑΤΑΑΤCCCAAAAGTTT	1
3000333						-
3805058	1	hf628r 2778	Alpha-L-fucosidase	0	GGGATTTTTTATCTTGCACCAT	1
3003330	'	510501_5220	alactron transfor	0		1
2909160		hfc20r 2220	flavonrotain	0		1
3808109	Ŧ	010301_3229	пауоргосени	0		1
2012020		hfc20+ 2222		0		0
3812026	+	010381_3232	giycosy nyurolase	0		0
2017577		hfc20+ 2224	Chra	0	ATACAAACAACACGCCAACCTGAGTT	0
381/5//	-	010381_3234	Сора	0		0
2010100		1 (620 2225		0	GACAGIAAAIAIAGAIAIIAIICICCI	1/2
3819498	-	DT638r_3235	NTRY	0	ACTITCAACACAAAACACAACAAA	1/2
				_	CTCCATTTAACACTTAATAAACAGAAA	
3822775	-	bf638r_3237	surface antigen	0	ATGTTCAAAATCCAAGGTATGA	0
					AAGCTCCCTGCTATTCCTTAAGTAAATT	
3822928	+			1	AAATCCGCTTTATTTGTATCAT	1/2
					TCCGGACAAAGATAAAGTAACGTTCC	
3823344	-			1	GTAAGGTTTTTACCGACAAATCTTT	1
					AAGTAACGTTCCGTAAGGTTTTTACCG	
3823407	+	bf638r_3238	Unkown fuction	0	ACAAATCTTTATCTTTACAGTCT	1/2
			Beta-eliminating		TCTGCAAAGGAAGAAAATTATTCGCA	
3826794	-	bf638r_3240	lyase	0	GAAAAAGAAAGGATTTCACCACAG	1/2
					AGTGCAAAGAACGAAATTATTCACTTA	
3827875	-	bf638r_3242	Sigma factor	0	AAAACATACGATCATGATGGATT	1/2
					TATTTTTTTTTTTGTAACCTTTCCGCAG	
3827881	+	bf638r_3243	Unkown fuction	0	CCTGCTGCGTCAAACAGTGCAA	0
					GCGGTGAAAGTTAACAAAATTATGCA	
3828731	-	bf638r_3244	Unkown fuction	0	CGCATTGTTATTACAAAGACACTAA	1/2
					GCATACGTTAAATATACAACTTTTTATC	
3828898	+	bf638r_3245	рохВ	0	ACAACTACCTGTTATTGCAACAT	0
			NADPH-dependent		AATACAAATATAATCAGTTAAATATGC	
3831486	-	bf638r_3246	FMN reductase	0	GATGGTTAAAGTAATATTGTTTCC	1
					GCTGCAAATGTATGGATTCTTTTAAT	
3836168	-	bf638r_3251	groES	0	GTAACCAAAATATTTCATTTCTTT	1
					TATTCATTCCTAATTAAAGATACGGTTT	
3836387	+	bf638r 3252	Unkown fuction	0	CAGGTCAGAATCATTTGCATAG	0
		_	Polyphosphate		GTAATAAAGATACAAAAAATCGGGCA	
3846074	-	bf638r 3259	kinase 2	0	GAAAAGTTTCATCCGATTAGCTAA	1/2
					TTTCCTACACTTCTTTTGAAGTAACACG	,
3848557	+			1	GAAATTGTGTATCTTTGTTCTGA	1
					AATGCAAAGTTAACTAATCATGAGGA	
3848580	-	bf638r 3262	integrase	0	GATTTCGGTCTCCTCTTTCTGTTT	1
				Ť	TTGCAAAGAAACAGCTTACGTATTACA	-
3851660	-	bf638r_3264	glycosyl transferase	0	ATTGTTTGACGGAAGTATGACGA	1/2
5051000		510501_5204	Biyeesyi transierase	- Ŭ		-/-
2851828	+	hf638r 3765	glycosyl hydrolase	0	TTTTTTCCTTATTTTTGCCCGAA	1
3031030		510501_5205	biyeesyi nyarolase	, v		-
2851020	+	hf638r 3765	glycosyl hydrolase	0	CAGTTIGCTTATCTTTGTCACAA	1
2021220	I '	010301_3203	Biycosyi nyurolase	0	CASTINGUIATCITICACAA	1

205 (020		1 (620 2260		0		
3856930	+	bt638r_3268	transposon	0	ICAIGAITAGITAACITIGCAITGC	1
					AGAACAAAGATACACAATTTCCGTGTT	
3856953	-			1	ACTTCAAAAGAAGTGTAGGAAAA	1
			histidyl-tRNA		GTTGCAAAGTTATATGAAATAATTGAT	
3859531	-	bf638r_3269	synthetase	0	TATTGAAACAGAAACCACAGACTT	1
					ATTTACAAAGATATATATAAAAAGAGA	
3862393	-	bf638r 3272	Unkown fuction	0	СТАТСААСАТТТАБААСАТАААА	1
			Putative neutral			
			zinc		ΤΤΟΓΓΑΛΑΛΑΤΑΛΑΓΑΛΑΔΟΓΟΑΓΟΤ	
2062752		hf620r 2272	motallonontidaça	0		1
3803233	-	010301_3273	metanopeptidase	0		1
2000544		1 (620 2276	-	0	GCCAACAAAGTTAATTGTTTTTGCGG	
3866541	-	bf638r_3276	Fur	0	AAAGCAAAAATATATCTGTAAATT	1
			Dolichyl-phosphate-			
			mannose-protein			
			mannosyltransferas		GTTAATTGTTTTTTGCGGAAAGCAAAA	
3866600	+	bf638r_3277	e	0	ATATATCTGTAAATTTGCAGCCAA	1
			AraC-type DNA-		GTCACAAATTTCATACATTATTTTGATA	
3871765	-	bf638r_3281	binding	0	TACACAACTTTTTCGTATATAT	1/2
					AAGAATATTTAACTTTTAATAACCCGA	
3871871	+	bf638r_3282	recO	0	AAATAAAGCGTACCTTTGCCTGAA	1
				-	GCGCAAAGATAAAGAAAGAATCGTA	_
2875006		hf620r 2205	cystoine synthese	0		1
3873990	-	010301_3263	Dheenheatuaaral	0		1
2076024		1 (620 2206	Phosphoglycerol	0	ACCACAGITAATGCGCAAAGATAAAG	
3876034	+	bf638r_3286	transferase	0	AAAAGAATCGTACCTTIGCGACCGT	1
			TonB-dependent			
			heme/hemoglobin		CCTACATATAGGTATTGTACACTACCG	
3878761	+	bf638r_3288	receptor	0	CATAAAAACCGATATTTGCCGGAC	1/2
					AAGATTCGTATTTTGCATTTTATTAAAT	
3887908	+			1	CTTATTCTTATCTTTGCCGCAT	1
			Nucleoside-			
			diphosphate-sugar		TTACCATTAACAAACTCTTCCAGTTTCT	
3889361	-	bf638r_3294	epimerase	0	TGTTCGAACGTATTTTTTGTTC	0
000001						Ű
3807765	_	bf628r 2207	Glycosyl transferase	0		1
3892203	-	010301_3237	Giycosyi transierase	0		1
2202040		hfc20+ 2202	lou A	0	GATGCAAAGGTAGAGATTATTTCTTAG	1
3898940	-	010381_3302	leuA	0		1
					GATIGCAAATATAAATAAAAATAAGTA	
3899399	-	bf638r_3303	Unkown fuction	0	ATCTACCAAAAACAAGTCATCCCC	1
					GGATGCAAAAGTAAGGCATTAGGAGA	
3905042	-		tRNA	0	TAAGAGACAAATATAAAAGGGGATT	1
					AAAATCACCCTTTCAGAAAACAAAATC	
3905953	+	bf638r_3305	ferritin	0	CCCTACCCCATGTTACATAACCAA	0
					TATGCGACTTATGGGATGAATTTCAAC	
3906703	+	bf638r_3306	sspA	0	TCAATTATTTATCTTTGTTAGCTT	1
			Transcriptional	-	ACCAAGCATATTATTTGCATGTTTCCG	_
3012751	+	hf638r 3312	regulator	0		1
5512751	'	510501_5512	regulator	0		-
2010067		hfc20+ 2222		0		4
3918867	+	010381_3322	HTH protein	0	AATTAATCAATATATATTIGCAATAT	1
			Nitroreductase		AAAGCAAAGTTATACCATTTCCAGATC	
3924581	-	bf638r_3326	family	0	TATTATTATGTATTACTTTTCGTT	1
					ACTTTTCGTTATATCGGTAAAATTACGT	
3924672	+	bf638r_3327	HTH protein	0	TTTTTAGACTATATTTGTCTTAT	1
			periplasmic ligand-		TTCACAAAGATAATACATGCCGGACAA	
3929635	-	bf638r 3328	binding sensor	0	ATAATTCTCAAGTGCATGATAAA	1
			0	-	ΑΤΤΤGCAAAATTAGCACATAAATAGAA	
3031805	_	hf628r 2220	Glycoside hydrolasa	0	CATTCTGTTCTGCATTTGTGACAT	1
3331002	-	010301_3323		0		1
2024040		hfc20+ 2220	Linkering C. H.	~		
3931948	+	0555_185010	Unkown fuction	U		1
					CCIGCAAAAGTATAAGATACACTGAAA	
3943253	-	bf638r_3335	Glycosyl hydrolase	0	GGTGTTTTATAAATCCATGACATA	1

					AAAAATGAATAAATATCACCCATTGGA	
3943669	+	bf638r_3336	Acetvltransferase	0	AATAAAATGCCATATTTGCACAAT	1/2
3313003		010001_0000	ricetyltransferase	<u> </u>	GGAACAAAAGTATAAAAAAGAAGCGG	-/-
3045766	_	hf638r 3337	efflux transporter	0		1
3343700		010301_3337	cinux transporter	0		1
2045927		hf620r 2220	cupin liko protoin	0		0
5945627	+	00202_3220	cupin-like protein	0		0
2046452					ATGTAAAGGTAGTCATTTAGGTCAAG	4 /2
3946452	-	-		1	ATCCATATCCTAATCCGGGACAAT	1/2
					ATCGTAATTCATAGTAATAATTATATTA	
3948124	+	bf638r_3342	Unkown fuction	0	ATAACACTAGTTTTGTTATCAC	1
					TTCTTATCATCCGAATAGGGAATCTTCT	
3950211	+	bf638r_3343	Unkown fuction	0	TATTTTTTCTGTCTTTATAATCAA	0
					CCACAAAGATATATTTTTTTAGATAA	
3952547	-	bf638r_3346	Unkown fuction	0	GTTAAAATTAATCTGATCTTTAG	1
					GCACTAATAACAATATAAAAATCATTT	
3953900	-	bf638r 3348	Unkown fuction	0	TGCTTTCAAAATCATCTATAAATT	0
					ATTGCAAAGATACGGACTTTTATCAAC	
3954914	-			0	TTTGCAAATTTACCAAGCGAAAC	1
						-
395/752	+	hf638r 33/19	hdh4	0	GAAACAGACTGTTTATGTAAGTAT	Ο
5554752		010301_3343		0		0
2070745		hfc20r 2260	nhago intograco	0		1/2
5970745	-	0026_186010	phage integrase	0		1/2
					AAGIIIIAAAACIAAIAAAAAGAIAGA	. /0
3972026	-	bf638r_3361	HIH regulator	0	AAAGCACCAACITATAAGATCITI	1/2
					AAAAGATAGAAAAGCACCAACTTATA	
3972094	+			1	AGATCTTTTTTGTTTTTAATATCA	1/2
					ATGAACCGATACGGAATGGATTACTAT	
3972214	+	bf638r_3362	pncB	0	AGAATATTTTGTATCTTTGACGAG	1
			TlpA-like family		ACACGCAAATATAACCAATGAAAACA	
3974658	-	bf638r_3363	protein	0	GAAATCGACAAGCGGTATCCCAACT	1
					ACCCAAAGAACAATCGGTAGTCCGTTT	
3977707	-	bf638r 3364	Unkown fuction	0	GTGTTCCGTATATATGACATTTAT	0
		_			TCGTTTATTGTACCCAAAGAACAATCG	
3977748	+			1	GTAGTCCGTTTGTGTTCCGTATAT	1/2
			acetyl-CoA	_		_/ _
			carboxylase biotin		τοστοσαααααστατοσατοσταττοα	
2077850	1	hf628r 2265	carboxylase subunit	0		1
3377830	т	010301_3303		0		1
2022004		hfc20+ 2200	hata lastamasa	0		1
3982904	+	010381_3309	Deta-lactamase	0	AAAGCCGCCTATCTTGCAACAT	1
		1 (600 0070				
3986462	-	bf638r_3370	IMPDH	0		1
					CCCGCAAAGGTAACACAAATCGGCCT	
3986982	-	bf638r_3372	Unkown fuction	0	ACGTTAGGCTTTTCTTATAAATTTA	1
					AAACAACACTACTTGGCAAACACTTTC	
3987118	+	bf638r_3373	Unkown fuction	0	ATACCTCCGGTGTTATACATCAAC	0
					CTACAAAAGTAGGTCTTTTTAGTGAAT	
3988311	-	bf638r_3374	Unkown fuction	0	TAGCCCGCATACTGTTCCGATAAT	1
		-			GAGAATCAGCAAAGCGGTACGACGGC	
3992184	-			1	CATCATCTTCGGCATCTGTTTTCTG	0
			Cvs/Met			-
			metabolism PI P-		GACGCAAAAGTAGAGAAAATTATTGG	
3995708	_	hf638r 3378	dependent enzy	0	TITAAAAGGCTATCTTTGCGAGCGA	1
3333700		010301_3378	N acotulmuramovi	0		-
2005750		hfc20- 2270		0		4
3995758	+	DT638r_3379	L-alanine amidase	0	TITAAAAGGCTATCTTIGCGAGCGA	1
			Homocysteine S-	-	IACIGAGAGCAGATGACCGGAGTGAG	
3996968	+	bt638r_3380	methyltransferase	0	CCGATAAATCCTATATTTGTTGCCG	1
					CCGCAAAGATAGTCATTTATCAGGAG	
3999019	-	bf638r_3381	Unkown fuction	0	GCATCCCTCCCGAATGGCTACCGGA	1
					GGTAGGCGCACGAAGAAAGATTCCCG	
3999489	+	bf638r_3383	Unkown fuction	0	GATTATTTCCTACTTTTGTACCCAT	1

			haloacid			
			dehalogenase-like		TCCTGCAAAAATACGCTTATAAAATGA	
4004632	-	bf638r 3387	hydrolase	0	AAGCAGCCTGCATCCGGTAAATA	1
			,		TTCTTTTCCGGATTCAAGAACCAACAC	
4004740	+	bf638r_3388	Unkown fuction	0	ATACGGCTTTTGTTATTACCGCAT	0
					TGAAGTACAACAATCGGGAAAAGAAA	-
4007483	-	hf638r_3390	his kinase	0	AGGTTCGGTAGCGGTCCTCTACTTT	0
1007105		510501_5550				
1015176		hf620r 2206	Unkown fuction	0	GETTAATCETTTEGTTATCTT	0
4013470	-	010201_2220	Onkown fuction	0	GUITAATCCTTTGGTTATCTT	0
4007005				1		0
4007695	-			1		0
				-	AACGTATGAACATCCTTTTGGTTTAAT	. / .
4015534	+	bf638r_3397	transglycosylase	0	CCITIIGGITATCITACCCCAC	1/2
				-	GIGGCAAAAIIACAIAIIIAIIIAIAA	
4023430	-	bf638r_3399	helicase	0	AGGAGACCTCTTTAATTTAAAGAA	1
					ACTGCGAATATACGTTATTTCTAAAAA	
4023966	-	bf638r_3400	Unkown fuction	0	ACTATTGTATCTTTAGGTAATGAA	1/2
					TTTGACTGCGAATATACGTTATTTCTAA	
4024012	+	bf638r_3401	MgtC	0	AAAACTATTGTATCTTTAGGTAA	1/2
			Transcriptional		GCCAAAAATAAGCACAATCCTCCAAAA	
4027708	-	bf638r_3404	regulator	0	GATCAAAAGATAATCTCTTTTTAA	1
			peptide methionine		GATACAACAGTTCTTAATAATCCGAAA	
4027823	+	bf638r_3405	reductase	0	ACGATCTTCGTTTGTTATTTATAA	1/2
			peptide methionine		TATAAAAGAGACTGAAAATTATGAAG	
4027869	+	bf638r 3405	reductase	0	AAGAAGTTTACTATATTTGTCGTGC	1
					GGGCAAAAATACATCCTTTCCCGAAAT	
4029296	-			1	AAACGCATAAAAACGATATTTTT	1
					AAATCAGCAAAAAAATAAGGTTTAGTC	
4029414	+	bf638r_3406	Unkown fuction	0	TTTTTTATCTACTTTTGCAGGCAT	1
4023414		510501_5400	onkown raction	0		-
1031545	+	hf638r 3/08	Unkown fuction	0		1
4031343		510501_5400	Chikown fuction	0		-
1032306	1	bf638r 3400	radical SAM family	0	CTTTTTTGTATATTTATGCAA	1/2
4032300	т	010301_3403		0		1/2
4020500		hfc20+ 2411	Unknum funtion	0		1
4036590	-	010381_3411	Unkown fuction	0	GGGAGTACGTTTCTATCAAATAGAT	1
1026662		1 (620 2442		0		
4036663	+	DT638r_3412	UDG	0		1
					CITIGCATAAAAGCTIGCAAATICAGA	
4037685	+		trna	0	AGTTATICIACCITIGCAGCCGC	1
			CDP-alcohol			
			phosphatidyltransfe	_	TCGCAAATATACACATCATCTGATGAG	
4041866	-	bf638r_3418	rase	0	TTGCAAAGGAATGAGTGAGAATTT	1
					ATTACAAGAACAAGGCTGAAGGAAAA	
4048448	-	bf638r_3424	Unkown fuction	0	AATGTTCGGCGGGAAGTTGTTCATA	0
			6-pyruvoyl			
			tetrahydropterin		GGGCACAAAGATAATACAAAAGATAG	
4049274	-	bf638r_3426	synthase	0	TTTTCATTCAGCGAGAAAAGTTAT	1
					TTATATTAGGTACCATTTCGCTGGGGC	
4049359	-			1	TCGGCATTCTTGGCATTTTTCTG	0
					AAGATAGTTTTCATTCAGCGAGAAAAG	
4049343	+			1	TTATTTTCCTATTTTGCCGAAT	1
	ſ				GCTGCAAAAGTAATCAATTAAAGCCAA	
4050271	-	bf638r_3428	phosphorylase	0	ATTGACCAGATATTATCTTTAAT	1
					ACACAAAAATACGATTAACTCTGATAT	
4055339	-	bf638r_3434	Unkown fuction	0	TACAAAAACTTTTCGGCGGAAAAT	1
				-	TATATCAGATAGACTACGATTTCGAAC	
4055632	+	bf638r 3435	maeB	0	TTTTATTCCTACATTTGCGGGCAA	1
	1			-	TTCTTTATAAAATGCTTGCTAGTTCGAT	-
4058221	+	hf638r 3/36	gdhB2	Ο	TTTTATGTTTACTTTTGCAACGT	1
+050251		510301_3430	501102	0	GTTCAAATCTATGAATTTTTATCGATTA	-
1062016				1		1
4002010	i -			T		1

					TAATATTCATTTTATTCATCTTATTCCAT	
4070909	+	hf638r_3445	HTH regulator	0	TTTTTCGTATATTTGCTTCGAA	1
107 00 00	-			<u> </u>	CAATTAATAGGTATTTTTCTGACAAGA	-
4071946	+	hf638r 3446	Unkown fuction	0	ΔΔΔΔΔCTTGTΔΔΔTTTGCΔΤΔΔΔC	1
4071540	•	010301_3440	Oncown raction	0		-
4075207		hf620r 2440	Unkown fuction	0		1
4073207	-	010301_3440	Olikowii luction	0		1
4075240		hfc20+ 2440	I talance fronting	0		4
4075218	-	bf638r_3448	Unkown fuction	0		1
				-	AACGCAAAGIIAIAGIIIICCIIIAIIA	_
4084876	-	bf638r_3456	Unkown fuction	0	TAATAAATGCACAACATGCGATT	1
					ACAGACAAAAGTCGCTGTTTTTATTGG	
4088052	-	bf638r_3457	ppdk	0	GAAAAACAAGAAAAAAAAAAAAAA	1/2
					AATACGCCATTCCGAATGACATCAGAA	
4088395	+	bf638r_3459	gdhB2	0	AACTTTTCTTATATTTGCATATGA	1
					TTTTTATAAAAAGGTTTCATTTTCAACT	
4089928	+	bf638r_3460	aminopeptidase	0	AAAATCGCCTAACTTTGCATCTC	1
					TTTGCAAAATAAGCACTTATTCCGCAA	
4096176	-	bf638r 3462	Unkown fuction	0	TCTATCACTAACAGAAACTCCTTT	1/2
		_	tRNA		TCTGCAAAGGTACAACTTTTCGCTCTTC	
4097938	-	bf638r_3464	adenvlvtransferase	0	ACTTTCCACTCTTCACTCTAAAT	1
			uuenijijaanoreituse	<u> </u>		-
1098005	+	hf638r 3465	Unkown fuction	0	TAAATTTGTATTTTTGCCCTCT	1
4050005	•	010301_3403	Onkown raction	0		1
4000216		hfc20r 2466	Topp linked OMD	0		1
4099216	+	010381_3400	TOUR-IIUKED OIMP	0		1
		1 (())))]]]			AACGGCAAATATACACATTTATTCGG	
4109706	-	bf638r_34/1	Cold Shock protein	0	TTATICCTAATTCTCCGGCCCCAA	1
					TGAAACATCATTTTTGATGAAATTCAG	_
4126588	-	bf638r_3489	NusG	0	AACCGGACAAAAAGAAAAATTCAA	0
					ATTTATAAAAATATTTTGCTATAGTAAA	
4126772	+	bf638r_3490	Unkown fuction	0	AATACTGTTTACCTTTGTTCCAT	1
			phage derived		AAGTCCTAATAAAGTTGCATCTTAATA	
4129916	+	bf638r_3492	protein	0	CAACCTTTATTATCTTTGCGTCAT	1
					AGCATAAAGATAACAAAAACAAACGA	
4131450	-	bf638r 3495	Unkown fuction	0	CATATCATAGCAGAAGTCATACTAT	1/2
		_			GGAAACAAATGTACTTCTTTCTGATA	
4134236	-	bf638r_3499	Unkown fuction	0	AGATTGGCTACATTTGCACCAATT	1
				-	ACGGAAACAAATGTACTTCTTTCTGA	
1131281	+	hf638r 3500	Unkown fuction	0	TAAGATTGGCTACATTTGCACCAA	1
4154204	•	bi0301_3300	Onkown raction	0		1
4124050		hfc20r 2501	UTU regulator	0		1
4134959	+	1025_185010	HTH regulator	0	AATTATCGGTACTTTGCCACAGA	1
		1 (600 0504			GAACGCAAAGATAATAATATATGTGCT	
4137300	-	bf638r_3504	ruvA	0	ICACGAACCIIGAAIAACAAAAAC	1
			diaminopimelate		AACACCCTTAAGAGACCTGAAAACAA	
4137408	+	bf638r_3505	dehydrogenase	0	AGAAAATGACTAATTTTGCAACCGA	1
			anaerobic			
			ribonucleoside			
			triphosphate		TCTTGTTAAAACAAGAACAACTTATTG	
4139271	+	bf638r_3508	reductase	0	CTTTAACTGTTACCTTTGTAGCAG	1
					CACTACCTCCCCCAACCGAAGAAGTCC	
4142550	+	bf638r_3510	transporter	0	GATTTTGTTTATTTTTGTAGCACT	1
		_			GTAACATTCATATCATGATTATATAATC	
4146200	+	bf638r 3513	Unkown fuction	0	CAAAAGTCATATATTTGCAATGT	1
				-	ACGACAAATGTAAGCATTTCGCTTTAC	1
4150646	_	hf638r_3516	nentidase	0	TTGCCGTCTGTTTCTTTATGCTAT	1
110040		5.0301_3310	peptiduse	<u> </u>	GACGCAAATTTACATGATTATTTTCAG	-
1151017		hf638r 2520	protesse	0		1
4134017	-	5520	procease	0		1
4155007	Ι.	hfc20+ 2522	Linkown further	0		4
415569/	+	גענע_1823	UNKOWN TUCTION	U		1
				-	GAGCGCAAAGATAGACAAAAAAGCAA	
4158235	-	bt638r_3526	Unkown fuction	0	AAATATACGTTTTTTGCCCTATCTT	1

					AGATAGACAAAAAAGCAAAAATATAC	
4158244	+	bf638r 3527	ubiA	0	GTTTTTTGCCCTATCTTTGTTCTCT	1
			glucose-1-			
			phosphate			
			thymidylyltransfera		GTGACAAAGAACGGAAAGAATTCTGA	
4161317	-	hf638r 3529	se	0		0
4101517		510501_5525	50	0	TCTGCAAAGGTAACTATATTTGGGCAA	0
1161877	_	hf628r 2520	Unkown fuction	0		1
4101077		510301_3330	Onkown faction	0		1
4161002		hfc20r 2521	nnk	0		1
4101905	+	010201_2221	ррк	0		1
1166011		1 (620 2522	responsive	0	GUUGUAAGGIATAAAAAAAAATUAT	0
4166914	-	DT638r_3533	regulator	0	AGATTIGATIATCITIGCGGCTAAA	0
					AGCCCGCAAGGTATAAAAAAAAAAAA	
4166963	+	bf638r_3534	ABC transport	0	TAGATTTGATTATCTTTGCGGCTAA	1
					TTAAGTAACACTGTTTGTTTTTTATCCA	
4169215	+	bf638r_3537	efflux transporter	0	ATGATAGACTATCTTTGCTTCGC	1
					ACCTGCAAATATCAAAAATATTTCGTC	
4179445	-	bf638r_3543	Unkown fuction	0	TCTTTGCAACTTTCTGTGGCATGA	1/2
					TTGTGTATTAATACCTGCAAATATCAA	
4179483	+	bf638r_3544	Unkown fuction	0	AAATATTTCGTCTCTTTGCAACTT	1/2
					TGGCTTTACAGAATTGCTTATAACGTA	
4180444	+	bf638r_3545	sigma factor	0	TTTTATGATTATATTCGCAGCCGA	1/2
					GCTCTTGACAAAAAGAAGGCAAGAAC	
4181485	+	bf638r 3547	Phospholipase D	0	AGAGATGTTGTATCTTTGTTTCCTT	1
					TTCACACCATTCCTGTAAGTTATTCAG	
4182817	+	bf638r 3548	thvB	0	GCTGTTTTTGTAACTTTGGCAGGA	1
			Transcriptional	-	TATGCAAAGTTAGCTATTTCCCCGGCA	
4184666	-	hf638r_3550	regulator	0	ΑΤΑΑΑΤΑCΤΑΤΑGTTΤΑTΤΑCTTT	1
1101000		010301_3330	regulator	0	ΑCTTTTATTTGTAAAAATAGAATAAAT	-
1101762		hf620r 2551	nontidaça	0		1
4104702	т	010201_2221	peptidase	0	COGCAATAGTTAGTACCTTIGTAA	1
4100140				0		0
4189148	-		IRNA	0		0
4400400				0		
4189189	-		trna	0		1
			biopolymer		GGGTGCAAATTACAAAAAAAATGCGA	-
4189148	-	bf638r_3555	transporter	0	ACCACAAGCGTTTTCAGCTACAAAT	0
			biopolymer		AGCTACAAATGTATTCTTTTTTTTCTTC	
4189189	-	bf638r_3555	transporter	0	TTCTGCAGCATTATCCTTCTTT	1
					GGCACAAATATAACGCAGATATTTTAA	
4192582	-	bf638r_3560	tonB	0	AAATACAGTATATTTGGCGAAAAA	1
					TGTGGCACAAATATAACGCAGATATTT	
4192629	+	bf638r_3561	cytidylate kinase	0	TAAAAATACAGTATATTTGGCGAA	1
			6-			
			phosphofructokinas		TTAACGTTATTTAATCATACAGGGCAC	
4194406	+	bf638r_3563	e 1	0	TCCTTTTTGTTATCTTTGCAACGT	1
					AAGGACAAAGTTAAAAGAAAAACTTT	
4198359	-	bf638r 3566	Unkown fuction	0	AAAGGGACAAATAGTTTACGAAAAT	1
				-	ATTTATTATAACCAATAATATGAAAGA	1
4203528	-	bf638r 3569	aconitate hydratase	0	AAGGTTTAACAAATTGAAATGTTT	0
					ΑΑΤΤGAAATGTTTATTCCAACCCGGAA	-
4203616	+	bf638r 3570	DNA belicase	0		1
+203010				5	GGCACAAAGATATATATAAACTTGAT	
4207725		hf628r 2571	Unkown fuction	0		1
4207725	-	010201_22/1		0		1
424 4602		hfc20+ 2570	ilup	0		4
4214693	-	8/25_182010		U		1
4005005		1 (620 2505	peptiayi-prolyl cis-	6		
4225284	+	DT6387_3585	trans isomerase	U	ATTAATTCGTATATTTGTCCCCAC	1
			L-cysteine	_	GCACAAAAGTAGAAAATATACTCTTAT	
4227935	-	bt638r_3587	desulfidase	0	AAACCATCCATTTAACCAAAGAAT	1
					TTACACTCTATCCTCTGGTTATTTAATA	
4228061	+	bf638r_3588	Glycosyl hydrolase	0	ATTATCATGTATCTTTGCCTCTC	1

					GTAGGCATTCAAATGTATCTTTTCAAA	
4229313	+	bf628r_3589	Unkown fuction	0	AAAGAAACTTAACTTTGCAGCCAA	1
				0	GGAGCAAAGTAACAGCTTTATTTCCAT	-
4233575	_	hf638r 3592	Unkown fuction	0		1/2
4233373		510501_5552	Onkown raction	0	GATACAAAAGTATACTTATTATGTTGG	1/2
1228727	_	bf628r 2505	Unkown fuction	0	GCAACCAAATAGATATAGCCTTTT	1
4230737	-	010301_3333	Onkown fuction	0		1
4242020				1		1
4243920	+			1		1
1215766		1 (620 2500		0		4 /2
4245766	-	bf638r_3599	sigma factor	0	AATCICAAAATTITAAGAAACGGT	1/2
					AGAIAIGCIIAAAIAAIIGIIIIAIIAA	
4252148	+			1	AGTTATTAGTATATTTGCCACGA	1
					ΑΑΑΑCAAAAAAATACTTTTTATTGATA	
4259157	+			1	ATAAAGTTCTTACTTTAGTCCTAT	1/2
					TTAGTCCTATCGGGACTAAAAATTCCA	
4259198	+			1	TGATTATTCATACATTTGTACGAT	1
					AGTTGCGCAAAATAAATAAAAAAATCAT	
4261212	-	bf638r_3606	sigma factor	0	CAAATGTAGTTAATGCAGCTCTCT	1/2
					AAAACTCGAGAGAACAACTCTTTCCTG	
4261423	+	bf638r_3607	aroC	0	AATTTTATTGTTATATTTGCATAT	1
			DNA		GCAGACAAAGGTACAAAAAAATAGGA	
4268866	-	bf638r 3613	Topoisomerase	0	AGGGAGAAGTAGTAATCCGTCTCCA	1
		_	· ·		GGAAGGGAGAAGTAGTAATCCGTCTC	
4268938	+	bf638r_3614	fructosidase	0	CATTTATTTTGTAGCTTTGCTTCGT	1
				-	GACTTGCAAATATACTGAAATACTCTA	
4274596	_	bf638r_3616	mutΔ	0		1
4274330		510501_5010	Index	0	GGCAGGCAAATATTTGATTACCTCCGA	-
1271727	1	bf638r 3617	normosco	0	GGTTATAGCTAATTTTGCACCCGT	1
42/4/3/	т Т	010201_2017	permease	0		1
42774.00		hfc20+ 2010	Cutich data binana	0	AATAGCAAACATACACATTATTTCCGA	4
4277168	-	010381_3018	Cytidylate kinase	0	AAGAAGAAAATAATAATGTACCA	1
					ITATCAATIGGTAACTITTATCCATTT	
4277290	+	bf638r_3619	matE	0	CAGAGICGIAICIIIGCAGCCGC	1
					TACCTGAAGGACTCTTTCGCCGTTCGC	
4278683	+	bf638r_3620	transcription factor	0	CGATGATATGTATCTTTGCATCAT	1
					AGATAAAAGACAAATGCCGACTGCAA	
4282508	-	bf638r_3622	Unkown fuction	0	TTTGTTTAGCCCACCGGCATGAAAG	0
					GGGTGCAAAGATACAAATCTATTTAGA	
4284044	-	bf638r_3623	vmrA	0	ATTAAAGGTGAAGAATAAAGAATA	1
					AAGAGTTACAATGCCGTATTTCTAAGA	
4284144	+	bf638r_3624	lysU	0	AAAGTTTCGTATTTTTGCCTCCAA	1
					TTTGCAAAAATACATATTCTGTTCGATT	
4288988	-	bf638r 3627	Unkown fuction	0	CACCAAAATAATCGTATCTTTGC	1
			Haloacid			
			dehalogenase-like		AAAATACATATTCTGTTCGATTCACCA	
4289044	+	bf638r 3628	hydrolase	0	AAATAATCGTATCTTTGCACTCCA	1
			,	-	TGTTGTGCAATATTGCATATATGTTGT	
4290005	+	bf638r_3629	nhage integrase	0	GCAAAAGCCTTATATTTGCACAAC	1
1250005		510501_5025	pridge integrade	<u> </u>		-
1202065		hf629r 2620	EncE	0		1/2
4293903	-	010301_3030	Ерзе	0		1/2
4205100				1		0
4295109	+			1	GAGITAAGITGITAAGGAGATAA	0
400500						a /2
4295824	+			1	AATAAAAATCGACCTTIGTATIC	1/2
					TTTTATTAGAATGTACAACAATTATAC	
4296550	+			1	GAATTTACGTGTTATTGAGAGAAC	0
					ΑCTACAAATATAATAACATTATTGTTAT	
4314841	-	bf638r_3651	Unkown fuction	0	TAAGCAAATATTCCAATAACTTT	1
					TTTTGGTCACGAAATTTGTTGTTTCCAT	
4325279	+	bf638r_3676	phage genes	0	AATTTAATATTATAATTGTTGAT	1/2
4329161	-		tRNA	0	GACGACAAAAGTATAAAAAATATTCG	1
1323101	1			, v		-

					CATTTTCCTAATGATTCACCTTTTT	
					TTAGCCTATTATTCATACAGATATAGA	
4329348	+	bf638r 3681	asnA	0	TATTATTCATATCTTTGCCGACAA	1
					AGGGGCAAAAGTACACAATCTTCACC	
4333939	-	bf638r 3683	ostA	0	AAATATACTTGAGAATCTTCATTTT	1
					TTTTAATACGGAATGAAGATAATCAAA	
4334917	+	bf638r 3685	glycosyl hydrolase	0	AGAATTGATTGTATATTTGTGCAT	1
			membrane	_	AGGTGCAAAGTAACGTAAAAAACTCA	
4339111	-	bf638r_3687	transporter	0	AAACTTAACACTAAATAGTGAGTTT	1/2
			N-acetylmuramoyl-	-	ΑCTTAACACTAAATAGTGAGTTTTCAA	_/_
4339189	+	bf638r 3688	L-alanine amidase	0	CAAATTTCTGCTACATTTGCACAT	1
				-	AGAAAAAGGAGATTTGTTTTCTCGAA	
4341665	+	bf638r_3690	dnaA	0	TAAGATTCCCAATTTTGCAACCGT	1/2
1012000	-		Nitroreductase		ΤΤΤΟΤΟΓΑΑΑΘΑΤΑΤΑΑΑΑΑΘΑΑΤΑΑΤ	-/-
4344024	-	hf638r_3691	family	0	CATTCTATCTCATTTATAAAATAG	1
1311021		510301_3031	Ribonucleotide	0	ΑΤΟΤΟΓΙΑΤΤΤΤΑΤΤΤΤΓΩΑΤΑΤΑΟΟΔΑΔΑ	-
4344181	+	hf638r 3692	reductase	0	ΔΔΓΔΤΤΓΔΤΔGCTTTGCΔGGCΔC	1
4344101		510501_5052	Teddetase	0	GAAAGTAAAGATACGACATATGTAGA	-
4346916	_			1	ΔΤΔΤΤΤΓΓΔΤΔΓΤΓΓΓΔΔΔΔΔΤΓΔΤΤ	1/2
1310310			4-alnha-	-		-/-
4347792	+	hf638r 3693	glucanotransferase	0	τασαατατττοταταστησοαααατ	1/2
4347752		010301_3033	giucanotransierase	0		1/2
1352805	+			1		1
4332003					TGCACTAAGATACTACTITITATCCGTT	-
1353861	_	hf638r 3697	macA	0	CGGGAATAAAGTGTGAGGAAGTT	0
4353001		50501_5057	1163/1	0	TTAACACCTAAAGGTTTCTTAATCCGG	Ū
4357458	+	hf638r 3701	luxE	0	ΔΔΩΤΤΤΔΤΔΓΟΤΔΟΤΤΤΤΩΓΔΟΔΔ	1
4357450		510501_5701		0	AGCGCAAAGTTACACATTATTATTAGG	-
4347070	_	hf638r 3700	Unkown fuction	0		1
4347070		5700	Onkown fuction	0		-
4359263	+	hf638r 3702	Unkown fuction	0	CAAAAAGTACATACCTTTGCAGCGT	1
1335203		510301_3702	Chikown raction	0	GGTGCAAAGGTAGGCATTTTATTTGA	-
4360971	-	hf638r 3705	rnsF	0		1
4300371		510301_3703	1951	0		
4361069	+	hf638r 3706	MarR regulator	0		1
4301003		510301_3700	Martinegulator	0	TTGCGAAAAATATTTCGTCCGTTAAAG	
4361646	+			1	AATTATGCGTTAATTTGTGACTGG	1/2
1301010				-	στησιαστηγάτησησησηση	-/-
4364326	-	bf638r 3709	rprX	0	ATTTCTCTCAGAAAATCTACTTT	1
1001020			Fe-S		TCTACCCTACAGGGTTGTTTACTAACA	-
4367547	+	hf638r 3713	oxidoreductases	0	CGAAAACCTTACTTTTGCAATTTG	1
1307317		510301_3713	- Skidel Eddetdses	Ű		-
4369380	+	bf638r_3716	FecR	0	CAAACGCTCTGTCTTTATCCATGA	0
	-				GTTCCCCCAATGGTACCGGATTTATAA	Ű
4374489	+	bf638r 3719	Unkown fuction	0	AGAAACCACTATCTTTGTGCCCTA	1
	-				TTTCTTTCTTTGCGCTTTTATGTTGAAT	-
4375537	+	bf638r_3721	Unkown fuction	0	AACATATTTGTATATTTGCATAG	1
	-				ΑΤΤGCAAATATAATAATAATTATCTTTTAG	-
4377286	-	bf638r 3722	ATPase	0	GTAAAAGATGCAAGTGAAAATATT	1
				-	AAGGCAAATATAACTACTTTTGTCGTC	
4379407	-	bf638r 3724	Unkown fuction	0	GCAAAGAAAGAAATGATGAAAGAA	1
		·····	Queuosine	-	TTACCATTTACAATCTACAAATTAAGG	
4379381	+	bf638r_3725	biosynthesis protein	0	CAAATATAACTACTTTTGTCGTCG	1
				-	ATGCAAAGATAGTTTTTTTTCAGCTATT	_
4384298	-	br638r 3728	mannosidase	0	CCAATTCACTTCATCTCCACATT	1
.50 1250			Iron only	Ť		-
			hydrogenase large		TATTAATGCACGCTTGCAGAATACTCC	
4391563	+	bf638r_3733	subunit	0	TACAAGCCGTATCTTTGTAACCCT	1
				-	TTGGTCAAAGATACAGAACATTTGTTA	
4398009	-	bf638r 3737	Unkown fuction	0	TTTACCATTTCTTTTTCCGGATAT	1

					CGTACAAATGTATTTTAAATTAGTCGA	
4403054	-	bf638r 3740	Unkown fuction	0	ATCTTTAGATTTAAAAGCAGAAAG	1
				, , , , , , , , , , , , , , , , , , ,	GTTGGCAAAAATACGATAAATCTTTGT	-
1101229	_	hf638r 37/1	рнн	0	ΔΩΤΤΑGAGCAAAAACCTCACAGAA	1
4404225		510501_5741	ribuloco phocobato	0		1
4407020		hfc20r 2742	2 onimoraça	0		1
4407039	-	010381_3743	3-epimerase	0	GGGCTCCCCTCAATAACAATTTAT	1
					CGIGCAAAAAIACIAAIIIIGCCCAAI	
4410631	-	bf638r_3746	Unkown fuction	0	AATAACAAAGGTTAAGAGAAAACA	1
			4-hydroxybenzoyl-		TTGATCTATTTCTTGTGAGAATAACGT	
4410657	+	bf638r_3747	CoA thioesterase	0	GCAAAAATACTAATTTTGCCCAAT	1
					AATACAAAAATAACAAAAAAAAAAAAAAA	
4413301	-	bf638r_3748	Unkown fuction	0	ACTTACAAAATCTAATCATCTTAAT	1
					ACTCACAAATATACAAGATTATTCCTA	
4413717	-			1	ATTACCGATTCCGTAAACCATATA	1
					GAAACACACTTTTTTAAAGATCCAGAC	
4441521	-	bf638r 3775	updY	0	AATTAAAATACATATAAAAGCAGA	0
					TTTTATTAAACATTTTGCAGTTATGAAA	
4441706	+	bf638r_3776	Unkown fuction	0	ATACCCTCTATCTTTGCGTTCAA	1
			Methyladenine	-	GATACAAAGATAGTAGATTCACCATGT	_
1111661	_	hf638r 3779	glycosylase	0		1
4444001		510501_5775	giycosylasc	0		1
1111776		hfc20r 2700	rocl	0	TTTTTTCCTACTTTACACCTT	1/2
4444720	+	0076_102010		0	TTOTO A A A COLA CA COCTTATOTO	1/2
		1 (600 0700	Tetratricopeptide			
4448451	+	bf638r_3782	repeat	0	AIGAAAIIACIACAIIIGCAACCAA	1
					AAAACAACAATGAGACACTTAATTCGA	
4458396	+			1	GTAATTTTTCTCATCTTTGTATGC	1/2
			transcription		CTGACAAATAAAAGAAGTTTTTAGGA	
4460358	-	bf638r_3789	regulator	0	GAAAAACTAGCATCTTAAGAACTGA	1/2
			Prephenate		AAAGTTTGTTTTTTATTTGCGTTTAAGA	
4460570	+	bf638r_3790	dehydratase	0	TAAAAGCATTAATTTTGCCTCAG	1
					ACTGAAAAGTCATTTGATTATCCAAGA	
4465389	+	bf638r_3795	dnaG	0	AATATCACGTACATTTGCATCCGC	1
					TTTTTAGGTACACAAAAATCCGTGCAA	
4475635	+			1	CGAGTATTTTTCATATCTTTGCTT	1
					GCGGCAAAAATAGATAACTATAACTAT	
4477406	-	bf638r_3801	sigma factor	0	ΑΤΑΑCCΑΑΑCTΑΑΑΑΤΑΤΑΑGTΑΑ	1
					TGTGCAAAGGTAACAATAATTAAAGTA	
4/81300	_	hf638r 3806	Unkown fuction	0		1
4401300		5000	Nucleoside	0		1
1192905		hfc20r 2000	diphosphato kipaso	0		1
4462605	-	0006_102010		0	GAGAAGGCATGTTCTTAACTATT	1
		1 (600 0015			GLGLAAAAGTALAAATATTAGLGATA	
4489173	-	bf638r_3815	рах	0	AGATAACAGCAATACCGAAAAAAAT	1
				_	TTAGCGATAAGATAACAGCAATACCG	
4489240	+	bf638r_3816	ATP-NAD kinase	0	AAAAAAAATCCCAAATTTGCGACAT	1/2
					GATGCAAAAGTAAGGCATTAGGAGAT	
4495995	-		rRNA	0	AAGAGACAAATATAAAAGGGGATTT	1
					AAGTACAAAGATAAAAAAAAAATCAAA	
4497233	-	bf638r_3818	Unkown fuction	0	TATCGGTTCTTCAATCTAAAGTATT	1
					AAAATTAAAACTACTCTCTCACATTGC	
4497490	+	bf638r 3819	sigma factor	0	AAACAATTTAGTTATATTTGCATT	1
		—			ACGACAAAGTTATGAAAAAAAACTTGT	
4499324	-			1	TGCAGAAATGGTATGTCCATCAAC	1
	1	1	Transcriptional	1	GACACAAATATATAACTATAAATATAG	
4509602	-	hf638r 3826	regulator	Ω	ΑΤΑΤΑGAACTΑΤΑΤΤΤΑΤΑGTΑΤΤ	1
1303002		510501_5020	100010101	, v	GACGACAAAAGTACAACGATAATCGA	-
1511120		hf628r 2020	mdh	0		1
4314138	-	010301_3020	mun	U		1
4544252	Ι.	hfc20+ 2020		0		1
4514252	+	01038[_3829	UNKOWN RUCTION	U		1
				-	AAGCCGACAAAAITAGCGATAATTCTT	
4516748	-	bt638r_3831	sigma factor	0	TTATCAGGCAGACTAAAGGCGCTG	1

					AAAAATTAAATCGTTTTGCTTTTTAAG	
4519813	+	bf638r 3833	efflux transporter	0	ATTAACCCTTTATATTTGCATCGT	1
	-		Transcriptional	0	TTAACACACTTCACTTTGTTTAGTTACG	-
1528792	+	bf638r 3840	regulator	0		1
4520752		510301_3040	regulator	0	ACCONCENTRACITATION AND A CONTRACTION AND A CONT	1
4526719		hfc20r 2016	aminatransforaça	0		1
4550718	-	010301_3040	diffiliouralisterase	0		1
			tRNA	-	GAAIGLAAAIGIALAAGAIILLLGGL	
4540823	-	bf638r_3850	Methytransferase	0	AGAATACAATCAATTGGACAAGTTA	1
					ATAGCTAAAAGCATTTGCCTTCTTCAA	
4541682	+	bf638r_3853	Unkown fuction	0	AAAGAATCAGTATATTTGAAGTAT	1
					GATTGACAAAATTACACTATTTTTCCG	
4545414	-	bf638r_3857	Rex	0	AAATGCCATAAGGATGTCATAGA	1
			Translation intiation		GACACTTAATAGTTTGCAAGGTTCGGA	
4545551	+	bf638r 3858	factor	0	ACAATATATTATTTTTGAACTTAA	1
				-	GCTTGCAAAAGTACGGCTTTTCTTTGA	
4549158	_	hf638r 3862	rnlM	0		1
4345150		510501_5002	1 pilvi	0		-
45 40000		hfc20+ 2004	I had a second for a start and	0		4
4549899	-	D1638r_3864	Unkown fuction	0	AAAATAGCAATCTAAAGACATAAA	1
					AGGCTGCAAAATTAACTCTTTTTCCTG	
4554377	-	bf638r_3867	purB	0	AGTTATAAGGCATAAGGGGAGAGA	1
					GAAGCAAAGTAAAGAAATAAATCACT	
4556488	-	bf638r_3868	beta-gal	0	TTCCCGCCAAATTTCCCTTTGTTTT	1/2
					GATGCAAAGGTATGGCTTTTCTTGAGA	
4556963	-		tRNA	0	CCTACAAATTATTTGCGATATTTT	1
					AAAGGAACAAAATTAATAGAAAAACG	
4558490	_	hf638r 3870	Unkown fuction	0	GCAGTATGCACTITITICTTATT	1
+330+30		510501_5070	beta-N-	0	Generaldenethillerinatti	-
			acatulalucacaminida			
4550540		hfc20+ 2071	acetyigiucosaminiua	0		4
4558548	+	DT6387_3871	se	0		1
					AAATTCCGAGATAAAGAAGTGTCTTTA	
4573047	-	bf638r_3879	аарА	0	AAGGAGTTGTTTTTACTAAAATGA	0
					TAATTGTTTTATTATGCGTAATTCAAAA	
4573281	+	bf638r_3881	aapl	0	AATATATTTAAATTTGCCGCCGA	1
					TAACAAACCAACTGCATGATTATCTCT	
4574434	+			1	TTTTTTAGATAACTTTGCAGCCT	1
					ATTACAAATATAAGTTAATTATAAGAC	
4574992	-	bf638r 3882	Unkown fuction	0	AGGCAGAAAAAAAGACGGGAAAAT	1
					TTGTGCAAAGTAACGACTTATTTCTAT	
4578554	_	hf638r 3883	carB2	0	ΔΑΤΤΑΓΔΑΔΑGGΔΑΤCTGGTΔΔGΔΔ	1/2
4370334		510501_5005	curbz	0		1/2
4570654		hfc20+ 2004	trac	0	ATTOTO ACTATOTTACITO COCATTO	1
4576054	+	010301_3004	ups	0		1
		1 (200 0005			ATTTAATAACACCAACGAAACTAAAA	
4581111	-	bf638r_3885	ompA	0	GGTTTIGGATAAATAGAAATTICC	0
					TCCTCAAAAGTACAATTATATTTTTAAA	
4601065	-	bf638r_3903	Unkown fuction	0	TATCAACAATAAGTAAAATAAAG	1
			two component		ТАСААТААТТСТТТССАТАААААТСААА	
4608419	+	bf638r_3913	regulatory systme	0	TACAAAAACTATCTTTACAATAT	1/2
					ΤΑCΤGTAATATATAATAATAAAGAAAA	
4619354	+	bf638r 3923	ubb	0	ACAGATAACTTATATTTGTCCCAT	1
					СТААСАААGTTATAAACAACTTCTTAA	
4632883	_	hf638r 3932	recO	0	ΔΤΑΤΟΔΑΘΟΑΤΔΑΤΟΔΘΑΟΤΔΑΤΔ	1
+052005		510501_5552	1000	0		-
1621020		hf620r 2024	clnP	0		1/2
4054929	-	010501_5954	CIPP	0		1/2
				-	GGGIGCAAAAIIAGIGCIAAICIIICA	
4636439	-	pf638r_3935	trigger factor	0	AATTICAAAAAACATTGCAGAATT	1
					AAAGAGAAAAAGTTATTGCAATTCCG	
4637475	+	bf638r_3937	RNA binding protein	0	GTTTTTATGCGTTTCTTTGCTGCGG	1/2
					GCGGCAAATGTAGCAAAAATAAGCCG	
4638771	-	bf638r_3938	ABC transport	0	AAAAAACGTACATTTGCAAACAAAT	1
4638819	+	bf638r 3939	Unkown fuction	0	TTGCGGCAAATGTAGCAAAAATAAGC	1
	1					-

					CGAAAAAACGTACATTTGCAAACAA	
			responsive		TGTACAAATATAAATAAAAAGCATTAC	
4641261	-	bf638r 3941	regulator	0	ΑΤΑΑΘΑΑΑCΑΑΑΑΘΑΑΤCΑΑΤΤΑ	1
1011201		010001_0011	regulator		GCGACAAAGATACGAATAATAATCCTC	-
4645712	-	bf638r_3946	Unkown fuction	0	ΑΤΑΑCΑΤΑCΑΑΑΤΤΑΤCΑGTAAAT	1
1013712		010001_0010	oniconnaction		ΑΓΤΟΓΑΛΑΘΑΤΑΑΓΑΑΓΤΙΤΑΤΑΑΤΑ	-
4651357			rRNA	0	ΑΤGΑΤCCAAATAAAAAGGAAATTA	1
4031337				0	GGATGCAAAAGTAAGGCATTAGGAGA	-
4651484			rRNA	0		1
4031404			Methylenetetrahyd	0		-
4653034	+	hf638r 3947	rofolate reductase	0	TITITICGTATITITGTCCCAAT	1
4055054	-	510501_5547		0	GCGCAAAGTTACGAAATATTGTTTATC	-
1661110		hf628r 2056	nurH	0	GTACGTAATAAATAAGGTGTGAAT	1
4004440	-	010381_3330	pun	0		Т
4668508		hf628r 2058	ABC transport	0		1
4006396	-	010201_2220	Abe transport	0		1
4671210		hfc20+ 2050	Unknum funtion	0		1
40/1218	-	00201_2222	Ulikowii luction	0		1
4672012		hfc20r 2060	alveocutransforação	0	GIIGCAAAAGIACAAAAIAGAAIGAA	1
4075015	-	0065012300	giycosytransierase	0	GAATGAAGAACGAAGTATGAAGAAT	1
4600045		hfc20+ 20C2	I halve some for attend	0	GATACAAAGGAAACAAAATTTTCCGG	1/2
4680045	-	DT638r_3962	Unkown fuction	0	AAAAAGATTAAAGTGACGACGATTT	1/2
4605070		1 (620 2000		0		
4685872	-	bf638r_3966	cyclopnilin	0		1
			responsive		TTAAGTCTGCAAATATACGACTTTACC	
4685917	+	bf638r_3967	regulator	0	ICAAAACCICIIACCIIIGIAGCI	1
					ACTACAGGAACGTAAAATACGCCCTGT	
4686719	-		unknown transcript	0	TGGTTCAAACTCAGAAATTACTGT	0
					CAGATTAGTTCACACGTATTCTTTTGG	
4687443	+	bf638r_3969	unknown function	0	CACAAGATTTGGGAAATACTCAA	1/2
			Transcriptional		GTGCAAAAGTAATTCTTTCTTTCGTCC	
4689990	+	bf638r_3972	regulator	0	ACACAAGAAAACAAATAAATTAT	1
					AAATGCCGAAATATTTGGTAGTTCAAA	
4690186	+		tRNA	0	TAAAAGCCGTACCTTTGCACTCAC	1
					AAGATGTAAATTGTGGTGACTCTATGC	
4690526	+	bf638r_3973	unknown function	0	AATTAGTTACTATTTTTGTCCCGA	1
					ACATTGCCAATTCGGTTGTAATATTCA	
4696773	+	bf638r_3980	ABC transport	0	TATATTTATCTACTTTTGTGGTGT	1
					AATGAAGTGATTTTGTTCGGCAAGTG	
4702910	+	bf638r_3987	unknown	0	GTAAGAATGCTTATATTTGCAATAT	1
					ACTGCAAAGATAACAACTTTTATAATA	
4710608	-		rRNA	0	ATGATCCAAATAAAAAGGAAATTA	1
					GATGCAAAAGTAAGGCATTAGGAGAT	
4710736	-		rRNA	0	AAGAGACAAATATAAAAGGGGATTT	1
					TATACAGCTTATAGGTTGTGATTTGCT	
4711814	+			1	TTCAAATTAGTATCTTTGAACCAT	1
					ΑССССАААТАТАТТААТАТТТТССАТА	
4720701	-	bf638r_3991	Endonuclease	0	ΑΑΤΑΑΑCATGATAATAAAAATTA	1
					TTTTCCATAAATAAACATGATAATAAA	
4720770	+			1	AATTATTCATTATCTTTGGGTCAC	1
					GTTGCAAAGATAGATAAAACCCATAA	
4725389	-	bf638r_3997	cas1	0	AAAGAGAGGAGAATCTGCATGAAAT	1
			Transcriptional		GAACAAAGATAAGCAGAAAACTCGAT	
4732211	-	bf638r_4002	regulator	0	GAGTTAATTCAGTTTCCTGATTTAA	1
					CTTCGCAATATAGAAAAAAGGTGGGA	
4738880	-	bf638r_4007	hutU	0	ATCTACCAAGATTTCAGCAGATTTA	0
					GGCGGAAAGGTACACCTTTTAACGAA	
4739687	-	bf638r_4008	unknown	0	TCGGAGCAAGTTTTCAGAAGAAAAG	1/2
					AAAGAGAAAAACACTTGACTTTTGCTCT	
4739797	+			1	CCAATGTCGTATCTTTACTATCAG	1
4740205	+	bf638r 4010	mutS	0	CATGCCAAGAGAGCGCCGTACTCACG	1

					CTAAATATATTATTTTTGCGGGTCA	
					GTCTGCAAATATAACAGATTATTCAGT	
4743127	-	bf638r 4012	unknown	0	CCGACTGTTCACCTTCAAATGTTT	1
				-	GTTACAAAGGTAATATTCATTCCGAGA	
4751778	-	bf638r 4027	rpsN	0	ATTCTGGTAATACTATCGATATTA	1
				-	GCTGACAAATATACATTTTTATTTGCTT	
4756629	-	bf638r 4039	rplW	0	CTGGTAAAACTACAAGCAGTTTT	1
				-	GCTGCAAAAATACGAATAATATTTGAA	
4761422	-	bf638r 4045	rpsl	0	TAATCAATGCACTACATCTTTTT	1
				-	ATATAGGAACGCTGCAGGCACAGGAA	
4762828	-	bf638r 4048	unknown	0	TGTTCGGTAAATAAAGAGGGAATTA	0
					GCCGCAAAATTACACATACTTTCTTTAT	
4779516	-	bf638r 4063	ribosomal protein	0	TCACAAAACTTTCGGCAATTATT	1
			•		ATTTCTCAAAATCAATGCAAAAGGTAC	
4784988	-	bf638r 4067	gltX	0	AGAAAGTAGTTATCTTTGGAGAGT	1
			metal dependent		AAAATTAAACCTTTTTTTCCACACTATT	
4785043	+	bf638r 4068	phosphohydrolase	0	GTTTTTTTTGTACTTTTCGCAA	1/2
					GAGGACAAAGATACAAAAAATCCCCG	
4791982	-	bf638r 4071	priA	0	ACGCAAGCGCCGGGGATTCGTTTAT	1
					GGGACAAAGATATAGTTTTAAATTAAA	
4792702	-	bf638r 4072	unknown	0	AAAACATTAAATCTGTTTGCATAT	1
					AAACACCTTTTCCGGAACAACGGACCG	
4793082	+		tRNA	0	AAAATCCATGTACCTTTGTGGTAC	1
					GACGGGAAAGATACATATTATTACTGA	
4794538	-	bf638r_4074	unknown	0	AACCGATGTACTACTATACCCTAA	1/2
					AATAACCAAACTTAAGCAATATTGTTT	
4796142	-	bf638r_4075	aspA	0	TGAAAGCATACATATTCGCAATTT	1
			Anaerobic c4-			
			dicarboxylate			
			membrane		ΑΤΑΤΑCTAATAGACAAAAACCTATTAA	
4796359	+	bf638r_4076	transporter	0	CTTCTTTTTGTTGATTAGCATAT	0
					ATCGCCTGTTCTATCAAGTATATTCTCT	
4800423	+			1	GAATTATTAGTATCTTTGCCTCT	1
					TAGATACATCCACTCCGATAAAATAAA	
4805380	+	bf638r_4087	unknown	0	AATTTTCCATACTTTTGTCTTCAC	1
					GGTTACAAAATTACTATAAGTTTAAAA	
4846574	-			1	TATTCATTTATCTTGTCTCATTTT	1
					GCAAAGATAGGGAAATAGTTTATGAA	
4850609	-	bf638r_4125	ATPase	0	TCATATAAATTGCAACACAAATTTG	1
					GAGAAGCAAAGGTAATGTATTTTAGA	
4857615	-	bf638r_4131	phage integrase	0	CAAACAAACCCAGTTTTTGAGAAGA	1
					CGGCAAAAGTATAATAAAATATTTCAC	
4858053	-	bf638r_4132	unknown	0	TTGCAACTATTATTCCAAAATATT	1
					AACGCACAAAGATATATAAAACCATTT	
4859342	-	bf638r_4134	unknown	0	GAGAAGTAAAGTGTTATATGCAAG	1
					ACGCACAAAGATATATAAAACCATTTG	
4859393	+	bf638r_4135	unknown	0	AGAAGTAAAGTGTTATATGCAAGT	1
					AGATGTTTTTTAATTTGCTTTTTTGTGA	
4865126	+			1	AAAATGGTTTATGTTTGTCGGAC	1
					GGCACAAAAGATGTGCTAACAAAGGT	
4877735	+			1	TCTATTTTCATATCTTTGTTTCCGA	1
				_	GAATGCAAATATAGCTGTTTATTTGTT	
4879513	-	bt638r_4147	sigma factor	0	AATAATACCAATCGGCATCTAATT	1
			GDSL-like			
			Lipase/Acylhydrolas	_	CCCCAAAGATACACAACGATTTTCAAT	
4883323	-	bt638r_4150	е	0	AAACGGACGCAATCCTCCTCAAAT	1
					TGTAATACCTCTGACCATAATTATCTTA	
4892611	+			1		1
100 107 -		1 (620 1177		_	AITCGCAAAAATAGATAAAAAAAAGC	
4894054	-	bt638r_4157	unknown	0	AAGTIGCAAAAAATTCCCTCAAAAT	1

					ΑΤCACAAATATACAATAATTAAACAAG	
4894249	-			1	CAACAAAGATATAAAAAAGGAAAA	1
					GCAACAAAGATATAAAAAAGGAAAAG	_
4894275	-			1	AAGAATAAATGGTAATAAAAAGGGG	1
105 1275			ADP-ribose	-		-
1901152		bf620r 1150	nyronhosnhatasa	0	CANTLACACTATATTCCCCTAC	1
4894492	-	010301_4130	byrophosphatase	0	GAATTAGCACTATATTTGCCCTAC	1
			two component			
4005004		1 (620 4450	regulatory systme		AAAAGCCIIGGAGCGIAGGGAGIIIC	0
4895091	+	bf638r_4159	for cell autolysis	0		0
			Transcriptional		CTTTTTCACTTTCCATAAATAACTATGT	
4904249	+	bf638r_4167	regulator	0	TTTATGATTACCTTTGCAAAGGT	1
			Methylated DNA-			
			protein cysteine		ACAGCAAATGTACAGAATTTCCGGATG	
4905713	-	bf638r_4168	methyltransferase	0	AAACCAGCCGGAGAGTTACTAAAA	1
					GATACAAAGGTAAGTAGTTTATAATCA	
4906398	-	bf638r_4169	unknown	0	TCTAGCAATAAGGTACTTCTATGT	1
					TAAGTGACAAGGAAGAACAATATTGG	
4906691	+	bf638r 4170	Unknown	0	CCGGAACATCCTATCTTCGCAGGAA	1/2
					TCCGTTCTATATAATACAAAAGATCAA	
4911085	+	bf638r 4174	unknown	0	TTAAATAGCTAATTTTGTATTCGG	1
				Ŭ	TTTTCAAAGGTAGTGTATTTACTATGTT	-
1011513	_	bf638r 1178	unknown	0	CAGCCAAAGAAAAACATTCATT	1
4914343	-	010301_4178	UIIKIIOWII	0		1
401 4020					ATGGCAAAGATAGAGAATAAAACGAA	4
4914929	-			1	AGAAAACCCCAAGTTAGAGCAAAAT	1
					AGTTTGCCCGAGTTAAAGCTTTGAGAA	
4916183	+			1	TAAAAATAGTAACTTTGCACAAAT	1
					TATTTAGCAGATGTGGGGAAAATGTG	
4917938	+	bf638r_4183	integrase	0	GGGAAAATATCTATATTTGCAGCAG	1
					TTCCTACATCAAGACCTACAAAATGAG	
4925911	+			1	AATAATTCATAACTTTGTATTTAC	1
					CTTTTCAAATATACACTTATATTTTGTT	
4926064	-			1	GTGATATTTAATACTGCAAATGT	1
					ACTGCAAATGTAAATGTGTCAAAACTA	
4926104	-			1	AGGCACATCCCCTTCTTTTTTAA	1
					AAAGAACTGTTTGGTTGGGAATGTAA	
4927845	+			1	GGACGAAAATGTAACTTTGCCATAA	1
				-	GCCTAAAGATACAAAAACTTTGGGTAA	-
4927859	_	bf638r_4190	transposase	0		1
1327033		510501_1150	Transcriptional	Ŭ		-
1020006	1	hf628r 1102	regulator	0		1
4929090	т	010301_4192	regulator	0		1
4020104		hfc20+ 4102	TenD linked OMD	0	GGIGIAICGGAIAITIGIAAACICCGA	1 /2
4930194	+	010381_4193		0		1/2
			Iranscriptional	_	IICGCAAAIAIACGAACAAIAIIAIAA	
4939436	-	bf638r_4200	regulator	0	AAACCAACAACACTTCTATAATTT	1
					GGTGCAAAGATACGGCTTTTTTTGAA	
4939738	-		tRNA	0	CTTGCAAGAGTTTTATAAAAAAAA	1
			Mannose-1-			
			phosphate		AGATCGCATAAACACTTCTATTTTCAG	
4939857	+	bf638r_4202	guanylyltransferase	0	AGAATAAACCGTATTTTAGCAGAA	1/2
					TCGCAAAGATAACCTTTTAAATGACAT	
4942141	-	bf638r_4204	greA	0	GTGTCAAGCAAAAAGCAATGCTAT	1
					GCTGCAAATATACTTCTTTTCAAGATTA	
4943403	-	bf638r 4205	unknown	0	GTCAAAGCATTTTGCCGCGTTCT	1
	1				TTTATCTCATTTTCACGATATTAGTGCA	
4943543	+	bf638r 4206	Adud	0	ATAAATGTATATCTTTGCGGGAA	1
.5.5545	-		P	Ť	GTTACAAAGATATGAGAAAAATTTCTT	-
4917612	_			1	TGCCGAGGCATTTATGCCCAAAAA	1
+5+7042				-	GCAACAAAGATAAGATGCTTTTTTAC	-
1052000				1	TIGIGOAAATCTTTCCCATCCTT	1
4932000	-			1 1		1
4050005	Ι.			_		~
4953002	+	btb38r_4212	unknown	U	AGAGCAAGAATCCTGTTTCAAAA	0
	1					1
---------	---	-------------	----------------------	---	------------------------------	-----
					GCAACAAAGATAAGGCGCTTTTTTAT	
4955226	-			1	CTGTGCAAATTTTTCTACATCGTT	1
			Phosphate			
			acetyl/butaryl		AGCAAATATCAGAAAAAGGATCGAGA	
4960102	-	bf638r_4218	transferase	0	AGTACATCATGGAATACTGAAAAAA	1/2
					TCATTTCTACGGATGCAGGTAATTTCG	
4960242	+	bf638r_4219	Laminarinase	0	TTTTTTAATGTAAATTTGTGTCCT	1
		_			AACCCTCCTATCTGACTCACCCTACAGT	
4962079	+	bf638r 4221	Unknown	0	GAAAATCATTAATTTTGAGGCTT	1
		-			GTACAAAGATAACGGTTTTAATTGACT	
4965410	-	bf638r 4225	protease	0	ACCGCTTCGGTAGAAGAGCTATTT	1
			plasma-membrane			-
			calcium-			
			translocating P-type		TTGCAAAAGTACAACATAAATCCGGTA	
4070714		hfc20r 1220		0		1
4970714	-	010581_4229	AlPase	0		1
		1 (200 1000	Two component		ACAGACAAAGGIAGIGCIIIAIIAAIG	
4972459	-	bf638r_4230	regulatory System	0	AAAAAAGAAAAAATAAATGAACAA	1
				_	AAAAGAAAAAATAAATGAACAATACG	
4972538	+	bf638r_4231	Rubredoxin	0	TCCGATACTTTTGTTATATTTGCAT	1
			Na+/phosphate		ATTGCAAAAATAATAATATTTCTAAAG	
4974603	-	bf638r_4232	symporter	0	AATTCCCTATTGGGAGCTCACTTT	1
			threonyl-tRNA		TTTTAGTGGTTGTTTGTCTTCTTAGCAA	
4974557	+	bf638r_4233	synthetase	0	TTATGTGATATATTTATCCGTAC	1/2
					AAGAGGGGGAAATGAGAGGTTTCTAC	
4976476	+	bf638r 4235	BaeS	0	AAAGATTTTTTAACTTTGTCACTGT	1
		-			TATATTTTGAGTTATTAAATCTGAATAA	
4980424	-	bf638r 4236	unknown	0	TAGCACATATACTGTCTCTTCCT	0
				-	AACGGACAAAAGTAGTGTATCGATGC	-
4984080	_	hf638r 4238	unknown	0	ΔΤΔΔΔΔΔΔΓΔΔGΔΔΤΤΔΤΓΔGΔΔGΔ	1
+30+000		510501_4250	unknown			-
1081017	_	hf638r 1210	unknown	0		1
4904947	-	010301_4240	UIIKIIOWII	0		1
4005265				1		1
4965205	-			1		1
1000070			proline		GATGGCAAAGATAGGAACAAAGGATG	
4986879	-	bf638r_4241	aminopeptidase	0	AATIGACAAAGGAGATAAAGCAAAT	1
					TATCGGATAAATCATTTCGCTATATCG	
4987093	+	bf638r_4242	sigma 54	0	AACAATTCATTACTTTTGTAGCGA	1
					TCTACAAAGATAGGACAATAAATCAAA	
5001873	-			1	ΑΑΤΑCΑΑΤCTTATTTCTTTATTA	1
					GACGTAAAAGTAACTCATTGCCTGCTT	
5009116	-	bf638r_4254	peptidase	0	ACTCTGACAGAACTTCGTTAATAT	1/2
					TTTTTGCAAAGATATTGCATATTTCAAA	
5010142	-	bf638r_4255	adenosine kinase	0	ATATCCTATTACTTTTGCATCGC	1
					TTTTTGCAAAGATATTGCATATTTCAAA	
5010192	+		tRNA	0	ATATCCTATTACTTTTGCATCGC	1
			Antibiotic			
			hiosynthesis		ΤΑΤΤΟΔΑΘΑΤΘΑΔΑΔΑΘΑΔΑΘΤΑΤΟΔΟ	
5034403	+	hf638r 4267	monooyygenase	0		1
5054405		510301_4207	monooxygenase	0		1
E026212		bf628r 1260	subP	0		1
5050515	-	010581_4209	SUIID	0		1
5044000		1 (620 4274		0	GTATACAAAGATACATTTCAATTGA	
5041092	-	DT638r_4274	unknown	0		1
			NADH	_	IGGCGGACATATCACCTGAAACTGCTT	
5066012	+	bt638r_4299	pyrophosphatase	0	CTTITTCGTTATTTTTGCCTGCAC	1
					AAAGATTCCTGAAAGAGAGGTAAAAT	
5066578	+	bf638r_4300	unknown	0	ACATAAAAACAAGTACTTTTGTCAA	1
					TTCTCTCTATATTATAAGGTAAAGAAA	
5071560	+	bf638r_4302	topA	0	ACGTTTTTTTCTACTTTTGCGGGC	1
					GCGCGCAAAGATACAAAAAAGGAGA	
5077084	-	bf638r_4304	argS	0	CGCTAAAGCGCCTCCTCTCTTAATT	1

					СТСАСАААТАТАААGTAACAAAACAAT	
5077479	-	bf638r 4305	hup3	0	ΑΤΑΤCΑΑΑΤΑΑΑΑΑCΑΤCΑΑΑΑΑΑ	1
					TAGATTATTTTTCTGTTGTAGAACAGA	
5077611	+	hf638r_4306	unknown	0	ATTTATTCGTATTTTTGCGTTCAT	1
5077011		510501_4500	unitiown	0		-
E091000		hf629r 1210	socD socE	0		1
3081090	+	010301_4310	SELD-SELF	0		1
					GGIIGCIIIGGAIAAGIGAIICIIII	
5098651	+			1	GCAGGIGCAIIAICIIIGCCCIGI	1
					GGCTGCAAAGATAGCGTATTCTCCTGA	
5100538	-		tRNA	0	TTTGGCAAACCCGAAAGAACAGAT	1
					AATCAGAAAAGATTTTGTTAAGTCACT	
5100923	+	bf638r_4321	porA	0	TAACTTTGCGAACTTTGCCTGCCA	1/2
					AGCGGCAAAGATACACAAATCTCTCCT	
5107036	-	bf638r_4324	ugpQ	0	TGCTTGTTTACCTTCAGAAAGCAT	1
			Phosphoribosyl		GGTGCAAAGTAAGTGATAATCTTTCAA	
5107865	-	bf638r_4325	transferase	0	TTTGCAACGTTCAGTTTGCAGATA	1/2
					TTTCTCTAATATATTCTTTGTTTCCAAA	
5108005	+	bf638r 4326	pckA	0	GAAAGCATTACTTTTGTAGTCGA	1
				-	GGGGCAAAAATAAAACGAATTTTAAT	
5110380	_	hf638r 4327	unknown	0	ΔΔGΔΔGCΔΔGΔGΔTΔTTΔΔTΔΔΔΔT	1
5110500		510301_4327	dillatown	0	GGGGTCAAAGATAATAAGAAGTTAAT	-
E116722				1		1
5110752	-			1		1
5420750		1 (620 4227		0	AACGTCACATAGTCTGCACAAGATTCA	
5129750	+	bf638r_4337	unknown	0	AGGIIIIICIIIAICIIIGIGCAG	1
					GCGACAAAGGTACAAAAATTGGATTA	
5140713	-	bf638r_4340	typA	0	GAAAAAAGGGATACTATAGAAAATA	1
					TTTCCTGCAATTCATTGTGGGATAAAA	
5140814	+	bf638r_4341	rpsO	0	GATAATGCCTATCTTTGCACGCTC	1
			transcriptional		TTTTATCTTTCTCCCTTGCTTGGATATA	
5141232	+	bf638r_4342	repressor puuR	0	AAATTTCATTAATTTTGCAGCAA	1
					ACTTGCAAATATAATACATATATCCAA	
5145212	-	bf638r_4344	arcB	0	AAAATATCCTACAAATCGAAGTTA	1
					TTTTCGGCTTTTTTTCTGTTTTATAAATT	
5158644	+	bf638r 4354	sigma factor	0	GAGTATGCTATATTTGTAATTC	1
		_	ribosome-binding		AACACAAAGTTATAGAAATATATCGTT	
5161007	-	bf638r 4356	factor	0	TGATAGGCCAATAATATGTTATTT	1
					GGTGCAAAGGTAGAAAAAAGAAATGA	
5163945	_	bf638r_4360	aroO	0	ΔΑΤΤΑGAGGAAAAACAAAAAAGAA	1
5105545		510501_4500	aroq	Ŭ		-
E162020	l .	hfc20r 1261	vorD	0	ATTITIAATACCTTCCCA	1
5105950	+	010301_4301	XerD	0		1
5464050		1 (000 4000			AAAAAGCCGTTTCGGTAAACAATAGA	
5164953	+	DT638r_4362	unknown	0	GGCIGATIIGGIGIIGIIIAAGAAG	1
					GGTTTCAAAATTACGGAAAAGAGTCAT	
5178847	-	bf638r_4371	unknown	0	AATTCTGATAACTTTTAAGAAATA	1
					GAGCTGGAATGAAAACATGTGTTTTTG	
5209276	+	bf638r_4408	unknown	0	AATAAATTTCGATTTTTGCAAAAT	1/2
					ATTCAAGTTTTTATATCCGTAATCCCGG	
5219062	+	bf638r_4418	unknown	0	CAATAATCCCTATATTTGCCAAT	1
					TAGTATTCTAATATTTGTCGTTCCAACT	
5220380	+			1	ATTTCCGTTATCTTTGCAATCAA	1
			dihvdrofolate		CACAAAGGTACGGGAAACTTCCCGAA	
5221227	-	bf638r 4419	reductase	0	TAACAAAACAATAGCCCTGCCTAAT	1
			-	-	AGGAACAAATATACGTATATTATGATA	
5236429	-			1	ΑΤΑΤΑCΤΑΤΑΑΤΤΑΑΑGTGAAAAA	1
5250425				-	ΑGTTTGCAAAATTAACGGTTTTAATCA	-
52/1720		bf628r 1127	TonB-linkod OMP	0	TCACTCGCAATACCTACAAATAAT	1
5242238	-	010301_4457		U		1
E250740				1		4
5250/46	+			1		1
		1 (000	acetyl coenzyme A	-	ATTCACAAATATATIGTITTAGAAACA	
5259326	-	bt638r_4449	synthetase	0	ACCGACAAACAAATCTCACCTAAA	1

					TTCCAAAGATATATCGTTTTTTGCAATT	
5260928	-	bf638r_4450	unknown	0	ATCCGGAGAAAATACAGCCTTTT	1
		—			CATCCATCTTATTATAAAGAATTCCTC	
5264408	+	bf638r 4456	metG	0	AGAAAGTCGTTATCTTTGCACGT	1
		_			TTATGCAGTAAAAATGGAGTACGACC	
5271471	+	bf638r 4461	unknown	0	AAAAAGAATGATTATCTTTAGGCAG	1/2
			UDP-N-acetyl-D-			_/_
			mannosamine		σείσελαλαστάς αλαταλτάτοτος	
527/611	_	bf638r 1163	debydrogenase	0		1
5274011		010301_4403	uchydrogenase	0		1
E 27/679		hfc20r 1161	Chucocultransforaça	0		1
52/40/8	т	010301_4404	Giycosyltialisterase	0		1
F077774			(115	0		
52////4	+	DT638r_4467	TKIB	0		1
5279465	+	bf638r_4469	asnC	0	AATAAATCICTATATTIGCTTAC	1
					TTGACTAAAATGCTTGCATAATTCATC	
5280354	+		tRNA	0	AGAAAGCATTAATTTTGTCCCCGC	1
			Two component		GCGAACAAAGCTATCATATTTCGGGTA	
5282309	-	bf638r_4472	regulatory system	0	ATTATCATAAACTATTTAATATTT	1
					GGATGCAAAAGTAAGGCATTAGGAGA	
5293542	-		rRNA	0	TAAGAGACAAATATAAAAGGGGATT	1
			D-ala-D-ala		CTCCCATAACTTATCAAATATGCGCTTA	
5294434	+	bf638r_4476	dipeptidase	0	TGTTTTTATACTTTTGCATTCAT	1
					GCAACAAAGATAAGACGCTTTTTCAT	
5305199	-	bf638r 4482	Sugar transporter	0	ATGTGCAAATATTTCTACATTATT	1
			<u> </u>		ATCTCTTCTTCTTATATTCAGTGCACAG	
5305317	+	bf638r 4483	unknown	0	AGCCAAAACAGTGTTTCAAAAAA	0
				-	GTGCCAAACATACAGATTGTTTTTGAC	-
5320761	-	hf638r 4491	unknown	0	ΑΤΑGCATAGATCGAAATCATTATA	1
3320701		010001_1101	calcium/sodium:pro			-
5320822	+	hf638r 4492	ton antinorter	0	CGAAATCATTATATTTGCACCCGA	1
5520022	•	510301_4432		Ŭ		-
E22107/		hf628r 1102	unknown	0	ATTATCACGTATCTTTGCCCCCTC	1
5521074	т	010301_4495	ulikilowil	0		1
5222022		hfC20+ 4404	nor F	0		1
5322922	+	D1638r_4494	pare	0	AATTAGGTTTATCTTGCAGAA	1
					CAGCAAAGATAGATTAAAAAGACAGA	
5327728	-	bf638r_4497	unknown	0	GITTICGCAAAAAAAACCTATCTTT	1
			transcriptional	_	TAGATTAAAAAGACAGAGTTTTCGCAA	
5327787	+	bf638r_4498	regulator	0	AAAAAACCTATCTTTGTTCCCTAA	1
			succinate			
			dehydrogenase (or			
			fumarate			
			reductase)			
			cytochrome b		ATTTCTTTAATTCTTTGGTTAATCAATG	
5329308	+	bf638r_4499	subuni	0	TATTTCGTGTACTTTTGCACAAT	1
					AGTCCGCAAAGGTACGTATATCGACAC	
5337717	-	bf638r_4504	TonB-linked OMP	0	CGGACGACAATCACCATATTTAGG	1
			Transcriptional		ACGACAAATGTAAGAGAATTATTTAGA	
5338706	-	bf638r_4505	regulator	0	AAGACAATAAAAGAAGGAATAAAA	1
		_			TATTAAGAAGAATATTTGGATAATAGA	
5342315	+			1	TAAGAGAAACCTACATTTGTACAG	1
					AGGTGCAAAGGTAGGGGTTTTTTCCG	
5345706	-	bf638r 4512	unknown	0	TACTTTTGCAGCCAAATAATGAATA	1
			Dihydrouridine	-	ΤΑΑΑΤGΑΑΤGΑGTGCΔΔΔGGTAGGG	_
5345746	+	hf638r 4513	synthase	0	GTTTTTCCGTACTTTTGCAGCCAA	1
55-57-0		510301_7313	571111030	Ŭ Ŭ	GCGAGCAAAGATACGACTTTTAGCAC	-
52/90/2	_	hf638r 1511	unknown	0		1
5546043	-	010301_4314		0		1
E240002		hfc20+ 4540	cation offlow	0		4
5349803	-	มเจ38r_4516	cation efflux pump	U		L
F346365		hfc20 4515	athenau I D	<u> </u>		4.10
5349863	+	bf638r_4517	ribonuclease R	0	TATTIAATCGCTTACTTTGTACTG	1/2

			Pyridoxamine 5'-		ATGCCCTGTTGCTGCACGGATATCTAA	
5353979	+	bf638r_4522	phosphate oxidase	0	AATAAATTTCCATCTTTGTAGTTC	1/2
					TGGGCAAATATACTACAATAACGACAC	
5356501	-	bf638r_4524	Esterase/lipase	0	TGTTTGAAAAATAATGCGTTCCTT	1
					AGTATAGAGAAATAACTGTATTAATCC	
5356622	+	bf638r_4525	unknown	0	CAATTTAATTACCTTTGTCAATAT	1
					GAGAAAGCAGATGACTGCATTAGCCT	
5358148	+	bf638r_4526	YchF	0	AAAATTGATTATCTTTGCACCCCAA	1
					CTCCCGGTTTTCTACTACTATCTTCAAG	
5359613	+	bf638r_4527	apbA_panE	0	CAAATCATTATCTTTGCGACCGG	1
					AAGGCAAAGATAGCGGTTTCCCTCAA	
5364713	-	bf638r_4530	mutS	0	ATCTACCTATCCTAACAGACAGTTT	1
					TATTATAAAACACCGATTTTTATCCGA	
5364947	+			1	ATTACTTGCTATTTTCGCAGGAAG	1/2
					TTTTATCCGAATTACTTGCTATTTTCGC	
5364964	+			1	AGGAAGTCGTACCTTTGCAATGT	1
					CGTGTTATAAAACATACTAATTTACTT	
5365193	+			1	GGTTTATTTGCTATTTTCGCAGAA	1/2
					ATTTACTTGGTTTATTTGCTATTTTCGC	
5365212	+			1	AGAAAGCCGTACCTTTGCAATGT	1
					TTGGTCGGTTAATGATTTCCCGATAAT	
5365389	+	bf638r_4531	unknown	0	TTAAATACCTATATTAGATCCCTT	1/2
					ATCAACAAATATAAGATTTTTATTTTCT	
5366653	-			1	GATTCTTCCTTTTCATACCTATT	1
					GATTACAAATATAAATACTAAAATTTA	
5366622	-			1	AATTATCAACAAATATAAGATTTT	1
					TTTAGCTATCTTCGTGGTTATCTGAAA	
5366760	+	bf638r_4532	leuS	0	ATAATCATGTAAATTTGCTCCCTC	1
					AAAGTGCAAAGTTAAAAACTTTATGGA	
5372929	-	bf638r_4535	nadA	0	TATAAACAGGCTAATTAGTACTGA	1

Appendix 4: INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC) APPROVAL FORM

Animal Care and **Use** Commitee 212 Ed Warren Life Sciences Building October 9, 2012 East Carolina University

252-744-2436 office 252-744-2355 fax

Greenville, NC 27834 C. Jeffrey Smith, Ph.D. Department of Micro/Immuno Brody 5E-106 ECU Brody School of Medicine

Dear Dr. Smith:

Your Animal Use Protocol entitled, "Role of B. Fragilis Oxygen Stress Response in Infection" (AUP #K155a) was reviewed by this institution's Animal Care and Use Committee on 10/9/12. The following action was taken by the Committee:

"Approved as submitted"

Please contact Dale Aycock at 744-2997 prior to hazard use

A copy is enclosed for your laboratory files. Please be reminded that all animal procedures must be conducted as described in the approved Animal Use Protocol. Modifications of these procedures cannot be performed without prior approval of the ACUC. The Animal Welfare Act and Public Health Service Guidelines require the ACUC to suspend activities not in accordance with approved procedures and report such activities to the responsible University Official (Vice Chancellor for Health Sciences or Vice Chancellor for Academic Affairs) and appropriate federal Agencies.

Sincerely yours,

Bhckee

Susan McRae, Ph.D. Chair, Animal Care and Use Committee

SM/jd

enclosure

East Carolina University is a constituent institution of the University of North Carolina. An equal opportunity universit

EAST CAROLINA UNIVERSITY ANIMAL USE PROTOCOL (AUP) FORM LATEST REVISION JULY, 2012

Project Title:

Click here to enter text. Role of B. Fragilis Oxygen Stress Response in Infection

	Principal Investigator	Secondary Contact
Name	C. Jeffrey Smith	Edson R. Rocha
Office Ph #	4-2700	4-9563
Cell Ph #	252-714-8466	
Pager #		
Home Ph #	252-756-8131	
Email	smithcha@ecu.edu	rochae@ecu.edu

For IACUC Use Only

AUP # K1550				
New/Renewal Renewal 10/5/12				
Full Review/Date	DR/Date			
Approval Date 10 9 12				
Study Type B. fragilis				
Pain/Distress Category	1			
Surgery V	Survival	Multiple	abdominal	ocen
Prolonged Restraint				
Food/Fluid Regulation				
Other				
Hazard Approval/Dates	Rad	IBC V backeroid	SEHS	
OHP Enrollment		fragilis		
Mandatory Training				
Amendments Approved				
	-			

I. <u>Personnel</u>

- A. Principal Investigator(s): Charles Jeffrey Smith
- B. Department(s):
 - Microbiology & Immunology
- C. List all personnel (PI's, co-investigators, technicians, students) that will be working with live animals and describe their qualifications and experience with these specific procedures. If people are to be trained, indicate by whom:

		Required ECU	
Name	for this Project	(Yes/No)	Other Relevant Animal
Charles Jeffrey Smith	PI	yes	8 years of animal research and completed the ECU animal welfare training
Edson R. Rocha	Co-PI	yes	8 years of experience and training in performing the procedures detailed in this application. The PI has developed the implanted tennis "ping pong" ball in the rat peritoneal cavity to study B. fragilis intra-abdominal infection. The PI is acquainted with animal care procedures. Completed ECU training.
Yanlu Cao	graduate student	yes	several months experience with this model. Has received training from Dr. Rocha and has completed the online animal welfare course.
Matthew Rosenbaum	Consultant/Collaborator	yes	Veterinarian, Assistant Professor of Comparative Medicine

II. Regulatory Compliance

A. Non-Technical Summary

Using language a non-scientist would understand, please provide a clear, concise, and sequential description of animal use. Additionally, explain the overall study objectives and benefits of proposed research or teaching activity to the advancement of knowledge, human or animal health, or good of society. (More detailed procedures are requested later in the AUP.) Do not cut and paste the grant abstract.

Bacteroides fragilis is the most frequent pathogen isolated from anaerobic infections in humans such as intra-abdominal or pelvic abscesses. In the present study we propose experiments to identify and characterize the genes involved in the pathogenicity and virulence of B. fragilis. The animal experiments will specifically test the ability of B. fragilis mutants to survive in the rat peritoneal cavity. In addition, we will test the expression of virulence genes during the growth of these organisms inside the peritoneal cavity. To accomplish this, rats will be surgically implanted with an intra-abdominal tissue cage as a model for intra-abdominal infection. The cage will be inoculated with bacterial strains and then periodically sampled to determine viability of bacteria and gene expression. We also will perform "competition" studies in which both the wild-type and mutant strains are inoculated into the same 'ping pong ball. Then we will measure the differential survival over time. The idea here is that, in some cases differences in growth rate and final population level of the mutants may not be great enough to easily distinguish from the wild-type parent strain except in the case of very severe defects. Thus we will use mixed culture "competition" experiments plus the mono-culture experiments for a more complete picture of the role of virulence factors.

B. Duplication

Does this study duplicate existing research? No

If yes, why is it necessary? (note: teaching by definition is duplicative) Click here to enter text.

C. Alternatives to the Use of Live Animals

Are there less invasive procedures, other species, isolated organ preparation, cell or tissue culture, or computer simulation that can be used in place of the live vertebrate species proposed here? No

If yes, please explain why you cannot use these alternatives. Click here to enter text.

D. <u>Literature search to ensure that there are no alternatives to all</u> potentially painful and/or distressful procedures

1. Please list the potentially painful or distressful procedures in the protocol:

surgery, implantation of tissue cage (ping pong ball), inoculation of tissue cage with bacteria, application of anesthesia and subsequent sampling of the tissue cage using a syringe and needle to aspirate material from inside the tissue cage, euthanasia of animals at the end of the experiment.

Date Search was performed:	August 16, 2012
Database searched:	Medline via ECU OVID program
Period of years covered in the search:	1946-August 2012
Keywords used and strategy:	Bacteroides fragilis; experimental intra-abdominal infection, experimental model of anaerobic infections, animal models, and alternatives. I performed an individual search for each of the keywords above then combined each of the data sets with the connector "And" Also searched the database with the entire phrase without the punctuation.
Other sources consulted:	NCBI Pubmed and Google

2. For the procedures listed above, provide the following information (please do not submit search results but retain them for your records):

3. Narrative indicating the results of the search (2-3 sentences) and explaining why there are no alternatives to your proposed procedures that have the potential to cause pain and/or distress:

There are no alternative procedures to in vivo experimental intra-abdominal infection. The procedure using tissue cage implanted in the rat abdominal cavity will reduce the number of animals required for this project by allowing multiple samples from the same animal. The use of culture cell models will not provide the complex immune system response that is essential for the recruitment of PMNs and macrophages in the initial stages of B. fragilis infection and abscess formation. The use of adult Sprague Dawley rats is appropriate for the tissue cage "pig-pong-tennis ball" model of intra-peritoneal infection. In addition, this model will allow us to obtain multiple sampling of intra-

abdominal exudates without the need to sacrifice the animal in each time point. This procedure will greatly reduce the number of animals to be used in this study. This model has advantages over direct inoculation of bacteria into the peritoneal cavity because the infection process is confined to inside of the encapsulated implanted ping-pong ball tissue cage. Our experience (Rocha and Smith combined) using this model with more than 75 rats is that we have observed six systemic infections due and have lost one animal to causes we could not directly attribute to the procedures. Generally the animals do not exhibit any signs of discomfort. Other methods of abscess formation do not allow multiple sampling at different time points and would require a large number of animals for each experiment.

E. Hazardous agents

1. Protocol related hazards (chemical, biological, or radiological): Please indicate if any of the following are used in animals and the status of review/approval by the referenced committees:

HAZARDS	Oversight Committee	Status (Approved, Pending, Submitted)/Date	AUP Appendix I Completed?
Radioisotopes	Radiation	NA	
Ionizing radiation	Radiation	NA	
Infectious agents (bacteria, viruses, richettsia, prions, etc.)	IBC	approved 11/2009	yes
Toxins of biological orgins (venoms, plant toxins, etc.)	IBC	NA	
Transgenic, Knock In, Knock Out Animalsbreeding, cross breeding or any use of live animals or tissues	IBC	NA	
Human tissues, cells, body fluids, cell lines	IBC	NA	
Viral/Plasmid Vectors/Recombinant DNA or recombinant techniques	IBC	approved 11/2009	yes
Oncogenic/toxic/mutagenic chemical agents	EH&S	NA	
Nanoparticles	EH&S	NA	

Cell lines, tissues or other		NA	
biological products injected			
or implanted in animals	DCM		
Other agents		NA	

2. Incidental hazards

Will personnel be exposed to any incidental zoonotic diseases or hazards during the study (field studies, primate work, etc)? If so, please identify each and explain steps taken to mitigate risk:

Bacteroides fragilis is a normal gut flora bacterium. This is not a contagious agent and is classified at BSL-1. The only chance of infection is from direct injection of the organism and even in that case during my 30+ years of working with these organisms I do not know of any case of laboratory acquired infection. However, since these organisms have been genetically modified, the experiments will be conducted under ABSL-2 conditions to minimize chances of contamination. A Biological Safety Registration has been approved for this work.

III. Animals and Housing

A. Species and strains:

- Sprague Dawley outbred rats.
- B. Weight, sex and/or age:
- >350g/11-13 weeks old male.
- C. Animal numbers:

1. Please complete the following table:

Total number of animals in treatment and control groups	Additional animals (Breeders, substitute animals)	Total number of animals used for this project
198	+ 2	=200

2. Justify the species and number (use statistical justification when possible) of animals requested:

The species chosen for these experiments is the adult Sprague Dawley rat. The use of these animals is appropriate for the tissue cage "pig-pong-tennis ball" model of intraabdominal abscess infection because of their size and historical use of rats in intraabdominal infection studies. In addition, this model will allow us to obtain multiple sampling of intra-abdominal exudates without the need to sacrifice the animal in each time point. This procedure will reduce the number of animals to be used in this study. There is

no alternative in vitro model to study abscess formation or response to an abscess inducing organism such B. fragilis because no in vitro system has been able to duplicate the complex mammalian immune response. Also, this model has been used previously with a different species of bacteria (Bamberger et al. 2002, Antimicrob. Agents Chemother, 46:2878-2884).

There are two factors that must be considered to determine the number of animals needed for the study. The first factor is that we have a maximum of 8 candidate genes that we propose to test as virulence factors. For each candidate gene we will construct the corresponding mutant strain thus we will need to have 8 independent trials (including both competition assays and monoculture assay). In addition each trial will be composed of two identical experiments in order to demonstrate that the results are repeatable. The second factor is that we must determine the lowest number of animals needed in each experiment that can provide statistical significance for our results. Based on previous work with this model by Dr. Rocha and myself (see AUP #K146 and# K155) we can estimate the number of wild-type or mutant bacteria found per ml of fluid in the artificial abscess and use these numbers in power calculations to determine the sample size needed for statistical significance in each experiment. For these calculations we will be using a study design based on use of the unpaired t-test on group means. We have set P = .01 and power probability = 0.9. The bacterial numbers from previous work used for this analysis are:

wild type strain: 3.28 x 10exp9 (SD 2.07 x 10exp9) mutant strain: 6.43 x 10exp7 (SD 3.56 x 10exp7). Based on these numbers we have calculated that statistical significance can be achieved using groups of 5 animals and we do not see any difference in using the competition or monoculture approaches. In experimental design section (section IV.A) we present a table for the total number of animals to be used based on groups of 5 animals per experiment. Briefly, we propose to study 8 different mutants so that is 10 animals per mutant in monoculture experiments and 10 animals per mutant in competition assay experiment plus one uninoculated control per mutant for a total of 178 animals. The remaining animals are accounted for by the need to run two trials of monoculture experiments with the wild type parent strain to obtain gene expression data to use as baseline for when we perform the competition assays (20 animals).

3. Justify the number and use of any additional animals needed for this study:

a. For unforeseen outcomes/complications:

two additional animals should be ordered if there are any unexpected deaths that lead to invalid statistics.

- b. For refining techniques:
- n/a

c. For breeding situations, briefly justify breeding configurations and offspring expected:

n/a

d. Indicate if following IACUC tail snip guidelines: Choose an item. (if no, describe and justify)

Click here to enter text.

4. Will the phenotype of mutant, transgenic or knockout animals predispose them to any health, behavioral, physical abnormalities, or cause debilitating effects in experimental manipulations? No (if yes, describe) Click here to enter text.

5. Are there any deviations from standard husbandry practices?

Yes If yes, then describe conditions and justify the exceptions to standard housing (temperature, light cycles, sterile cages, special feed, prolonged weaning times, wire-bottom cages, etc.):

Animals will be housed individually on soft bedding. Tubes are not allowed due to surgery so alternative enrichments such as softer bedding, crinkle nesting will be provided.

6. Is it necessary for animals to be singly housed?

No (If yes, describe housing and justify the need to singly house social species)

Click here to enter text.

7. Are there experimental or scientific reasons why routine environmental enrichment should not be provided? No

(If yes, describe and justify the need to withhold enrichment) Click here to enter text.

8. If wild animals will be captured or used, provide permissions (collection permit # or other required information): NA

9. List all laboratories or locations outside the animal facility where animals will be used. Note that animals may not stay in areas outside the animal facilities for more than 12 hours without prior IACUC approval. For field studies, list location of work/study site.

IV. Animal Procedures

A. Outline the Experimental Design including all treatment and control groups and the number of animals in each. Tables or flow charts are particularly useful to communicate your design.

The objective is to determine if various mutant strains lacking various oxidative stress resistance genes can survive as well in the abscess as the wild type parent strain. We also need to

determine the overall gene expression patterns of the bacteria in the abscess and if the oxidative stress gene mutations modulate these patterns. For this work we have a bank of 8 mutant strains or proposed mutant strains that lack a variety of genes known to be important for in vitro resistance to oxidative stress. We now will test the role of these genes in vivo using the rat model. Briefly we will implant a sterile tissue cage into the peritoneal cavity of the rat. Then allow the animals to recover for 3-4 weeks to allow for encapsulation to occur according to Bamberger et al. 2002 (Antimicrob. Agents Chemother, 46:2878-2884). Next five rats will be inoculated with about 1,000,000 c.f.u./ml B. fragilis wild type strain in monoculture (Control) by injection into the implanted tissue cage. Samples will be aspirated from infected cages at 2, 4, 8, and 15 days post-infection. These control experiments will be repeated four times over the course of the entire project. For each mutant strain five rats will be used in monoculture experiments to determine survival and gene expression patterns. Also for each mutant strain 5 animals will be used in competition experiments in which mutant and wild-type strain are cocultured in the tissue cage in order to determine if the mutant has a defect relative to the parent. The idea here is that, in the absence of competition, differences in growth rate and final population level may not be great enough to distinguish at a statistically significant level except in the case of very major defects. The competition assay is a tried and true method in bacterial pathogenesis studies. These experiments with the mutant will be repeated once. One uninoculated control will be used for each mutant strain and 2 for the wild type parent strain. Two animals may be needed to protect against adverse outcomes due to unforeseen complications (See Table Below).

Bacterial Strain/treatment	Animals per group	# experiments	# trials	total # animals
Wild-type monoculture	5	2	2	20
Mutant monoculture	5	2	8	80
Competition assay	5	2	8	80
Added for unforeseen				
complications	1	2	1	2
Uninoculated control	1	1	18	18
Totals				200

In sections IV.B-IV.S below, please respond to all items relating to your proposed animal procedures. If a section does not apply to your experimental plans, please leave it blank.

Please refer to DCM and IACUC websites for relevant guidelines and SOPs.

B. <u>Anesthesia/Analgesia/Tranquilization/Pain/Distress Management For</u> <u>Procedures Other than Surgery:</u>

Adequate records describing anesthetic monitoring and recovery must be maintained for all species.

If anesthesia/analgesia must be withheld for scientific reasons, please provide compelling scientific justification as to why this is necessary: Click here to enter text.

- 1. Describe the pre-procedural preparation of the animals:
 - a. Food restricted for \Not needed hours
 - b. Food restriction is not recommended for rodents and rabbits and must be justified:

n/a

c. Water restricted for not needed hours

d. Water restriction is not recommended in any species for routine pre-op prep and must be justified:

n/a

2. Anesthesia/Analgesia for Procedures Other than Surgery

	Agent	Concentration	Dose (mg/kg)	Max Volume	Route	Frequency	Number of days administered
Pre- procedure analgesic							
Pre- anesthetic							
Anesthetic	isoflurane	2-4%			inhalati on	6	<5 min
Post procedure analgesic							
Other							

3. Reason for administering agent(s):

To sedate rats for injection and aspiration.

4. For which procedure(s):

Sample injection into and aspiration from the implanted ping pong ball. In all cases aseptic technique will be used for these procedures. The skin is prepped prior to insertion of the needle by swabbing with alcohol.

5. Methods for monitoring anesthetic depth: Foot withdraw
6. Methods of physiologic support during anesthesia and recovery: n/a
7. Duration of recovery:
< 5 min
8. Frequency of recovering monitoring: Click here to enter text.
9. Specifically what will be monitored? respiration and mobility
10. When will animals be returned to their home environment? when they are conscious and mobile
11. Describe any behavioral or husbandry manipulations that will be used to alleviate pain, distress, and/or discomfort: Animals typically do not exhibit distress or discomfort following procedure

C. Use of Paralytics

1. Will paralyzing drugs be used? NO

2. For what purpose:

Click here to enter text.

3. Please provide scientific justification for paralytic use:

Click here to enter text.

4. Paralytic drug:

Click here to enter text.

5. Dose:

Click here to enter text.

6. Method of ensuring appropriate analgesia during paralysis:

Click here to enter text.

D. Blood or Body Fluid Collection

1. Please fill out appropriate sections of the chart below:

	Location on animal	Needle/catheter size	Volume collected	Frequency of procedure	Time interval between collections
Blood Collection					
Rody Elvid Collection	Intra- abdominal from within the tissue	25-20 g	0.5-2 ml	once per sampling period	2, 4, 8, 15 days post infection
Other	Lage				

E. Injections, Gavage, & Other Substance Administration

1. Please fill out appropriate sections of the chart below:

	Compound	Location & Route of admin	Needle/catheter/gavage size	Max volume admin	Freq of admin (ie two times per day)	Number of days admin (ie for 5 days)	Max dosages (mg/kg)
Injection/ Infusion	Live Bacteroides fragilis. 4 ml at 10 ⁶ to 10 ⁸ cells/ml	Intra- abdominal injection into the tissue cage	25-20 g	4 ml	once to initiate the experiment	n/a	n/a
Gavage Other							

2. For all injections and infusions, PHARMACEUTICAL GRADE compounds should be used. If not available, refer to IACUC Guidelines for non-pharmaceutical grade compound use and provide required information below: n/a

E. Prolonged restraint with mechanical devices

Prolonged restraint in this context means *beyond routine care and use procedures* for rodent and rabbit restrainers, and large animal stocks.

Prolonged restraint also includes *any* use of slings, tethers, metabolic crates, inhalation chambers, primate chairs and radiation exposure restraint devices.

1. For what procedure(s): n/a 2. Explain why non-restraint alternatives cannot be utilized: n/a 3. Restraint device(s): n/a 4. Duration of restraint: n/a 5. Frequency of observations during restraint/person responsible: n/a 6. Frequency and total number of restraints: n/a 7. Conditioning procedures: n/a 8. Steps to assure comfort and well-being: n/a 9. Describe potential adverse effects of prolonged restraint and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

G. <u>Tumor Studies, Disease Models, Toxicity Testing, Vaccine Studies,</u> <u>Trauma Studies, Pain Studies, Organ or System Failure Studies, Shock</u> <u>Models, etc.</u>

1. Describe methodology:

n/a

The wild type and mutant bacteria will be injected into the sterile, artificial abscess and their ability to survive in the abscess will be determined. Samples will be taken on days 2,4,8, and 15 by aspiration using a sterile syringe and then plated on bacteriological growth media to determine the viable cell count. Some material also will be used for the extraction of RNA to be used in gene expression studies to determine which genes are expressed by the bacteria during the course of "infection".

2. Expected model and/or clinical/pathological manifestations:

It is expected that wild type bacteria will survive at a higher rate than mutant bacteria in the artificial abscess in the co-culture competition assays and we expect to see more rapid

clearing of the mutant strains in the monoculture assays. We do not expect any obvious tissue pathology.

3. Signs of pain/discomfort:

We have had several years of experience with this model and during this time seven animals became "sick" and displayed a hunched posture, depressed attitude and loss of appetite. These animals were provided analgesics but eventually had to be euthanized. This is a rare occurrence.

4. Frequency of observations:

daily

5. Describe potential adverse side effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

If animals show signs of peritonitis, hunched posture, depressed attitude and loss of appetite, as described above we will first try to treat with analgesics but if no change after a day they will be euthanized.

H. Treadmills/Swimming/Forced Exercise

1. Describe aversive stimulus (if used): n/a

```
    Conditioning:

n/a

            Safeguards to protect animal:

n/a

            Duration:

n/a

            Frequency:

n/a

            Total number of sessions:

n/a

            Describe potential adverse effects of procedures and provide humane

endpoints (criteria for either humanely euthanizing or otherwise

removing from study):
```

n/a

I. <u>Projects Involving Food and Water Regulation or Dietary</u> <u>Manipulation</u>

(Routine pre-surgical fasting not relevant for this section)

1. Food Regulation

a. Amount regulated and rationale:

n/a

b. Frequency and duration of regulation (hours for short term/weeks or months for long term):

n/a

c. Frequency of observation/parameters documented (i.e. recording body weight, body condition, etc.):

n/a

d. Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

n/a

2. Fluid Regulation

a. Amount regulated and rationale: n/a

b. Frequency and duration of regulation (hours for short term/weeks or months for long term):

n/a

c. Frequency of observation/parameters documented (body weight, hydration status, etc.):

n/a

d. Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

n/a

3. Dietary Manipulations

- a. Compound supplemented/deleted and amount:
- n/a
- b. Frequency and duration (hours for short term/week or month for long term):
- n/a

c. Frequency of observation/parameters documented:

d. Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

n/a

n/a

J. <u>Endoscopy</u>, Fluoroscopy, X-Ray, Ultrasound, MRI, CT, PET, Other Imaging

1. Describe animal methodology:

n/a

2. Duration of procedure:

n/a

3. Frequency of observations during procedure:

n/a

4. Frequency/total number of procedures:

n/a

5. Method of transport to/from procedure area:

n/a

 Describe potential adverse side effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

n/a

7. Please provide or attach appropriate permissions/procedures for animal use on human equipment:

n/a

K. Polyclonal Antibody Production

1. Antigen/adjuvant used and justification for adjuvant choice:

n/a
2. Needle size:

n/a

3. Route of injection:

n/a

4. Site of injection:

n/a

5. Volume of injection:

n/a

6. Total number of injection sites:

n/a

7. Frequency and total number of boosts:

n/a

8. What will be done to minimize pain/distress:

n/a

 Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

n/a

L. Monoclonal Antibody Production

1. Describe methodology:

n/a

2. Is pristane used: No Volume of pristane:

n/a

- 3. Will ascites be generated: No
 - i. Criteria/signs that will dictate ascites harvest:
 - Click here to enter text.
 - ii. Size of needle for taps:
 - Click here to enter text.
 - iii. Total number of taps:

Click here to enter text.

iv. How will animals be monitored/cared for following taps:

Click here to enter text.

4. What will be done to minimize pain/distress:

Click here to enter text.

5. Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

Click here to enter text.

M. Temperature/Light/Environmental Manipulations

 Describe manipulation(s): n/a
 Duration: n/a
 Intensity: n/a
 Frequency: n/a
 Frequency of observations/parameters documented: n/a
 Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

n/a

N. Behavioral Studies

- 1. Describe methodology/test(s) used:
- n/a
- 2. Will conditioning occur? If so, describe:
- n/a
- 3. If aversive stimulus used, frequency, intensity and duration:
- n/a
- 4. Length of time in test apparatus/test situation: (i.e., each test is ~10 mins) n/a
- 5. Frequency of testing and duration of study: (i.e., 5 tests/week for 6 months) n/a
- 6. Frequency of observation/monitoring during test: n/a
- 7. Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

O. Capture with Mechanical Devices/Traps/Nets

1. Description of capture device/method:

n/a 2. Maximum time animal will be in capture device: n/a

3. Frequency of checking capture device:

n/a

n/a

4. Methods to ensure well-being of animals in capture device: $n/a \label{eq:n_a}$

5. Methods to avoid non-target species capture:

n/a

6. Method of transport to laboratory/field station/processing site and duration of transport:

n/a

7. Methods to ensure animal well-being during transport:

n/a

8. Expected mortality rates:

n/a

9. Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

n/a

P. Manipulation of Wild-Caught Animals in the Field or Laboratory

1. Parameters to be measured/collected:

n/a

2. Approximate time required for data collection per animal:

n/a

3. Method of restraint for data collection:

n/a

- 4. Methods to ensure animal well-being during processing: n/a
- 5. Disposition of animals post-processing:

n/a

 Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study): n/a

Q. Wildlife Telemetry/Other Marking Methods

- 1. Describe methodology (including description of device): $n/a \label{eq:n/a}$
- 2. Will telemetry device/tags/etc be removed? n/a If so, describe: n/a
- 3. Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

n/a

R. Other Animal Manipulations

- 1. Describe methodology:
- n/a
- 2. Describe methods to ensure animal comfort and well-being: $\ensuremath{n/a}$
- 3. Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):
 - n/a

S. Surgical Procedures

All survival surgical procedures must be done aseptically, regardless of species or location of surgery. Adequate records describing surgical procedures, anesthetic monitoring and postoperative care must be maintained for all species.

1. Location of Surgery (Building & Room #): ECU/SOM Animal care facility operating room

2. Type of Surgery (check all that are appropriate):

Non-survival surgery (animals euthanized without regaining consciousness)

X Major survival surgery (major surgery penetrates and exposes a body cavity or produces substantial impairment of physical or physiologic function)

Minor survival surgery

Multiple survival surgery

If yes, provide scientific justification for multiple survival surgical procedures: $\ensuremath{\mathsf{n/a}}$

3. Describe the pre-op preparation of the animals:

- a. Food restricted for 0 hours
- b. Food restricted is not recommended for rodents and rabbits and must be justified:
 - n/a
- c. Water restricted for 0 hours
- d. Water restriction is not recommended in any species for routine pre-op prep and be justified:
- n/a
- 4. Minimal sterile techniques will include (check all that apply):

Please refer to DCM Guidelines for Aseptic Surgery for specific information on what is required for each species and type of surgery (survival vs. nonsurvival).

x Sterile instruments

How will instruments be sterilized?

Ethylene oxide for ping pong balls, autoclave for instruments

If serial surgeries are done, how will instruments be sterilized between surgeries:

Instruments will be sterilized by autoclave. For serial surgery, instruments will be sterilized by dry hot beads sterilizer.

- x Sterile gloves
- x 🗌 Mask

x Cap

Sterile gown

x Sanitized operating area

x Clipping or plucking of hair or feathers

x Skin preparation with a sterilant such as betadine

x Practices to maintain sterility of instruments during surgery

x Non-survival (clean gloves, clean instruments, etc.)

5. Describe all surgical procedures:

a. Skin incision size and site on the animal:

An abdominal incision of about 3 cm

b. Describe surgery in detail (include size of implant if applicable): Click here to enter text.

c. Method of wound closure:

The rats will be given pre-emptive analgesia Buprenex prior to the procedure and then anesthetized with gas (isoflurane) anesthesia. Ketamine and xylazine (9:1) may be substituted for gas if instructed by veterinarian. Aseptic technique (sterile instruments, surgical gloves, masks and surgical prep) will be used. An abdominal incision of about 3 cm will be performed and a single sterile table-tennis ball with 300 1.5 mm-diameter holes will be implanted in the peritoneal cavity by sterile techniques, abdominal closure with at least two layers, 3-0 absorbable followed by 3-0 nylon skin. Animal will receive buprenex at 0.1mls/100 grams bw (0.03mg/ml conc) or an NSAID carprofen or meloxicam for post-op analgesia and every 8-12 hours post as determined by DCM veterinarian. Animal will be allowed to recover, for 5 weeks to allow for encapsulation to occur according to Bamberger et al. 2002 (Antimicrob. Agents Chemother, 46:2878-2884). Rats will be housed under standard laboratory housing conditions and receive food and drink at libitum and support care for anesthetized rodents at the animal housing facility of the Department of Comparative Medicine, East Carolina University, Greenville, North Carolina. The rats will be inoculated with about 108 c.f.u./ml B. fragilis strains into the implanted ball tissue cage. Samples will be aspirated from infected cages at 2, 4, 8, and 15 or 21 days post-infection.

i. Number of layers

Abdominal closure with at least two layers

ii. Type of wound closure and suture pattern:

Interrupted, 3-0 absorbable, and 3-0 nylon

iii. Suture type/size/wound clips/tissue glue:

Click here to enter text.

iv. Plan for removing of skin sutures/wound clip/etc:

Skin sutures removed after 7 – 10 days

6. Anesthetic Protocol:

a. If anesthesia/analgesia must be withheld for scientific reasons, please provide compelling scientific justification as to why this is necessary: n/a

	Agent	Dose (mg/kg or %)	Volume	Route	Frequency	Number of days administered
Pre-operative analgesic	Buprenex	0.1 ml/100 g BW	1 ml depending on BW	SC	once	prior to anesthesia
Pre- anesthetic						
Anesthetic	isoflurane	2-4%		inhalation	once	6 times; at insertion of tissue cage, inoculation day, sample days 2, 4, 8, 15
Post- operative Analgesic	Buprenex	0.1 mg/100g BW	1 ml depending on BW	SC	once but more in indicated	8-12 h
	Alternative Anesthetic - Alternative- ketamine plus xylazine (9:1)	0.1 ml/100g BW of Ketamine (90mg/ml) + Xylazine (10mg/ml)	1 ml depending on BW	lp	once	30-60 min
	Alternative Analgesic – meloxica	1.5 mg/kg	1 ml depending on BW	PO	SID, PRN	24 hr
Other						

b. Anesthesia/Analgesia For Surgical Procedures

c. Methods that will be used to monitor anesthetic depth (include extra measures employed when paralyzing agents are used):

Standard procedures for anesthetic monitoring, surgical plane of anesthesia. Animals will be adequately anesthetized prior to initiation of surgery and then maintained in a surgical plane throughout procedure the will be done by monitoring toe pinch and pedal reflexes to ensure adequate depth. Pulse oximetry will monitor HR and O2 saturation. Respiration Rate will be monitored by watching thoracic cavity as well.

d. Methods of physiologic support during anesthesia and immediate post-op period (fluids, warming, etc.):

On pad to conserve body heat (surgery takes about 20 min per rat). If needed warm 0.9% NaCl will be administered SQ (3-7mL) along with soft and caloric dense food being accessible on the cage floor.

e. List what parameters are monitored during immediate post-op period. Provide the frequency and duration:

Following surgery procedures in the "tissue cage model of infection", animals will be examined for distress and pain on an hourly basis for 4 hours on the day of surgery. The animals will be kept warm, given fluid and nutritional supplementation as required until recovery.

f. Describe any other manipulations that will be used to alleviate pain, distress, and/or discomfort during the immediate post-op period (soft bedding, long sipper tubes, food on floor, dough diet, etc.):

If necessary, food will be placed on cage bottom, and gel packs used for water (usually not required) will be provided.

g. List criteria used to determine when animals are adequately recovered from anesthesia and when the animals can be returned to their home environment:

monitor continuously until mobile and alert.

7. Recovery from Surgical Manipulations (after animal regains consciousness and is returned to its home environment)

a. What parameters (behavior, appetite, mobility, wound healing, etc.) will be monitored:

Animals will be assessed for hunched posture, depressed attitude, off feed. Animals also will be monitored for overt clinical signs of illness (distress, sick, scruffy appearance, immobile, anorectic, moribund.

b. How frequently (times per day) will animals be monitored:

once

c. How long post-operatively (days) will animals be monitored:

Animals will be monitored for eating, drinking, defecating, behavior and appearance (body condition scoring) for 4 hours post operatively that day until normal signs appear. Then daily for about 4 weeks until encapsulation of the implanted tissue cage.

8. Surgical Manipulations Affecting Animals

a. Describe any signs of pain/discomfort/functional deficits resulting from the surgical procedure:

Hunched posture, depressed attitude, off feed, distress, sick-looking, scruffy appearance, immobile, anorectic, moribund.

- What will be done to manage any signs of pain or discomfort (include pharmacologic and non-pharmacologic interventions): Analgesic will be provided as described above in analgesia/anesthesia table.
- c. Describe potential adverse effects of procedures and provide humane endpoints (criteria for either humanely euthanizing or otherwise removing from study):

Abscesses are a self-contained "walled" off infectious process. Nonetheless, intraabdominal abscesses can eventually rupture and release its purulent pus contents into the peritoneal cavity. This may lead to a disseminated systemic infection. No antibiotic can be administered since these will interfere with experimental infections. Thus, any animal showing clinical signs of illness (distress, sick, scruffy appearance, immobile, anorectic, moribund) will be euthanized prior to the end of the experiment. We have done this procedure on more than 75 rats and have lost six to sepsis and one to an unknown cause (likely intestinal strangulation).

V. Euthanasia

Please refer to the AVMA Guidelines on Euthanasia and DCM Guidelines to determine appropriate euthanasia methods.

A. Euthanasia Procedure. All investigators, even those conducting nonterminal studies, must complete this section in case euthanasia is required for humane reasons.

1. Physical Method- If a physical method is used, the animal should be first sedated/anesthetized with CO_2 or other anesthetic agent. If prior sedation is not possible, a scientific justification must be provided: n/a

2. Inhalant Method- Carbon Dioxide (if other, describe the agent and delivery method) Click here to enter text.

3. Non-Inhalant Pharmaceutical Method (injectables, MS-222, etc.)-Please provide the following:

> a. Agent: n/a
> b. Dose or concentration: n/a
> c. Route: n/a

B. Method of ensuring death (can be physical method, such as pneumothorax or decapitation for small species and assessment method such as auscultation for large animals):

check for signs of breathing and open the thoracic cavity

C. Describe disposition of carcass following euthanasia:

Each animal is placed in a disposal plastic bag and every three bags are wrapped up in another bag. Then all carcasses are put in a biohazard red bag, closed and they are put in the cold room container available at the animal house facility for disposal of carcasses.

I acknowledge that humane care and use of animals in research, teaching and testing is of paramount importance, and agree to conduct animal studies with professionalism, using ethical principles of sound animal stewardship. I further acknowledge that I will perform only those procedures that are described in this AUP and that my use of animals must conform to the standards described in the Animal Welfare Act, the Public Health Service Policy, <u>The Guide For</u> <u>the Care and Use of Laboratory Animals</u>, the Association for the Assessment and Accreditation of Laboratory Animal Care, and East Carolina University.

Please submit the completed animal use protocol form via e-mail attachment to <u>iacuc@ecu.edu</u>. You must also carbon copy your Department Chair.

PI Signature:	C. Jely	Smitemai	l 10(5/12 _Date: <u></u>
Veterinarian:	\bigwedge		_Date: 10/93/12
IACUC Chair:	SP3	Mckee	_Date: 10/9/12

	APPENDIX 1-HA	ZARDOUS	AGENTS			
Principal Investigator:	Campus Phone:		Home Phone:			
Charles Jeffrey Smith	744-2700			252-756-8131		
IACUC Protocol Number:	Department	:		E-Mail:		
K155	Microbiology	y & Immuno	ology	smithcha@ecu.edu		
Secondary Contact:	Campus		Home		E-Mail:	
Department: Edson Rocha	Phone: 744-9	Phone: 744-9563 Phone: 8538		756-	rochae@ecu.edu	
Chemical Agents used: N/A		Radio	isotopes	used: N	/A	
Biohazardous Agents used:		Animal			Infectious to	
Bacteroides fragilis		Biosafety	Level: AB	SL2	humans? Probably if	
		based on	use of		large numbers are	
		recombina	ant DNA		directly injected into	
					the blood stream.	
PERSONAL PROTECTIVE EQUIP	MENT REQUIRE	D:				
Route of Excretion: There is no abscess	excretion of the	organisms	since the	ey are co	nfined to the artificial	
Precautions for Handling Live o	r Dead Animals:	No special p	precautio	ons need	led. Lab coats, eye	
protection, and gloves will be w	orn during injec	tion of anin	nals and	sampling	g procedures. Bacteria	
closely related to B. fragilis are	present in all roo	lent feces.				
Animal Disposal: incinerate						
Bedding/Waste Disposal: norma	al procedures					
Cage Decontamination: normal	procedures					
Additional Precautions to Prote	ct Personnel, Ad	jacent Rese	arch Pro	jects inc	luding Animals and the	
manipulated the organisms the	-1 organism but	due to the		we have	e genetically	
Thus there are no special "Additional and the state of the special and the spe	experiments are	ns needed	Organic	ms close	or mection is minimal.	
are found in the feces of all rode	ents.	ins needed.	Organis		ery related to b. magins	
Initial Approval						
Safety/Subject Matter Expert Si	gnature & Date					

The Brody School of Medicine Office of Prospective Health East Carolina University 188 Warren Life Sciences Building • Greenville, NC 27834 252-744-2070 office • 252-744-2417 fax

Occupational Medicine Employee Health Radiation Safety Infection Control Biological Safety TO: Dr. C. Jeffrey Smith Department of Microbiology & Immunology
 FROM: Eddie Johnson/John Williams Biological Safety Officers
 RE: Registration Approval
 Date: December 10, 2009

Your Biological Safety Protocol J Smith, 09-01 "Role of B. fragilis Oxygen Stress Response in Infection" to use genetically modified micro organisms has received **approval** to be conducted under BSL-1 and ABSL-2 based on your registration submitted. This registration was approved by the ECU Biological Safety Committee with Dr. Greg Smith as acting chair.

This approval is effective for a period of 3 years and may be renewed with an updated registration if needed. Please notify the Animal Care staff before or if you begin work with Biohazard agents in animals. Also please keep in mind all individuals who will be exposed to or handle biohazardous agents in your work will be due for Blood Borne Pathogens refresher training annually.

Please do not hesitate to contact Biological Safety at 744-2070 if you have any questions, concerns, or need any additional information. Best wishes on your research.

cc: Dr. C. Jeffrey Smith, Chair, Biosafety Committee
 Dr. Greg Smith, Community Member
 Janine Davenport, IACUC
 Dr. Robert Carroll, IACUC
 Dale Aycock, IACUC