Repository logo
 

Synergistic Proapoptotic Activity of Recombinant Trail Plus the AKT Inhibitor Perifosine in Acute Myelogenous Leukemia Cells

Thumbnail Image

Date

2008-11-15

Authors

Tazzari, Pier Luigi
Tabellini, Giovanna
Ricci, Francesca
Papa, Veronica
Bortul, Roberta
Chiarini, Francesca
Evangelisti, Camilla
Martinelli, Giovanni
Bontadini, Andrea
Cocco, Lucio

Journal Title

Journal ISSN

Volume Title

Publisher

East Carolina University

Abstract

To potentiate the response of acute myelogenous leukemia (AML) cells to TNF-Related Apoptosis- Inducing Ligand (TRAIL) cytotoxicity, we have examined the efficacy of a combination with perifosine, a novel phosphatidylinositol 3-kinase (PI3K)/Akt signaling inhibitor. The rationale for using such a combination is that perifosine was recently described to increase TRAIL-R2 receptor expression and decrease the cellular FLICE-Inhibitory Protein (cFLIP) in human lung cancer cell lines. Perifosine and TRAIL both induced cell death by apoptosis in the THP-1 AML cell line, which is characterized by constitutive PI3K/Akt activation, but lacks functional p53. Perifosine, at concentrations below IC50, dephosphorylated Akt and increased TRAIL-R2 levels, as demonstrated by western blot, RT-PCR, and flow cytometric analysis. Perifosine also decreased the long isoform of cFLIP (cFLIP-L) and the X-linked Inhibitor of Apoptosis Protein (XIAP) expression. Perifosine and TRAIL synergized to activate caspase-8 and induce apoptosis, which was blocked by a caspase- 8 selective inhibitor. Upregulation of TRAIL-R2 expression was dependent on a protein kinase Cα/ c-Jun-NH2-kinase 2/c-Jun signaling pathway activated by perifosine through reactive oxygen species production. Perifosine synergized with TRAIL also in primary AML cells displaying constitutive activation of the Akt pathway, by inducing apoptosis, Akt dephosphorylation, TRAIL-R2 upregulation, cFLIP-L and XIAP downregulation, and c-Jun phosphorylation. The combined treatment negatively affected the clonogenic activity of CD34+ cells from AML patients. In contrast, CD34+ cells from healthy donors were resistant to perifosine and TRAIL treatment. Our findings suggest that the combination perifosine and TRAIL might offer a novel therapeutic strategy for AML. Originally published Cancer Research, Vol. 68, No. 22, Nov 2008

Description

Citation

Cancer Research; 68:22 p. 9394-9403