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Locked-in syndrome is a condition where an individual does not have control of their 

muscles, including facial muscles and vocal cords which control speech. Instead of oral speech, 

sign language, or writing, other methods must be used to achieve communication. Brain-

computer interfaces relay the intentions of these individuals by using brainwave patterns such as 

event-related potentials (ERPs) that are collected using electroencephalogram electrodes. An 

ERP is a time-locked response with many features such as the P300 component. One way to 

elicit a strong ERP is using the “oddball” paradigm. When a stimulus is presented to the brain, it 

is classified as a target or non-target event. One of the two events categories is considered “rare” 

with a lower probability of occurrence than the other. When the “rare” event occurs, an ERP is 

evoked, with the amplitude of the P300 response being proportional to how small of a probability 

the event has of occurring. The rarer the stimuli, the stronger the P300 response will be. A P300 



  
 

spelling system is a brain-computer interface that can allow the P300 component to be converted 

to text digitally by using signal processing and machine learning techniques. Using EEG 

measurements, the computer is trained to recognize features in a particular individual’s 

brainwaves. Once these features are identified, they are classified as target and non-target, 

allowing the computer to decide the desired outcome. However, current P300 spelling systems 

are still much slower than conventional communication and can be inaccurate. This research 

aims to improve the speed of the system without compromising accuracy by testing stimulus type 

and stimulus duration. Specifically, the standard paradigm will be altered to include a familiar 

face overlay with the intent of generating a stronger P300 component which can be more easily 

classified as a target or non-target stimulus. Different flash durations will also be tested in an 

attempt to improve the speed of spelling. 
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I. Introduction 

 Locked-in syndrome is often caused by damage to a region of the brainstem called the 

pons. The pons contains numerous neuronal pathways between the cerebellum, cerebrum, and 

spinal cord. This damage hinders the motor neurons that run from the brain to the spinal cord, 

blocking the signals that allow for movement and control. This damage is often caused by 

hemorrhage or infarct caused by conditions such as a stroke or blood clot. Other conditions that 

can cause locked-in syndrome include infection, tumors, trauma, deteriorations of neuron 

myelin, amyotrophic lateral sclerosis (ALS), and inflammation [1].  This does not, however, 

mean that the person’s brain is not functioning or that the person is incoherent. Many individuals 

are still able to see, hear, and comprehend the world around them. Therefore, research has been 

conducted to create new ways to assist those who suffer from locked-in syndrome.  

One way that those with locked-in syndrome can communicate with the world around 

them is by using a brain-computer interface (BCI). This system acquires brain activity and 

converts these measurements into a command that can be performed by a computer [2]. The 

purpose of the BCI is to replace bodily functions that have been lost due to illnesses, disorders, 

or traumas. Many commonly used BCI measure the neuronal post-synaptic membrane polarity 

changes, dipoles, that occur due to opened voltage or ion gated channels. To measure these 

electrical signals, the electroencephalogram (EEG) is used. To create a brain-computer interface, 

there are four needed components: signal acquisition, feature extractor, feature translation, and 

device output. Signal acquisition refers to the collection of brain measurements by using devices 

such as an EEG. These signals are digitized and sent to the computer for feature extraction. 

Feature extraction refers to the processing of raw data to extract quantifiable features that can be 

further used for classification. An example of a feature may be the amplitude of an EEG signal at 
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a specific time, such as the amplitude of the P300 component of the event-related potential. 

These features can then be classified and identified as target events or non-target events. This is 

how signals are distinguished between wanted or unwanted by the computer for the translation 

since it is usually the target signals that are translated into device output. Dynamic, complex 

algorithms and machine learning techniques are used to translate these features into commands 

that can be given to the output device [2]. The output devices then carry out the desired task, 

such as displaying the desired letter from a matrix. These brain-computer interfaces usually 

require training and are not intuitive to use. During training, the computer is calibrated to 

recognize the specific patterns of the user’s brainwaves and adapts to perform its task. In doing 

so, the computer and the user become synchronized and can use each other to perform a task by 

bypassing the bodily function that would normally perform that task with their brain activity.



 

II. Background Research  

II.A. Electroencephalogram 

An EEG uses electrodes that are placed in contact with the scalp to measure the electrical 

potential changes due to electrophysiological activities of the brain. The electrophysiological 

activities measured would be voltage fluctuation on the scalp which is generated by postsynaptic 

potentials. These potentials represent the change in neuron membrane polarization that is caused 

by the opening and closing of voltage-gated ion channels in pyramidic cells [3, 4]. When an 

impulse arrives from a presynaptic neuron at a synapse, neurotransmitters are released, causing 

the opening of channels in the postsynaptic neuron, and allowing the flow of ions. This flow of 

molecules throughout the postsynaptic neuron changes the resting membrane polarization of the 

postsynaptic cell [4]. These postsynaptic potentials are exhibitory if they increase the likelihood 

of more postsynaptic potentials or inhibitory if they decrease the likelihood of more postsynaptic 

potentials [3]. Thousands of these postsynaptic neurons are measured around each electrode of 

the EEG.  

Unlike other methods of measuring physiological changes in the brain, such as magnetic 

resonance imaging (MRI), which measures the brain’s metabolic changes, EEG measures 

instantaneous electrophysiological changes, allowing for high temporal resolution. This makes 

EEG an ideal measurement device for this study as the high temporal resolution allows us to 

identify features in the measurements that appear at specific time intervals, such as an ERP and 

its different components. When tracking the P300 component of an ERP, the high temporal 

resolution is beneficial for being able to determine exactly where the P300 response is occurring 

in an EEG recording. The electrical signals recorded by EEG are constantly changing even 

during sleep and are measured at the microvolt level. This high temporal resolution allows the 
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BCI to immediately take action depending on how the EEG measurements are classified. One 

limitation of the EEG is that the signal must pass through the dura, skull, and scalp which can 

cause loss of information and worsened signal quality [2]. Nonetheless, the high temporal 

resolution allows the tracking of the electrical impulses in the brain with great accuracy. Even 

with low spatial resolution, the location of the electrical activity along the scalp can still be 

determined. For this study, a g-tec 16-channel EEG headset will be used. This headset follows 

the international 10-20 EEG scalp mapping scheme shown below in Figure 1 [5].  

 

 
Figure 1. A map of the scalp showing the placement of the electrodes of an EEG. This EEG scalp map is held 

consistent with the international 10-20 standard [5]. 
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 The electrode placements shown in the international 10-20 EEG electrode map follow a 

naming scheme that allows users to identify where the electrode is placed. In this scheme, Fp, F, 

T, C, P, and O are used, defined as pre-frontal, frontal, temporal, parietal, central, and occipital, 

respectively. Along with each letter is a number or letter, z. The electrodes on the left side of the 

head are paired with an odd number; the electrodes on the right side are paired with an even 

number, and the electrodes down the midline sagittal plane are given the letter, z [5]. The further 

from the midline the electrode is, the larger the number associated with that electrode will be.  

 

II.B. Event Related Potential Components 

For the brain-computer interface to function, we need to create a measurable response 

elicited by the brain. In this study, the P300 component of an event-related potential (ERP) will 

be used. The P300 response is a component of an ERP, which is a brief fluctuation of EEG in 

response to an event [6]. The P300 is seen as a positive fluctuation in voltage in the EEG that 

occurs approximately 250ms to 500ms after the desired event [7]. In EEG signals, when a P300 

response is evoked, the voltage fluctuates and the P300 component can be identified as the large 

positive fluctuation following the negative N170 response [7]. One way the P300 component of 

the ERP can be evoked is by using the “oddball” paradigm. The “oddball” paradigm assumes 

that all event outcomes are classified into two categories. One of the two events categories is 

considered “rare” with a lower probability of occurrence than the other. When the “rare” event 

occurs, an ERP is evoked, with the amplitude of the P300 response being proportional to how 

small of a probability the event has of occurring [6]. This proportionality is due to the P300 

response being an anticipatory event. This means that as one anticipates the rare or “oddball” 

event, the intensity of the P300 response varies based on how often this event will occur [8]. 
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When a stimulus is rare, the brain is “surprised” when the event does occur. This ERP is a 

measurable event with the typical P300 component of the ERP peaking between 5 and 10 μV [6]. 

This ERP and its components can be seen in Figure 2, shown below [9].    

 
Figure 2. This image shows an ERP and the P100, N170, and P300 components. The P300 component has 

the largest amplitude in the ERP. The P300 component shown in this figure has an amplitude of around 15 

microvolts [9].  

 

 Another component that could be considered for use is the N170. The N170 component 

of an ERP has been shown in several studies to be related to facial recognition and is easily 

reproducible [10, 11]. This component occurs between 140ms and 200ms after the presentation 

of a stimulus. Studies have shown that the amplitude and latency of this component are affected 

by the brain’s facial recognition processes. These are also affected by the emotions associated 

with the image [12]. The N170 component is the most studied component for studies regarding 
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facial recognition indicating there is a consensus that the N170 component is a valid biomarker 

for facial recognition [11]. 

Although the N170 component is a viable marker for facial recognition, it does have 

pitfalls that can lead to inaccuracies in the results. For example, if the facial image that is shown 

is cropped or altered in any way, it can cause the amplitude of the N170 response to be altered. 

[10] This can cause the results to be misinterpreted and cause incorrect conclusions to be drawn. 

The N170 belongs to the N1 class of exogenous components. This means that the response is 

visually evoked. This is compared to the P300 response, which is an endogenous response, 

meaning that it is not evoked by the physical characteristics of a stimulus. Rather, the P300 

response is linked to the individual’s reaction to the stimulus [13]. The P300 response has been 

shown in hundreds of studies as consistently being produced with the introduction of the 

“oddball” event [6]. To reiterate, the P300 component does not require any verbal or physical 

response to be evoked [14]. This makes the P300 component of the ERP an extremely reliable, 

measurable source for communication via signals for this study. 

 

II.C. Brain-Computer Interfaces 

 Brain-computer interfaces are computer-based systems that gather data from the brain, 

analyzes the data, and then translate them into commands that can be used to carry out desired 

tasks [2]. The most studied brain signals are the electrophysiological changes on the scalp which 

are measured with electrodes. Many different types of brain-computer interfaces can be used to 

perform desired tasks. Steady-state visually evoked potentials (SSVEP) is a BCI that uses signals 

that are natural responses to visual stimulation at specific frequencies [15]. When a visual 
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stimulus is presented at a specific frequency, the brain generates an electrical response that is a 

harmonic of that frequency. This BCI is often used in vision and attention studies [16]. Another 

popular BCI is a movement imagery BCI. A movement imagery BCI involves detecting the 

intention to move a part of the body, which evokes an electrical response in the brain [17]. An 

example of this would be to have a subject think about raising their left or right hand. The 

thought of doing so would cause an electrical response in the brain which can be detected with 

measurement devices such as EEG. This BCI would not be ideal for this study as for locked-in 

individuals it may be difficult to create the intention of physical movement. This BCI also 

requires training sessions to be used. Although SSVEP, motor imagery, and P300 BCIs have 

been shown to evoke strong P300 responses, it is unlikely that a new method will be developed 

that can evoke a P300 response with a much larger amplitude [18]. This supports the need for 

studies to be conducted which can find methods that evoke P300 responses with larger 

amplitudes that are found to be significant.   

 

II.D. BCI2000 Software 

 In P300 spelling systems, there has been a multitude of modifications made to optimize 

the speed and accuracy. All these modifications are performed with the BCI2000 software. This 

software allows the user to determine desired outputs by displaying them on a screen. Shown 

below in Figure 2 are the various displays that can be utilized for experiments using the BCI2000 

software. Both the figure and the caption are taken directly from Schalke G. (2004) [19]. 
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Figure 3. Output screens for several BCI2000 implementations tested to date. (A) Sensorimotor rhythm control of 

cursor movement to a variable number of selections (as in [35]). (B) Simple spelling application using sensorimotor 
rhythm control (as in [34]). (C) Slow cortical potential (SCP) control of  cursor movement to two possible selections 
(as in [33]). (D) P300-based spelling application (as in [1] and [38]). In (A)–(C), the cursor moves from left to right 

at a  constant rate with its vertical movement controlled by the user’s brain signals. In (D), rows and columns of the 

matrix flash in a block-randomized fashion. [19] 

 

 From Figure 3, section D is the most utilized display of the BCI2000 software for the 

purpose of the P300 speller system. The matrix of letters and numbers can be altered to inclu de 

varying amounts of characters, words, or commands for a subject to choose from. The rows and 

columns of this matrix is randomly intensified, causing a P300 response in the subject’s brain 

when the desired character is intensified. The parameters of the experiment can be changed using 

the BCI2000 software as well. Some of these parameters include stimulus duration, sequence, 

and interstimulus interval, although, there are many more parameters that may be adjusted using 

the BCI2000 software [19].    
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II.E. Limitations Affecting Performance of the System 

 In a study by P. Brunner et al. (2010) [20], it was tested to see if the location of a 

subject’s gaze affected the outcome of the system. In this experiment, the traditional six -by-six 

matrix of letters and numbers, shown in Figure 3 [19], was used but a focal point was added in 

the direct center of the matrix in the form of a cross. There were two experiments conducted for 

each subject. In the first experiment, the subjects could gaze freely at the characters. In the 

second experiment, the subjects were asked to focus their gaze on the cross. To ensure the gaze 

of the subject was fixed on the cross, an eye tracker was used. In both experiments, the subjects 

were assigned a target character and instructed to signal when the target letter flashed. The 

results of this experiment yielded that the first experimental data set (range: 80 to 100%) 

produced results with much higher accuracy compared to the second experimental data set 

(ranging from 2.8 to 90%). The significance of this study demonstrated that the focus of the gaze 

is important when attempting to produce a P300 response. Focusing directly on the target 

character creates a much larger ERP [20]. 

  In a study by Fazel-Rezai R. (2007) [7], the P300 spelling system was tested to identify 

human errors that can cause inaccuracies. This study eliminated the use of advanced signal 

processing algorithms so that factors such as frustration, fatigue, level of attention, and other 

human factors could be accounted for. In addition, there was no training provided to the subject 

so that the data could be observed in its rawest form. The experiment was conducted using the 

Farwell and Donchin method of a six-by-six matrix with a randomized flashing of rows and 

columns. What was found was that the main source of error in the subject’s results was the 

accidental targeting of adjacent letters in the matrix. By statistical analysis, it was found that in 

all error cases, 60% of the incorrectly detected characters were within one space 
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vertically/horizontally from the target letter [7]. This error analysis is significant for the purposes 

of system optimization as eliminating this chance of error can significantly improve the overall 

accuracy.  

 

II.F. Previous Works on System Optimization 

 In a study by Lu J. (2013) [21], an experiment was conducted to gain a better 

understanding of how stimulus presentation parameters affect the performance of the P300 

spelling system. Using the traditional Farwell and Donchic six-by-six matrix, six subjects were 

tested by flashing the rows and columns of the matrix randomly. The parameters tested were 

stimulus off-time, interstimulus interval, flash duration, and the ratio between flash duration and 

the interstimulus ratio. The interstimulus interval (ISI) refers to the amount of time between 

flashes. The flash durations used were 32ms, 64ms, and 128ms. The results of the study showed 

that the lengthening of the stimulus off-time, increasing the ISI, and increasing the flash duration 

all individually improved the accuracy of the results produced by the system. It can also be noted 

that out of the three flash duration to ISI ratios (1:2, 1:3, 1:4), the 1:4 ratio caused significantly 

higher accuracy in overall system performance. With further research, the characters per minute 

produced by the system can be improved [21]. 

 In a study by Rouja M. A. (2012) [22], it is proposed that using a hybrid of P300 signals 

and motor imagery signals may improve the performance of the P300 spelling system. In the 

system used for this experiment, motor event potentials (MEPs) are used together with P300 

signals. MEPs are signals that are produced when one thinks about using a limb such as your 

right hand.  These signals are near-instantaneous so it is hypothesized that they could improve 
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the speed at which the P300 spelling system operates. Motor imagery signals, μ, can be detected 

with EEG using a bandpass filter of 10Hz to 22Hz. Two subjects were used for this experiment. 

The MEPs were used for a series of binary choices while the P300 signals were used for multiple 

choices. The subjects were tasked with spelling a given sentence. The first three consonants and 

vowels of each word were chosen by having the subject choose the desired column of characters 

using MEPs. After the column is chosen, the sequential intensification of letters method is used, 

and the subject chose the desired character using the P300 signals. After three letters are spelled, 

the columns then display suggested words using the T9 system. T9 is the “old school” method of 

texting via mobile phone that is conducted by choosing starting letters and then choosing a word 

from a set list that fits the chosen sequence of letters. The results of this study showed that the 

hybrid method reduced the overall time to spell the sentence by 70%. However, the accuracy of 

the spelling was reduced by 15%. This study does lay a path that can be improved upon. If the 

accuracy of this method is improved, it may be a viable alternative to the traditional Farwell and 

Donchic method [22]. 

   Another alternative design to the Farwell and Donchic method was proposed by Guan C. 

(2005) [8]. This method follows the same six-by-six design; however, only one character was 

shown at a time. This method was coined the “Single Display Paradigm” or SD-speller. Instead 

of each row and column flashing randomly, each character in the matrix would randomly appear. 

For consistency, the flash rate of the SD-speller was kept the same as the conventional method 

described by Farwell and Donchic (1988) [23]. The results of this study conclude that the SD-

speller displayed a better transfer rate of information than the traditional method. This was due to 

the differences in the P300 components of the ERPs between the methods. In the SD-speller, the 

P300 signals peaked from 0.6 to 2mV higher than the P300 signals produced by the traditional 
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methods. This allows the BCI2000 data acquisition interface to better distinguish between 

desired and non-desired characters. The accuracies between the methods also showed a lower 

rate of error in the SD-spelling system. This may be due to the elimination of adjacent-character-

error, outlined by Fazel-Rezai (2007) [7]. This study showed significant improvement to the 

P300 spelling system and outlines a new possible method for optimizing the system [8]. 

 In a study by Lu et al. (2020), a paradigm was created using facial recognition. This study 

used the face of the subject and compared the results to a familiar face paradigm that used the 

face of a famous person. When using the self -face paradigm, it was found that ERP component 

amplitudes had increased from 340ms to 480ms in the parietal area (P300), from 480ms to 

600ms in the parietal area (P600), and from 700ms to 800ms in the fronto-central area. The 

information transfer rate was also calculated and shown to have been improved by the self-face 

familiar face paradigm. In a study by Miyakoshi et al. (2008), it was shown that the P300 

represents the recognition differences between the self-face and the famous face. This implied 

that the self-relevance of the image was proportional to the strength of the ERP response. This 

means that the self-face would produce the best results of any image because it will always have 

a high self-relevance [24]. This study also speculated that the reasoning behind the increase in 

ERP response between 700ms and 800ms in the fronto-central area may be due to subjects 

paying more attention to their own face than a famous face [25]. From this study, it can be 

surmised that when testing a familiar face paradigm using famous faces, the face used must be 

equally relevant to all subjects. This means that even though everyone may know a famous 

name, such as Michael Jordan, they may not be as familiar with the face as someone who is an 

avid sports enthusiast. The faces used in the paradigm should be carefully considered to not 

cause any bias in the results [25].   



 

III. Research Questions 

According to Lu J. (2015), a flash rate to interstimulus interval ratio of 1:4 showed 

improved accuracy and characters per minute. Based on this conclusion, this ratio will be kept 

static. A familiar face paradigm will be used  as it is shown to produce larger ERP responses, 

resulting in better accuracy of the system (Lu et al., 2020).  Along with the familiar face 

paradigm, the flash duration of the stimulus will be changed, having an interstimulus interval that 

is four times greater. If the flash durations of 32ms, 64ms, and 128ms are tested, will there be a 

difference in spelling time of the P300 spelling system and does the length of the flash duration 

cause significant changes in the accuracy of the results? Can spelling performance be improved 

if these flash durations are coupled with the presentation of familiar faces? If this experiment is 

conducted weekly for 24 weeks, will there be an improvement in the results over time.



 

IV. Hypothesis 

If the flash rate is tested at 32ms, 64ms, and 128ms with a ratio of 1:4 between flash 

duration and interstimulus interval, the 64ms flash duration will have the fastest spelling speed 

without significant decrease in accuracy. The 32ms flash duration will have the fastest spelling 

time but will not be viable due to a significant decrease in accuracy. The 128ms flash duration 

will not have any significant decrease in accuracy but will not outperform the 64ms flash 

duration as it will not complete the spelling faster than the 64ms flash duration.  

In comparison to the non-familiar face paradigm, it is hypothesized that the paradigm 

using the familiar face overlay will produce results with higher accuracy. It is predicted that this 

will hold true for all configurations of flash duration to ISI at a 1:4 ratio. The P300 response of 

the familiar face paradigm is hypothesized to have a higher amplitude than the non-familiar face 

paradigm, allowing for more accurate classification of the EEG data. This should allow for a 

better distinction between target and non-target events, resulting in higher accuracy. The 

amplitudes of the P300 responses in the familiar face paradigm will be larger than the amplitudes 

observed in the non-familiar face paradigm. It is hypothesized that the performance of the P300 

spelling system will be best with a familiar face paradigm using a 64ms flash duration. 

If the experiment is conducted over the course of twenty-four weeks, it is expected to see 

that the spelling performance will improve over time. It is expected that the spelling performance 

is to yield lower accuracy during the beginning weeks of testing and maintain high accuracy 

throughout the final weeks of testing. It is hypothesized that the speed of the P300 automatic 

spelling system will not be affected, but the accuracy will.



 
 

V. Significance and Rationale 

The P300 spelling method is not as efficient as the conventional methods of 

communication such as oral speech, typing, or writing. The time it takes for the P300 speller to 

spell twenty characters has been shown to be in the order of minutes with non-perfect accuracy 

[21, 22]. For individuals who are “locked-in”, this system optimization would put them one step 

closer to being able to communicate at a speed that is more conducive of normal conversation 

with spelling accuracy that would minimize frustration and confusion.  

When we compare the speed of the different testing figurations, it is obvious that ideally, 

we would want the testing to take the least amount of time possible. However, if the flash 

duration is too fast or too slow, then the accuracy of the results may be reduced  significantly. 

When comparing configurations that may be similar in speed, it is important to know if the 

difference in accuracy is significant. If one configuration shows slightly faster speeds but with 

reduced accuracy that is significant, then it may not be the ideal configuration for daily and 

regular use. Therefore, finding this balance between speed and accuracy is an important step 

toward the optimization of the basic P300 speller system. To measure the speed of the system, 

32ms, 64ms, and 128ms flash durations will be used. This is so that they can be held consistent 

with flash durations used for testing found in recent literature. They also provide enough of a 

range to encompass what may be considered as too fast or too slow. This allows the results to 

show whether the increase or decrease of the flash duration will improve the performance of the 

spelling system.  

The flash duration that results in the longest testing period will be 128ms. However, this 

should produce the largest ERPs, resulting in the most accurate results. This is because the flash 

duration will create a more “oddball’ paradigm scenario due to the amount of time that is passing 
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causing the target event to be rarer. It also gives the brain more time to recognize the target 

stimuli. This will cause a larger P300 response which can be more easily determined by stepwise 

linear discriminant analysis as a target ERP. However, this will not be the most efficient 

configuration of flash duration and ISI.  

The 32ms duration flash will require more iterations than the 128ms flash duration. 

Although, due to the 1:4 ratio, the time required to complete the spelling of the characters will 

still be shorter than the 128ms flash duration. It is hypothesized that the 32ms duration does not 

give enough time to recognize target stimuli between consecutive flashes, producing an 

overlapping effect, resulting in reduced accuracy. This means that the number of iterations 

required by the software to determine the desired character will be significantly higher than the 

rest. Also, the 32ms flash duration will not cause an enhanced P300 response. Therefore, 

stepwise linear regression will not be able to classify target and non-target ERPs as easily, 

resulting in decreased accuracy.  

Therefore, the 64ms flash duration will be the optimal flash duration for achieving the 

fastest spelling of the characters. This is because, with a 1:4 ratio of flash duration to ISI, there is 

at least 300ms total time given for the brain to elicit a P300 response without the overlapping of 

other desired stimuli ERPs. The P300 response observed should also be dramatic enough to be 

easily classified as a target ERP. It is estimated that same will hold true for the 128ms 

configuration. However, if the 128ms configuration results mimic those of the 64ms flash 

duration, then the time to complete the spelling will be longer.  

The familiar face paradigm is predicted to also improve the speed and accuracy of the 

P300 speller. This paradigm has been shown to increase the amplitude of the P300  response, 

resulting in an easier classification of the target events as they will stand out more over non-
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target events. Li et al. showed that when testing the P300 spelling system with a familiar face 

paradigm, the P300 response was elevated in the frontal and parietal regions to levels higher than 

in the non-familiar face paradigm [26]. In a study by Spieler et al., the familiar face paradigm 

showed greater performance in all experimental trials compared to two non-familiar face 

paradigms. This was tested using both stepwise linear discriminant analysis and particle filtering 

[27]. In another study by Lu et al., it was shown that facial recognition could be improved by 

using faces that were relevant to the subject [25]. The faces used in the experiment will be very 

relevant to all subjects, such as the president of the United States [28]. This method of using 

familiar face paradigms has been shown to elicit stronger ERP responses as not only does it 

increase the amplitude of the P300 component, but it also evokes the N170 and N400 

components [28]. This experiment seeks to use this familiar face paradigm in combination with 

the changing of flash duration and ISI times to find a paradigm with optimized parameters. The 

overall goal is to use this combination to produce a P300 spelling paradigm that can produce 

results faster without sacrificing accuracy. The combination of paradigm type with superior flash 

duration will be considered the more optimal parameter to be used for a P300 spelling system.  



 
 

VI. Methodology 

VI.A. Subject Recruitment and Consent 

All the methods in this experiment, including the recruitment of the subject, have been 

approved by the East Carolina University’s Institutional Review Board. Before testing can begin, 

each subject must provide his written informed consent before the start of testing.  There will 

only be one subject recruited for this study. Due to the global pandemic, COVID-19, social 

distancing and precautions to maintain the safety and well-being of the subject’s and researcher’s 

health will be put in place. If the subject has a history of seizure disorders, visual impairment, or 

is on neuroleptic medications, they will be excluded from the study. The subject will only be 

allowed to participate in the study if they are able to give informed consent. A Montreal 

Cognitive Assessment test (MoCA test) will be given to the subject to determine if the subject 

shows any signs of cognitive impairment or illiteracy. 

 

VI.B. EEG Recording 

The subject will be fitted with a standard electrode cap containing 16 gold-plated, dry 

EEG electrodes (g.SAHARA). The electrodes’ alignment will follow the 10-20 international 

system of locations [5].  The data from these electrodes will be obtained and amplified utilizing a 

g.tec g.USBamp amplifier. Amplified EEG signals are then transferred via USB to a secured 

laptop running BCI2000. All raw data will be stored within a xxxx.dat files in BCI2000 for 

future processing. The laptop used for storing data is password protected and has been approved 

by the ECU Institutional Review Board.  
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VI.C. P300 Spelling System 

 This P300 spelling system will work by collecting EEG data from the subject, filtering 

the data, classifying the data, and then deciding what character is to be displayed based on the 

classified data. First, the EEG data is collected from the subject using BCI2000 software. This 

data is then filtered using common average referencing (CAR) and artifact subspace 

reconstruction filtering (ASR). This filtering process removes unwanted artifacts from each EEG 

channel by keeping only valid EEG signals reflecting the brain’s electrophysiological activities. 

This can help eliminate motion artifacts, electric noise, or other noise sources that pollute the 

data. The processed data is then classified using stepwise linear discriminant analysis (SWLDA). 

This method of classification allows the spelling system to determine if the stimulus presented to 

the subject is a target event or a non-target event. Once all the stimuli have been classified as 

target or non-target, the BCI2000 software uses the information to determine which character the 

subject wanted the computer to display. 

 The system uses a machine learning approach, which involves training and testing. 

Before the subject can be tested, a training session must be held so that the computer can be 

calibrated to the subject-specific data. Then, the testing session follows the same steps previously 

listed, but the data outputted will not be analyzed statistically. Now, when the computer 

processes the testing data, it will refer to this training data to confirm whether the data is target or 

non-target. This allows the computer to determine the desired results by comparing and 

validating the data to the training data that was originally fed into the system. This makes the 

testing process subject-specific as training data from the subject is not likely to work for anyone 

else.  
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VI.D. Paradigms 

 Two paradigms that will be used for testing. The first paradigm is the non-familiar face 

paradigm. A matrix consisting of five rows and columns, each containing five letters, flash 

individually in a randomized order. The letters “X” and “Z” have been removed f rom this matrix, 

although larger matrices can be created which incorporate all letters and other characters. The  

flash duration is based on the configuration that will be used. The time between the flashes is the 

interstimulus interval (ISI) and is maintained at a 1:4 ratio between flash duration and ISI. An 

example of this paradigm is shown below in Figure 4. 

 

 
Figure 4. This image shows a screenshot of the non-familiar face paradigm. In this image, the phrase that is to be 

spelled is located at the top of the screen, and the third column of letters is flashing bright white. 

 

 The second paradigm used is the familiar face paradigm. This paradigm is like the non-

familiar face paradigm as it consists of a matrix of letters. Between flashes (known as the ISI), 
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the familiar face paradigm is identical to the non-familiar face paradigm. However, during the 

flash, instead of the row or column flashing bright white, a familiar face is flashed instead of the 

letter. For this experiment, the familiar face used was that of Tiger Woods. However, other 

familiar faces can be used as well such as the President of the United States’ face. An example of 

this paradigm is shown below in Figure 5. 

 
Figure 5. Figure 4. This image shows a screenshot of the familiar face paradigm. In this image, the phrase that is to 
be spelled is located at the top of the screen, and the first column of letters is flashed, showing Tiger Woods’ face 

over each letter in the column. 

 

VI.E. Training Session 

 A training session must first be held before the testing of the different configurations can 

begin. The BCI2000 software does not produce identical results for people as everyone has 

different brain waves. Therefore, the software must be trained to recognize the P300 responses 

that are specific to the user. Only after the training session is completed and information gathered 

is regressed and classified, can we begin to test the various flash durations.  



23 
 

Before training can begin, the software must be prepared. To do so, the parameters that are to 

be used for testing must be loaded in and then changed for the desired experimental design. 

Many of the parameters are prepared before the time of testing and saved into a parameter file 

that is loaded into the software. Also, the testing environment must be kept optimal to ensure 

there is minimal noise picked up by the EEG. Loud noises, distractions, changes in light, and 

other non-ideal environmental parameters could be picked up by the EEG or cause spikes in 

electrical activity in the brain which will then be measured by the EEG. Environmental factors, 

such as larger monitors for the paradigm, have also been shown to affect the size of the P300 

component of the ERPs. Finally, the subject must be given clear instructions on how to perform 

the training. This is done to minimize any human error. 

The training session must be performed for each paradigm before any testing sessions can be 

held. For each paradigm, the training session uses a 128ms flash duration with 10 iterations. It is 

believed that using the longest flash duration used in testing will elicit the strongest ERPs which 

allows the SWLDA classifier to better identify the P300 component. The parameter file is loaded 

into the BCI2000 software with the 128ms flash duration and the phrase 

“THEBIGDWARFONLYJUMPS” is spelled. This is the phrase that will be spelled for both 

training and testing sessions. Note that the BCI2000 software will output letters that do not 

match the desired phrase. This is because the training data has not yet been classified, therefore 

the BCI2000 software does not have the user’s training data. Once this training session is 

completed, the training data is inputted into the SWLDA classifier. The classifier is checked to 

ensure that it is using the same parameters that are specified in the parameter file that was loaded 

into the BCI2000 software. Once the training data has been fed into the classifier, feature 

weights will be generated. These feature weights allow the BCI2000 system to determine if a 
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stimulus is considered a target or non-target based on the ERP response generated by the user in 

response to the stimulus. These feature weights are loaded into the BCI2000 system and can now 

be used for testing. 

After the training session has been concluded, the BCI2000 software generates a xxxx.dat 

file that can be loaded into the P300 classifier. This P300 classifier uses the common average 

referencing, artifact subspace reconstruction filtering, and stepwise linear discriminant analysis 

to determine which ERPs are significant, or target ERPs, and which ERPs are not significant, or 

non-target ERPs. This classifier uses the model for each flash iteration and displays the results of 

each iteration, along with its accuracy. For example, if the intended word is “PURPLE”, the 

classifier may determine that the first iteration returned “PURJIT” which has a 50% accuracy. 

The next iteration, it may return “PURJIE” which is a 66% accuracy, and so on until the stepwise 

linear discriminant analysis has determined the intended characters with 100% accuracy. An 

example of this is shown below in Figure 6.  

To generate these results, a xxxx.dat file that was generated from the previous training 

session is taken and loaded into the Data tab of the P300 classifier. Next, in the Parameters tab, 

ensure the following things: the spatial filter is set to CAR, the channel set includes all the 

relevant testing channels on the EEG headset, and the response window mimics the “Epoch 

Length” from the BCI2000 Filtering tab. In this case, it should be set to 800ms. After these 

parameters are set, click on “Generate Feature Weights” in the Data tab. This will run the 

stepwise linear discriminant analysis model and return the results after each iteration of flashes. 

This will also generate a xxxx.prm file that will be loaded back into BCI2000 software. This file 

contains the training and regression data that is specific to the user. When this file is loaded into 

the BCI2000 software, the software will be able to use this new training information to classify 
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ERPs as target and non-target. This will allow the P300 speller paradigm to be used in online-

free mode, meaning that any character can be spelled at will. 

 
Figure 6. This image shows the details generated by the P300 classifier. Each iteration is tested using stepwise linear 

regression with the machine-learning algorithm allowing for increasingly accurate results. In this example, the 
minimum number of iterations required to achieve 100% accuracy is three. The time it took to complete the training 

is also shown at the top of the GUI. In this case, the training session took a total of 471.57 seconds.  

 

VI.F. Common Average Referencing (CAR) 

 To explain what the P300 classifier is doing, the common average referencing spatial 

filter and stepwise linear discriminant analysis classification technique must be defined.  

Common average referencing can be used to minimize noise from a signal that can be generated 

from sources outside of the EEG’s target zone. This noise would include motion artifacts and 
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electrical noise [29]. To exclude these unwanted noises, we can use CAR. This is often very 

necessary as the signals generated are very weak (μV range) and can be overshadowed by these 

noise artifacts (mV range). The number of channels in an EEG recording can be represented by 

K [29].  

𝑑𝑘,𝑡 =  𝑠𝑘,𝑡  +  𝑤𝑘 × 𝑛𝑡  (1) 

 In Equation 1, 𝑑𝑘,𝑡 represents the recorded signal channel, k, at time, t.  𝑠𝑘,𝑡 represents the 

desired signal, 𝑤𝑘 is the weighting coefficient between channels, and 𝑛𝑡 is the noise artifacts. 

The weighting coefficient, 𝑤𝑘, can be assumed to be 1 as ideally all the channels would have the 

same level of noise. The CAR is generated by taking an average of each sample and using it as a 

global reference across all channels [29, 30]. 

𝑠𝑘,𝑡 =  𝑑𝑘,𝑡 −  𝑛̂𝑡  (2) 

where 

𝑛̂𝑡 =
1

𝐾
∑ 𝑑𝑘,𝑡

𝐾

𝑘=1
 (3) 

This means that after the averaging, only the noise artifacts that are common amongst all 

channels will remain [29, 30]. After we have used CAR for spatial filtering, we can then move 

forward with the classification of the training data. This classification is done using stepwise 

linear discriminant analysis. 
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VI.G. Artifact Subspace Reconstruction Filtering (ASR Filtering) 

To further remove artifacts such as noise from electrical, environmental, and motion 

noise ASR filters were used [31]. ASR is an automatic, adaptive, component-based method to 

correct or remove artifacts, including those that are transient or have a large-amplitude in data 

comprising multichannel EEG data. First, the ASR filter is calibrated to learn the data principal 

component space. In this step, it sets up a covariance matrix and uses it in future steps to 

determine whether a chunk of data is clear or contaminated by artifacts. To conserve the EEG 

data during calibration, the mean of the data is subtracted and pushed through an IIR filter before 

computing independent component analysis (ICA)  [32]. A mixing matrix is then computed, and 

the root mean-square is taken of the principal components to set the thresholds of the filtering. 

Then, the data is analyzed in chunks to determine whether it contains artifact components. If it 

does, those components are removed and replaced with latent components taken from calibration 

[32].  

Figure 7. This image shows 10 seconds of EEG data following ASR data cleaning (blue trace) superimposed on 

original data (red trace) [32]. 
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VI.H. Stepwise Linear Discriminant Analysis 

 To classify the testing data, a program is used that performs stepwise linear discriminant 

analysis (SWLDA). The linear discriminant analysis (LDA) is a two-variable classification 

technique used to determine the target and non-target stimuli. We can say that we have a set of 

observations, 𝑥, for each sample of an event, y [33]. This set of samples is the testing set. To find 

a predictor of y, we need to create a vector of coefficient estimates for the terms in the final 

model, b. These can also be referred to as the feature weights. When we use LDA, we assume 

that the probability density functions P(𝑥|y = 0) and P(𝑥y = 1) have a normal distribution with a 

mean and covariance of (μ0, Σ0) and (μ1, Σ1). LDA then moves to use Bayes optimal solution [34, 

35, 36, 37]. 

The purpose of a linear discriminant analysis model is to create a predicted mean 

response variable, 𝑦̂. This predicted response variable is what we use to classify each event as 

target or non-target. Here, 𝑥 represents the predictor variables in a numeric, n-by-p matrix with n 

being the number of variables and p being the number of observations. The predictor response 

variable, 𝑦̂, is returned as a n-by-1 logical array which is used to classify the results. An example 

of this logical array can be shown below: 

𝑦̂ = [1 0 1 1 0 1 0 0 0 1 ] 

This logical array is representing 10 different events, with them having a predicted value of 1 or 

0 which can be classified as target or non-target. Each entry in this logical array is the 

corresponding rows of x. To obtain the logical array of predicted responses, 𝑦̂, we need to obtain 

the estimating coefficients, b. These coefficients are a numeric vector that corresponds to the 

terms in x. The method of least squares is used to determine these coefficients. If a term is 
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included in the final model, then its estimated coefficient, b, is estimated from its resulting fitted 

model. If a term is excluded, then b is estimated from its resulting fitted model plus that term. 

This process of obtaining the feature weights, b, can be used to find the predicted responses, 𝑦̂. 

The equation for the predicted responses can be seen below in Equation 4. 

𝑦̂ = 𝑏𝑥 (4) 

This linear equation outputs the predicted response, 𝑦̂, based on the product of the input matrix, 

x, and the estimating coefficients, b. This produces a linear result that can be tuned using a 

stepwise fitting.  

 Stepwise LDA then goes to take LDA further by having the model change in steps. Using 

forwards and backwards regression, thresholds are set that determine which variables are to be 

held and which are to be thrown out. These thresholds are a p-value of an F-statistic [38]. This 

means that the correlation of a term in relation to a group of like terms is calculated and given a 

threshold. In the forwards regression portions of the stepwise process, an entrance threshold is 

set and the variables which meet this threshold are classified as a target variable. If a term is 

tested for correlation against a group of terms that have been deemed target variables and was 

found to have a p-value that is above the threshold, then that term would join the group of target 

variables. In the backwards regression portions of the stepwise process, an exit threshold is set 

which determines which variables are thrown out of the matrix of target variables due to not 

meeting the conditions of the exit threshold. The exit threshold is not allowed to be smaller than 

the entrance threshold because this would cause the stepwise process to enter an infinite loop of 

adding and removing the same variable repeatedly. Each iteration of this stepwise process 

changes the LDA threshold based on which variables are held in the target variable matrix that 

step. This means that as a variable is taken in or thrown out, the threshold will change. A 
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variable that was not originally chosen as a target variable or a variable that was thrown out can 

then be re-added to the target variable matrix based on how the variables inside affect the 

threshold. The stepwise process terminates when no single step affects the outcome [38]. This 

stepwise process of LDA adds a layer of filtering to the classification, allowing for a narrower 

scope of what may or may not be considered a target variable [39]. 

 This technique of classifying the data using SWLDA was shown to be superior to non-

stepwise LDA [37]. In a study by Manyakov et al. (2011), it was shown that the stepwise version 

of LDA had outperformed the LDA, although the results were not significant. This was also 

compared to five other classification techniques with two other methods being shown as having 

better accuracy than the SWLDA, however, SWLDA is shown to be better suited for training 

data as it is adjustable [39].  

 

VI.I. Experimental Design - Testing 

 After the training session is held and the training data has been classified to create the 

feature weights, the testing sessions can begin. First, the non-familiar face paradigm will be 

tested. The parameter file for the 128ms flash duration and non-familiar face paradigm is loaded 

into the BCI2000 software. Then, the file containing the feature weights that was created by the 

SWLDA classifier is loaded into the BCI2000 software. Now, the software will be able to 

differentiate between target and non-target stimuli based on the features of the ERPs elicited by 

the stimuli. The subject is instructed to spell the same phrase that was used in the training 

session, “THEBIGDWARFONLYJUMPS”. This phrase is used because it contains 20 letters 

that are all used only once. Once the subject has been instructed how to conduct the testing 
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procedure, they can begin. This testing procedure also uses 10 iterations for each letter. Once the 

phrase has been spelled, the testing session is ended. In the BCI2000 software, the flash duration 

is changed to 64ms and the ISI is changed to reflect a 1:4 ratio. The testing procedure is then 

repeated for this configuration. Once this is completed, the same testing procedure will be held 

for the 32ms flash duration configuration. After the testing session using the 32ms flash duration 

is completed, the testing sessions for the non-familiar face paradigm are concluded.  

 After the three testing sessions have been completed for the non-familiar face paradigm, 

the training session procedure must be repeated for the familiar face paradigm. Once the training 

session is completed and a feature weight file has been generated by the SWLDA classifier, 

testing sessions can be held. The parameter file for the 128ms flash duration and familiar face 

paradigm is loaded into the BCI2000 software. Then, the file containing the feature weights that 

were created by the SWLDA classifier is loaded into the BCI2000 software. The subject is 

instructed to spell the same phrase that was used in the training session , 

“THEBIGDWARFONLYJUMPS”. Once the subject has been instructed how to conduct the 

testing procedure, they can begin. This testing procedure also uses 10 iterations for each letter. 

Once the phrase has been spelled, the testing session is ended. In the BCI2000 software, the flash 

duration is changed to 64ms and the ISI is changed to reflect a 1:4 ratio. The testing procedure is 

then repeated for this configuration. Once this is completed, the same testing procedure will be 

held for the 32ms flash duration configuration. After the testing session using the 32ms flash 

duration is completed, the testing sessions for the familiar face paradigm are concluded. This 

experimental procedure is conducted weekly over the course of six months. 
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VI.J. Data Analysis - MATLAB 

 Once we have the six xxxx.dat testing files, they are analyzed in MATLAB to determine 

the speed and the average height of the P300 responses generated by the different testing 

configurations. To do so, a code was written that loads in xxxx.dat files, then separates target 

ERPs from non-target ERPs, then epochs target ERPs and non-target ERPs, finds the mean of 

both, and finally saves the file as a .mat file for further analysis. This code is written to 

accommodate different length character combinations, different dimension matrices, and various 

numbers of iterations. 

 To begin using the code, the testing file generated by the BCI2000 software is inputted 

into the code as the desired file. Next, details about the file are entered to allow the code to adjust 

to different testing parameters. These details that are inputted are: the number of iterations, 

number of rows, number of columns, and number of characters. This is important to keep 

consistent with the testing data file. For example, if we have four iterations, five rows and 

columns, and six letters, then the code can calculate the number of events. Events refer to 

individual flashes. In this case, there would be 240 total events. This is because each row and 

column would flash four times (40 events), for each letter (six letters). The code then calculates 

the number of target and non-target ERPs there are per letter. To get the number of target ERPs, 

simply take the number of iterations times two. This is because if there are four iterations, then 

the correct row will flash four times and the correct column will flash four times. This is a total 

of eight target ERPs out of 40 total ERPs per letter. This will provide the basis for the code to 

separate and epoch the target and non-target ERPs. These specifics can all be adjusted to reflect 

the testing file. 
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 Next, the code moves to separate the target and non-target ERPs. It does so by utilizing 

EEG-Lab toolbox to determine the position of each event. Each position corresponds to a 

specific row or column on the matrix. This allows for it to search for the events that occur at 

certain positions, separating the target and non-target ERPs. These are separated on a letter-by-

letter basis so that we can average and observe many P300 responses per data file.  

 After the separation of target and non-target ERPs, the code has to epoch the data. Every 

event, both target and non-target, is associated with a specific timestamp that we can use to find 

where in the raw data the event is located. For example, if Event 1 has a time stamp of 1337, 

then the event happened at the 1337 th data point recorded by each channel. If  we have a sampling 

frequency of 500Hz, then we can determine that this event happened 2.674 seconds into testing. 

For each group, target and non-target, each event is associated with its timestamp and then 

epoched. This epoch is taken from 200ms before the event (200ms pre-stimuli) to 800ms after 

the event (800ms post-stimuli). This gives a one-second view around the event. We can expect to 

see the P300 response around 300ms after the event occurred, or the 500th data point in the 

epoch. Then, the average can be taken of the epoched target and non-target ERPs for each letter. 

This will find the mean between each of the events across the same channels. For example, if the 

target events for the first intended character are Event 1, Event 3, and Event 5, then the mean of 

these epoched ERPs will be the average ERP for that character. With a sampling frequency of 

500Hz, this means that a 1-second epoch will be 500 data points per channel. With 16 channels, 

this means that the epoched data for each event will be a 16 by 500 matrix. When we take the 

mean of these events, we are taking the mean of each cell of the matrix across events. So, cell 

{1,1} of all three events will be averaged, and the same done for the rest of the cells. This will 

condense all the events in a group into one matrix containing the average target ERP or average 
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non-target ERP per character. In the case of this project, ERPs will be grouped as target and non-

target per letter. 

 The average target and non-target ERPs are then ready to be analyzed further. A second 

code to visualize the ERPs is created. As each row of the matrix represents a different EEG 

channel, we can plot the average target ERP against the average non-target ERP for each 

channel. A plot can be created for each letter with one subplot for each EEG channel. The peak 

can be easily obtained by using the “max” function in MATLAB. An example of this plot with 

the associated subplots is shown below in Figure 5, located in the Results section.  

 

VI.K. Analysis of Results 

 To determine the performance of the different configurations, an accuracy of 95% will be 

used as the required accuracy to be determined as acceptable. This is because with modern 

spelling correction algorithms, we can accurately determine the desired word when a word with 

three letters or more is misspelled by 1 letter. For example, if the system determines the desired 

letters to be T, W, and E, we can determine the word to be either “two” or “the”. However, if 

more than one letter is misspelled, it is exceedingly harder to correct the spelling error.  Because 

the phrase used for testing has 20 letters, 95% accuracy is used because it represents 19 of 20 

letters being spelled correctly. This cannot be more lenient because even though the 20-letter 

phrase is comprised of five words, it cannot be foreseen whether multiple misspelled letters will 

be consecutive or not. 



 

VII. Results 

VII.A Analysis of P300 and N170 Components 

 To visualize the ERP responses obtained, a figure was created with a subplot for each 

EEG channel. 16 subplots were arranged according to the 10-20 international mapping system 

which shows the location of the electrodes on the head. Each subplot contains a 1 second long 

epoch which shows the average ERP response for both target and non-target events. These plots 

were created for every testing session. An example of these subplots for the non-familiar face 

paradigm with a 128ms flash rate can be seen below in Figure 8. 

 
Figure 8. This figure shows the average P300 amplitude for both the target and non-target events using the non-

familiar face paradigm with a 128ms flash rate. The green line represents the target events and red line represents 

the non-target events. This is calculated for all 16 channels and is displayed in the 10-20 international mapping 
system which shows the location of the electrodes on the head. 
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 For target events, these subplots show the average peak P300 amplitude of the non-

familiar face paradigm is 6.8059 μV with a range from 4.6212 μV to 9.8091 μV. The average 

N170 amplitude was -7.9175 μV.  For non-target events, the average peak P300 amplitude of the 

non-familiar face paradigm is 3.8112 μV with a range from 2.179 μV to 5.6695 μV. The average 

N170 amplitude was -2.9161 μV.  

 This same analysis was done using for the familiar face paradigm. The results for the 

same testing session can be shown below in Figure 9. This figure shows the results for the 

familiar face paradigm with a flash rate of 128ms. 

 
Figure 9. This figure shows the average P300 amplitude for both the target and non-target events using the familiar 
face paradigm with a 128ms flash rate. The green line represents the target events and red line represents the non-

target events. This is calculated for all 16 channels and is displayed in the 10-20 international mapping system which 
shows the location of the electrodes on the head. 
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 For target events, these subplots show the average peak P300 amplitude of the non-

familiar face paradigm is 8.2898 μV with a range from 5.3189 μV to 11.5502 μV. The average 

N170 amplitude was -10.4522 μV.  For non-target events, the average peak P300 amplitude of 

the non-familiar face paradigm is 5.0023 μV with a range from 1.6347 μV to 8.9445 μV. The 

average N170 amplitude was -2.5329 μV. These values are much larger than those produced 

using the non-familiar face paradigm.  

 The P300 amplitude averages were found for each testing configuration. These averages 

were taken only from the target events. Non-target events were not calculated for this portion of 

the analysis. A figure containing two subplots was created. Each subplot contains three lines 

which represent the three flash durations used. The first subplot represents the results of the non -

familiar face paradigm, and the second subplot represents the results of the familiar face 

paradigm. These subplots can be seen below in Figure 10.  
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Figure 10. This figure contains two subplots that show the P300 amplitude averages for the non-familiar face 

paradigm(top) and the familiar face paradigm(bottom). Both paradigms exhibited P300 amplitude averages that 

were highest using a 128ms flash rate, followed by the 64ms flash rate, with the 32ms flash rate having the lowest 

average amplitudes. 

 For the non-familiar face paradigm, the average P300 amplitudes were highest with the 

128ms flash duration, followed by the 64ms flash duration, and lowest with the 32ms flash 

duration. For the 128ms flash duration, the average P300 amplitude was 5.8311 μV with a range 

of 4.2862 μV to 7.1024 μV. The 64ms flash duration had an average P300 amplitude of 4.139 

μV with a range from 2.3115 μV to 5.4414 μV. Last, the 32ms flash duration had an average 

P300 amplitude of 2.8341 μV with a range of 1.7035 μV to 3.7556 μV. 

 For the familiar face paradigm, the same trend was seen 128ms flash duration having the 

highest average P300 amplitudes, followed by 64ms flash duration, and the 32ms flash duration 

having the lowest. For the 128ms flash duration, the average P300 amplitude was 7.6656  μV 
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with a range of 6.2141 μV to 9.0202 μV. The 64ms flash duration had an average P300 

amplitude of 6.1007 μV with a range from 4.1568 μV to 7.5945 μV. Finally, the 32ms flash 

duration had an average P300 amplitude of 4.8667 μV with a range of 3.654 μV to 6.6218 μV. 

 For both paradigms, the 128ms flash duration consistently acquired a higher average 

P300 amplitude than the 64ms flash duration. The same is true for the 64ms flash duration and 

the 32ms flash duration. However, for all three flash durations, the average P300 amplitude is 

higher with the familiar face paradigm. A comparison of the average P300 amplitudes between 

the familiar face paradigm and the non-familiar face paradigm can be seen below in Figure 11. 

 
Figure 11. This figure contains three subplots that show the P300 amplitude averages for the 128ms flash rate, 64ms 

flash rate, and 32ms flash rate configurations. Each subplot contains the line plot for the non-familiar face paradigm 
and the familiar face paradigm. 
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 For the 128ms flash duration, the familiar face paradigm consistently produced a higher 

average P300 amplitude than the non-familiar face paradigm. This amplitude was up to 

approximately 3 μV higher than the non-familiar face paradigm in some sessions.  

 For the 64ms flash duration, the familiar face paradigm consistently produced a higher 

average P300 amplitude than the non-familiar face paradigm, except for one testing session 

which produced a higher amplitude in the non-familiar face paradigm. Even for this one session, 

the difference between the non-familiar face paradigm and the familiar face paradigm is a mere 

0.2801 μV. 

 The same trend that is seen in the 128ms flash duration comparison can be seen in the 

32ms flash duration comparison. The familiar face paradigm consistently produced a 

significantly higher average P300 amplitude. This flash duration showed the largest amount of 

average difference between the familiar and non-familiar face paradigms. 

 

VII.B Accuracy Over Each Iteration 

 Next, the performance of the system could be shown as a measure of accuracy over 

iterations. A figure was created with two subplots, one for each paradigm. Because there were 10 

iterations used for each letter during testing, the x-axis shows 10 ticks which represent each of 

the 10 iterations. The accuracy is the average accuracy at that interval for all testing sessions and 

is displayed as a percentage. This figure and subplots can be seen below in Figure 12. 
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Figure 12. This figure contains two subplots that show the spelling accuracy over each iteration for the non-familiar 
face paradigm(top) and the familiar face paradigm(bottom). Both subplots contain three lines; one line for each flash 

rate configuration.  

 For the non-familiar face paradigm, the number of iterations required to reach 95% 

accuracy (the accuracy which represents only 1 letter misspelled) increases as the flash duration 

time decreases. For the 128ms flash duration, only 4 iterations were needed to reach the 95% 

accuracy needed. This is compared to the 64ms and 32ms flash durations which needed 6 and 8 

iterations, respectively. 

 For the familiar face paradigm, the same trend is seen in the non-familiar face paradigm 

with the number of iterations required rising as the length of the flash duration decreases. For the 

128ms flash duration, it only required 2 iterations to reach 95% accuracy. This is compared to 

the 64 and 32 ms flash durations which both required 6 iterations.  
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 In comparison, the familiar face paradigm saw a steeper rise in accuracy with the results 

mimicking an exponential plateau as where the non-familiar face saw a more linear rise in 

accuracy. Also, the number of iterations required decreased for both the 128ms and 32ms flash 

durations when using the familiar face paradigm. However, the 64ms flash duration required the 

same number of iterations as the non-familiar face paradigm. This can be seen below in Figure 

13.  

 
Figure 13. This figure contains three subplots that show the spelling accuracy over each iteration for the 128ms, 

64ms, and 32ms flash durations. The subplots contain two lines; one line for each paradigm.  
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VII.C Accuracy Over Time 

Finally, the performance of the system could be analyzed using the accuracy compared to 

time. A figure was created with two subplots, one for each paradigm. Each subplot shows the 

average accuracy for each flash duration as a function of time. Because there were 10 iterations 

used for each letter during testing, the x-axis shows the time needed to reach 10 iterations. For 

the 32ms flash duration, this time to complete 10 iterations is 16 seconds (1.6 seconds per 

iteration). For the 64ms flash duration, the time it takes to complete 10 iterations is 32 seconds 

(3.2 seconds per iteration). For the 128ms flash duration, the time it takes to complete 10 

iterations is 64 seconds (6.4 seconds per iteration). Because the accuracy of the 64ms flash 

duration and the 128ms flash duration reaches 100% before the 10 th iteration in both paradigms, 

the x-axis was able to be reduced to 30 seconds long to improve clarity. The accuracy is the 

average accuracy at that time for all testing sessions and is displayed as a percentage. This figure 

with both subplots can be seen below in Figure 14. 
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Figure 14. This figure contains two subplots that show the spelling accuracy over time for the non-familiar face 

paradigm(top) and the familiar face paradigm(bottom). Both subplots contain three lines; one line for each flash rate 
configuration. The x-axes end at 30 seconds due to the 64ms and 128ms flash rate configurations reaching 100% 

accuracy in less time.   

 For the non-familiar face paradigm, the first flash duration to reach 95% accuracy 

(accuracy at which only 1 letter is misspelled) is the 32ms flash duration. This is followed by the 

64ms flash duration and then the 128ms flash duration. This same order is repeated when 

determining which flash duration achieves higher accuracy more quickly. The 32ms flash 

duration reaches 95% accuracy at roughly 12.8ms, or 8 iterations. This is much faster than the 

64ms flash duration configuration which reaches this accuracy at 19.2 seconds, or 6  iterations. It 

is even faster than the 128ms flash duration configuration which produces a high accuracy of 

95% at 25.6 seconds, or 4 iterations. Although the iterations required to reach this accuracy are 

reduced as the flash duration increases, the time to reach the high accuracy is reduced. This 
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infers that the ideal flash duration to be used is the 32ms flash duration, then the 64ms flash 

duration, and lastly, the 128ms flash duration. 

 For the familiar face paradigm, the same trend can be seen. However, for this paradigm, 

the time required for the 64ms flash duration configuration to reach 95% accuracy is longer than 

that of the 128ms flash duration configuration. The 64ms flash duration reaches this milestone at 

19.2 seconds, or 6 iterations. The 128ms flash duration reaches it at 12.8 seconds, or 2 iterations. 

Although the 64ms and 128ms flash durations had different results, it can be noted that their 

performances were still very similar. The 32ms flash duration performed the best, reaching 95% 

accuracy at 9.6 seconds, or 6 iterations. This again infers that the best flash duration to use for 

testing is the 32ms flash duration. 

 When we compare the two paradigms, for the 128ms flash duration, the time and 

iterations required to reach 95% accuracy for the familiar face paradigm are half that of the non-

familiar face paradigm. This is most likely due to the stark differences in average P300 

amplitude. The performance of the configurations using a 64ms flash duration was the same. 

Both paradigms took 19.2 seconds and 6 iterations to reach an accuracy of 95%. For the 

configurations using a 32ms flash duration, the familiar face paradigm again outperformed the 

non-familiar face paradigm. The time and iterations needed to spell 95% correctly was reduced 

by 3.2 seconds and 2 iterations when using the familiar face paradigm. 



 

VIII. Discussion 

 When analyzing results, various trends were noticed that were expected of EEG 

recordings that include ERPs. When looking at the average P300 responses in all the channels in 

Figure 8 and Figure 9, the channels that measure the frontal lobe have a strong positive 

amplitude around 100-250ms. While the amplitudes of the peaks of these channels can be 

indicative of the effects that each paradigm and flash rate have on the elicited ERP, these 

channels do not represent a strong P300 response. Instead of having the typical form that the 

P300 response holds with a positive inflection, preceded by a negative inflection (N170), and 

finally the peak at around 300-500ms (P300), the frontal lobe has a simpler form. Most of the 

channels along the frontal lobe show large spikes in amplitude without the proper P300 form. 

However, these sudden jumps in amplitude in the frontal lobe channels appear much sooner than 

expected. In fact, most of them appear well before 300ms with some appearing nearly 

immediately after the stimulus is presented. They cannot be attributed to P300 because they 

appear too early. 

 The frontal lobe is not the only part of the brain to not elicit a P300 response to the 

presented stimulus. The temporal lobe (P7 and P8) and the occipital lobe (O1 and O2) both did 

not elicit any P300 response at all. These four channels did not have any positive spikes in 

amplitude. Instead, these four channels showed a very strong N170 response. This N170 

response was consistent with what was expected from these channels. Because these channels 

produced only an N170 response, they were not used for calculations for the average peak P300 

response. This is also true of the frontal lobe channels. The only channels that were used in the 

calculations for the results in Figures 10 and 11 were the channels in the central lobe (Cz, C3, 
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C4) and the parietal lobe (Pz P3 P4). These six channels consistently produced the P300 response 

within the appropriate timeframe and held the proper P300 form. 

 The results that were generated did not support the first hypothesis. To reiterate, the first 

hypothesis that was given for the experiment was that the 128ms flash duration would produce 

the highest P300 response, but it would be the 64ms flash duration that would produce the fastest 

results without a loss in accuracy. It was believed that the 32ms flash duration would not be able 

to spell because a 32ms flash duration with an interstimulus interval ratio of 1:4 would mean that 

a letter would flash every 160ms, leaving no time for the P300 response and causing overlapping 

with non-target stimuli. It was also believed that the familiar face paradigm would be superior to 

the standard paradigm in terms of speed and accuracy. While the hypothesis was correct by 

assuming that the 128ms flash duration would produce the high amplitude P300 responses and 

by stating that the familiar face paradigm would provide improved performance, it was wrong 

about the efficiency of the flash durations. While the 128ms flash duration has an ISI of 512ms 

for a total of 640ms per flash, this still proved to be faster than the 64ms flash duration which 

had 320ms between flashes. This is because, in both paradigms, the 128ms flash duration 

produced a much larger P300 response that could be more easily classified by the SWLDA 

algorithm. As seen in Figure 12, the 128ms flash duration for the non-familiar face paradigm 

produced an accuracy of 95% or higher after 25.6 seconds. This is compared to the 64ms flash 

duration which achieved that accuracy in 19.2 seconds. However, when we look at the familiar 

face paradigm, the 128ms flash duration was able to achieve 95% accuracy after only 2 

iterations. This equates to only 12.8ms. The 64ms flash duration saw no change in speed between 

the non-familiar face paradigm and the familiar face paradigm. For both, there was no change in 

speed or number of iterations needed to achieve high accuracy. Because the familiar face 
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paradigm achieved consistently higher average P300 amplitudes than the non-familiar face 

paradigm, the results generated by this paradigm are accepted as more viable than the non-

familiar face paradigm. This means that for the purposes of this study, it can be concluded that 

the 128ms flash duration yields better performance than the 64ms flash duration.  

 Although the 128ms flash duration has better performance than the 64ms flash duration, 

it is still not the best choice when using either paradigm. This may seem misleading because of 

the number of iterations needed to reach 95% accuracy is much lower with the 128ms flash 

duration. Looking at Figure 13, We can see that the number of iterations needed to reach 95% 

accuracy for 128ms flash duration is 4 using the non-familiar face paradigm and 2 using the 

familiar face paradigm. This is considerably lower than the 32ms flash duration which requires 8 

for the non-familiar face paradigm and 6 for the familiar face paradigm. But the number of 

iterations needed to achieve this accuracy is irrelevant if the time it takes to spell accurately is 

increased. Even though the number of iterations needed to spell accurately is much higher with 

the 32ms flash duration, the time to spell accurately is lower. For the non-familiar face paradigm, 

the 32ms flash duration spelled with 95% accuracy after only 12.8ms compared to the 128ms 

flash duration which required 25.6ms. This is half the time needed. Using the familiar face 

paradigm, the 128ms flash duration performed much better but was still beaten by the 32ms flash 

duration. The 32ms flash duration boasted a speed of only 9.6ms. This is 25% faster than the 

128ms flash duration. This is the fastest configuration of all six that were tested. Therefore, it can 

be concluded that the 32ms flash duration with a 1:4 ISI ratio using a familiar face paradigm is 

the best choice for the P300 automatic spelling system.  

 But what caused these results? First, when we look at Figures 11 and 12, the average 

P300 amplitudes were consistently higher using the familiar face paradigm. The N170 responses 
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produced in the occipital and temporal lobes also had a more negative amplitude than with non-

familiar face paradigm. These differences better allow the SWLDA algorithm to classify them. 

With the P300 response as the feature used for classification, the larger the amplitude is 

generated, the easier the algorithm can determine which portions of the EEG data represent that 

feature. Because the results generated by the familiar face paradigm showed a consistently higher 

P300 amplitude, the SWLDA was able to classify it using fewer iterations. This decrease in 

iterations needed improves the performance of the system by increasing the speed. With fewer 

iterations, the system can spell accurately with less time. 

 Although the familiar face paradigm had a stronger performance, it still had some issues. 

The biggest issue was the adjacency error. Adjacency error is when a letter is misspelled and the 

letter that is chosen by the system is adjacent to the desired letter. Most of all misspelled letters 

with the familiar face paradigm were adjacency errors. This is believed to be due to the familiar 

face paradigm producing much higher non-target P300 amplitudes than the non-familiar face 

paradigm. When a row or column flashes, there is still a response that is generated in the brain. 

This can be a minor fluctuation in voltage or its own P300 response. Either way, the average 

non-target ERP showed a much higher average amplitude. It is speculated that this can be caused 

by two things. First, when a row or column flashes with the non-familiar face paradigm, only the 

pixels that occupy the space of the letters turn from white to black. But with the familiar face 

paradigm, much more of the space on the screen changes. The facial overlay is larger than all the 

letters so significantly more of the screen flashes. This causes much more peripherally sighted 

events. This means that even though you may stare at one letter, because the flash caused by the 

familiar face overlay is so large, you can still see it and generate a P300 response. Second, it is 

difficult to focus solely on the desired letter and not have the eye wander at all. But, when you 
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look at all the different letters, you can tell the difference between them. With the familiar face 

paradigm, when a row or column flashes, all the letters look the same. It is easier to produce a 

P300 response off a peripherally sighted event because the stimulus that was flashed is the image 

that you were waiting to see. The only difference is that that image is not in the correct location. 

This is believed to cause the adjacency error because even though you are not looking in that one 

spot on the screen, when the image you are waiting for flashes right beside the target letter, you 

still generate a P300 response which is classified as the desired letter. It can be noted too that the 

adjacency error was not common in the non-familiar face paradigm. The lack of these two 

reasonings may be the cause for the infrequency of the adjacency error in the non-familiar face 

paradigm. 

 Throughout the experiment, there were some issues that had to be worked around to 

generate an acceptable quality of EEG signals. The first, and most important, of these issues was 

the need for an electrostatically quiet area to conduct testing. The EEG is very sensitive to 

electrostatic noise that is present in the surrounding area. When there is electrostatic noise, the 

EEG recordings are polluted with a high-frequency noise that can muffle the true EEG 

measurements. Because of this noise, one of the measurement days produced outlier results that 

were not consistent with the other testing sessions. For that testing session, the system had 

difficulty spelling and yielded low accuracies. The amplitude of the EEG measurements when 

subjected to this noise was much higher than the measurements taken when there was little to no 

noise. This noise can cause many issues when filtering the data using ASR filtering and CAR 

filtering. For example, in a low-noise environment, the heartbeat can be clearly seen in the EEG 

recording and is filtered out due to it being consistent across all channels. However, since the 

heartbeat was not able to be spotted, it could further lower the accuracy because the filtering 
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methods could not detect it. During the experiment, two testing locations were used. One had 

high electrostatic noise, and the other had little to no noise at all. The location with the high 

electrostatic noise was only used one time and produced results that contrasted the rest of the 

testing session results. The location with low noise was so electrostatically quiet that the P300 

responses that were produced were exceedingly clear. This means that when the data was 

epoched into 1-second segments starting at the presentation of the stimulus, the P300 response 

could be clearly identified. This was not true for the one testing session that was taken in the 

noisy location. It should be noted that it would seem that the system could not spell using the 

64ms or 32ms flash rate for either paradigm and that the 128ms flash rate spelled with undesired 

accuracy (~65%) for both paradigms in a noisy environment. This may be because the noise was 

strong enough to overshadow the P300 responses of the 64ms and 32ms flash durations but not 

strong enough to completely overshadow the P300 responses of the 128ms flash duration. 

Therefore, before using the P300 automatic spelling system, it is imperative that the location 

where testing is conducted is electrostatically quiet. The second issue is that the accuracy of the 

system is dependent on the alertness of the user. Testing sessions which the user could not focus 

well or was tired did not yield accuracies that were as high as other testing sessions. This is a 

limitation of the system as it is best to not use it on someone who is sleep deprived or has 

attention issues. It can even be said that it is best to not use the system immediately after waking 

up or before bedtime as the cognitive state of the individual may not be as strong at those times 

as it would be during the middle of the day. This lack of focus caused the results of the non-

familiar face paradigm to be not as strong. There was an effect on the familiar face paradigm, but 

it was not as apparent as in the non-familiar face paradigm. This is because with the non-familiar 

face paradigm, the letters are bare and have no focal point. For example, the letter “O” does not 
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have a focal point to stare at. Do you look at the top of the “O” or at the bottom? Often it was 

found that the eyes would wander the letters and sometimes would feel caught off-guard when 

the desired letter flashed. This is compared to the familiar face paradigm which uses faces. When 

you look at a face, it is natural to stare directly into the eyes. There is a focal point on the face for 

you to stare at that grabs and maintains the attention of the user. This made it much easier to be 

prepared for the letter to flash and made focusing much easier. 

 One thing that was noticed throughout the experiment was that there was no correlation 

between the number of testing sessions a user had conducted and the accuracy of the results. One 

question that was asked was if we conduct testing sessions weekly over the course of six months, 

will the accuracy of the testing session results improve over time? This does not seem to be the 

case. The results seem to be random depending on many factors such as focus, alertness, and 

other variables. But it does not appear that repetition makes the user better at spelling with the 

system. This was contrary to what was hypothesized.  

 This experiment raised other questions that could be tested in the future. First, this same 

experiment could be conducted to test the results using different machine learning techniques. 

Neural networks, support vector machines, or other machine learning methods could be used to 

see if the spelling speed could be improved without sacrificing accuracy. Another thing that 

could be tested is to add a focal point to each letter such as a dot at the top so that the eyes don’t 

wander. This could possibly improve focus and cause a stronger P300 response. A third question 

that was raised is the possibility of using both the P300 response and the N170 response as 

features of classification. As seen in the results, we can consistently produce an N170 response 

in the temporal and occipital lobes which have varying amplitudes that are dependent on the 

paradigm and flash duration. It is worth noting that the N170 response behaved similarly to the 
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P300 responses with the amplitudes of becoming more negative with higher flash durations and 

by using a familiar face paradigm. By using both simultaneously for classification, it may be 

possible to build a system that can better determine the difference between target and non-target 

stimuli. This may allow the system to determine the desired letters using a smaller number of 

iterations which would lower the time needed to spell. Lastly, to target the adjacency error that 

was seen in the familiar face paradigm results, it could be suggested to use one familiar face per 

letter. As explained previously, when the rows and letters adjacent to the target letter flash, a 

P300 response may still occur because the desired image still appeared even though it is not in 

the correct location. It may be worth testing this same experiment with a different face for each 

letter to combat this issue. 



 

IX. Conclusion 

 In conclusion, a P300 spelling system is a brain-computer interface that can allow the 

P300 component to be converted to text digitally by using signal processing and machine 

learning techniques. This system has many parameters that can be modified to improve spelling 

or accuracy. In this experiment, two paradigms, the familiar face and non-familiar face 

paradigms were compared to determine which generated larger average P300 amplitudes and to 

see which could spell accurately more quickly. Each paradigm was tested with three different 

flash durations (128ms, 64ms, and 32ms). Of these flash durations, it was found that the 128ms 

flash duration consistently produced the highest amplitude P300 responses and that the 32ms 

flash duration produced the smallest P300 amplitudes. This means that the number of iterations 

needed to spell was lowest overall with the 128ms flash duration and highest with the 32ms flash 

duration. However, the 32ms flash duration was able to reach high accuracy faster than the 

128ms and 64ms flash durations making it the ideal choice. The familiar face paradigm also 

decreased the time needed to spell accurately for both the 128ms and 32ms flash durations , 

meaning that the familiar face paradigm outperformed the non-familiar face paradigm. 

Therefore, the ideal configuration is to use a familiar face paradigm with a 32ms flash duration 

with an ISI ratio of 1:4. 

 This study has two main issues. First, the environment that testing is conducted in must 

be electrostatically quiet. This limitation is not ideal for those who would use the P300 automatic 

spelling system daily as you may not know if the location you are in is electrostatically quiet. 

The noise that is measured by the EEG can cause low accuracies which do not allow the system 

to spell the desired characters. Second, the alertness and focus of the user influences the accuracy 
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of the spelling. The system is best used in the middle of the day after a good night’s rest so that 

the user is awake and can focus. 

 This experiment also created other questions that should be further investigated. The first 

question is how does the performance of this system compare to using other machine learning 

techniques such as neural networks or support vector machines? Focal points could also be added 

to each letter of the non-familiar face paradigm to better hold the focus of the user. To decrease 

adjacency error, it could be suggested to use one face per letter instead of the same face for all 

letters. And finally, because the results of this study show consistent trends among the N170 

responses in the temporal and parietal lobe, creating a system that uses both the P300 and N170 

response for classification may improve the speed and accuracy.  
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XI. Appendix 

APPENDIX.A Training Procedure 

1. Load up the BCI2000 software and choose “RDA client” for signal source, “P3signal 

processing” for signal processing, and “P3 speller” for application. Click “launch”, then 

click “configure”. 

2. Begin by loading in the 5 by 5 matrix parameter file into the BCI2000 software. To do so, 

click “Load Parameters” on the right side of the Parameter Configuration menu and 

choosing the previously created parameter file. 

3. Set the “number of sequences” in the Application tab to 10 as none of the configurations 

should require more than 10 iterations for the classifier to achieve 100% accuracy. In the 

Filtering tab, change “epochs to average” to 10, matching the “number of sequences”. 

Ensure that the “epoch length” is set to 800ms.  Ensure that the “Spatial Filter Type” in 

the Filtering tab is set to common average referencing (CAR). 

4. Ensure that the “Interpret Mode” in the Application tab is set to “copy mode” and that the 

box beside “Display Results” is checked. Change the “Stimulus Duration” to 32ms and 

the “Maximum Interstimulus Interval” and “Minimum Interstimulus Interval” to 128ms. 

5. Change the subject identifiers in the storage section to match the session and run number.  

6. Once the parameters have been set, click “set config” on the BCI2000 Operator. This will 

open the paradigm and give you the option to “Start” the training session.  

7. Before beginning, ensure that the testing environment is electromagnetically dull. Turn 

off lights and ensure there are minimal vibrations. Remove electronics from the vicinity 

which could cause electromagnetic noise on any EEG recordings. Large monitors are 

preferred for testing, such as a television, or a large-screened computer monitor. White 



61 
 

noise will be played in the background to dampen any noise that may be unavoidable, 

such as a loud car on the road or a person/pet walking around.  

8. Ensure that the subject is aware of the phrase that is to be spelled. For this experiment, 

the phrase will be “THEBIGDWARFONLYJUMPS”. After each sequence of flashes, a 

pause, roughly six seconds, will signal that it is time to move on to the next character. 

Instruct the subject to focus directly on the intended character until they recognize this 

pause. Instruct the subject to remain as still and calm as possible for the duration of the 

training session. The training session can last for a considerable amount of time so offer 

the subject an opportunity to use the restroom or walk around before beginning the 

session. 

9. Check the software associated with the g-tec EEG to ensure that all electrodes are in their 

correct location and are functioning properly with a reasonable amount of surface 

impedance. 

10. On the BCI2000 Operator, click “Start” and click on the paradigm to move the BCI2000 

windows behind the P300 speller paradigm (this allows the screen to show only the 

paradigm).  

11. Wait until the subject has completed the testing. The P300 speller paradigm will show, in 

large letters, “TIME OUT”, signaling the end of the training session.  

12. Continue on to the classification portion of the experiment with the training file that has 

been generated. 

 

 

 



 

APPENDIX.B Testing Procedure 

1. Load up the BCI2000 software and choose “RDA client” for signal source, “P3signal 

processing” for signal processing, and “P3 speller” for application. Click “launch”, then 

click “configure”. 

2. Begin by loading in the 5 by 5 matrix parameter file into the BCI2000 software. To do so, 

click “Load Parameters” on the right side of the Parameter Configuration menu and 

choosing the previously created parameter file. This time, select “Load Parameters” again 

and load in the xxxx.prm file that was generated by the P300 classifier.  

3. Set the “number of sequences” in the Application tab to 10 as none of the configurations 

should require more than 10 iterations for the software to determine the target character. 

In the Filtering tab, change “epochs to average” to 10, matching the “number of 

sequences”. Ensure that the “epoch length” is set to 800ms.  Ensure that the “Spatial 

Filter Type” in the Filtering tab is set to common average referencing (CAR). 

4. Ensure that the “Interpret Mode” in the Application tab is set to “online free mode” and 

that the box beside “Display Results” is checked. This will allow us to compare the 

accuracy of each testing configuration. Change the “Stimulus Duration” to 32ms and the 

“Maximum Interstimulus Interval” and “Minimum Interstimulus Interval” to 128ms. 

5. Change the subject identifiers in the storage section to match the session and run number. 

6. Once the parameters have been set, click “set config” on the BCI2000 Operator. This will 

open the paradigm and give you the option to “Start” the training session.  

7. Before beginning, ensure that the testing environment is electromagnetically dull. Turn 

off lights and ensure there are no vibrations. Remove electronics from the vicinity which 

could cause electromagnetic noise on any EEG recordings. Large monitors are preferred 
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for testing, such as a television, or a large-screened computer monitor. White noise will 

be played in the background to dampen any noise that may be unavoidable, such as a 

loud car on the road or a pet walking around.  

8. Ensure that the subject is aware of the sequence of characters that are to be spelled. For 

this experiment, the phrase to be spelled is “THEBIGDWARFONLYJUMPS”. After each 

sequence of flashes, a pause, roughly six seconds, will signal that it is time to move on to 

the next character. Instruct the subject to focus directly on the intended character until 

they recognize this pause. Instruct the subject to remain as still and calm as possible for 

the duration of each testing session. These testing sessions last for a considerable amount 

of time so offer the subject an opportunity to use the restroom or walk around before 

beginning. 

9. Check the software associated with the g-tec EEG to ensure that all electrodes are in their 

correct location and are functioning properly with a reasonable amount of surface 

impedance. 

10. On the BCI2000 Operator, click “Start” and click on the paradigm to move the BCI2000 

windows behind the P300 speller paradigm (this allows the screen to show only the 

paradigm).  

11. Wait until the subject has completed the testing. The P300 speller paradigm will show, in 

large letters, “TIME OUT”, signaling the end of the training session.  

12. Record the characters the software believes that the subject has spelled as this will be 

needed later for accuracy analysis.  

13. Repeat the experimental procedure starting back at step 16. Change the “Stimulus 

Duration” and “Minimum Interstimulus Interval” and “Maximum Interstimulus Interval” 
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to the next testing configuring. Do this until all three of the testing configurations have 

been completed.  

14. Once steps 1 through 25 have been completed, repeat them using the familiar face 

paradigm. This will require uploading the familiar face paradigm xxxx.prm file during 

steps 2 and 14. 

15. Continue on to the data analysis portion of the experiment with the testing files that have 

been generated. 
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APPENDIX.D MOCA Test Example 
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