
1

A purely spaceborne open source approach for
regional bathymetry mapping

Nathan Thomas, Brian Lee, Oliver Coutts, Pete Bunting, David Lagomasino and Lola Fatoyinbo

Abstract—Timely and up-to-date bathymetry maps over large
geographical areas have been difficult to create, due to the cost
and difficulty of collecting in-situ calibration and validation data.
Recently, combinations of spaceborne ICESat-2 lidar data and
Landsat/Sentinel-2 data have reduced these obstacles. However,
to date there have been no means of automatically extracting
bathymetry photons from ICESat-2 tracks for model calibra-
tion/validation and no well established open source workflows for
generating regional scale bathymetric models. Here we provide
an open source approach for generating bathymetry maps for
the shallow water region around the island of Andros, Bahamas.
We demonstrate an efficient means of processing 224 ICESat-2
tracks and 221 Landsat-8 scenes, using the C-SHELPh algorithm
and Extra Trees Regression to provide 30 m pixel estimates of
per-pixel depth and standard error. We map bathymetry with
an RMSE of 0.32 m and RMSE% of 6.7 %. Our workflow and
results demonstrate a means of achieving accurate regional–scale
bathymetry maps from purely spaceborne data.

Index Terms—bathymetry, landsat8, ICESat-2, machine learn-
ing.

I. INTRODUCTION

MAPS of shallow water bathymetry are critical for
the provision of coastal socioecological services and

emerging demands on the blue economy will open up new
opportunities for development where up-to-date water depth
information is needed. Marine navigation, aquaculture, climate
change adaption and mitigation, coastal resilience and disaster
recovery are several key markets that will demand resources
from the nearshore environment over the coming century [1].
Contemporary nearshore seafloor maps with regular repeat ob-
servations will enable proper Marine Spatial Planning (MSP)
and enable the sharing of coastal waters [2], [3]. This is
particularly pertinent for Big Ocean States that have limited
data access [4] and an inability to conduct expansive marine
surveys. In addition, nearshore structure is increasingly sought
as a nature–based risk reduction solution, predominantly fo-
cusing upon the use of natural barriers to sea level rise and
storm surges [5]. Measuring the wave attenuation of benthic
habitats, such as seagrasses and coral reefs [6] are aided with
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accurate maps of the seafloor, but this requires up-to-date and
repeatable observations of sediment stability and structural
complexity [7], [8]. These and other processes are not fully
captured by current, openly available bathymetry data [9],
which are limited in spatial and temporal resolution. There are
several free and open initiatives that procure bathymetric data
(e.g., International Hydrographic Organization Data Center
for Digital Bathymetry (IHO DCDB; [10]), European Marine
Observation and Data Network (EMODnet; [11]) and the
General Bathymetric Chart of the Oceans (GEBCO; [12]), but
these are inadequate in shallow waters where the demands on
vertical and spatial resolution are not met. High-resolution data
can be derived from Singlebeam (SBES) and Multibeam Echo
Sounders (MBES) [13] but collecting data in shallow water
is hazardous and time consuming while bathymetric lidar
data acquired from airborne systems [14] are economically
expensive and time-intensive to collect.

Recent advances in Satellite-Derived Bathymetry (SDB)
using multispectral and hyperspectral Earth Observation have
lead to new approaches and subsequent improved estimations
[15], [16]. SDB studies have established the water depth
retrieval through correlations between surface reflectance and
field-acquired depth estimates [17], [18], [19], [15], [20], [21],
[22], [23], [24], [25], [26], but studies have so far been limited
to single-site locations or processed small quantities of optical
data. Methods that have used cloud computing have access to
large archives of data [25] but often rely on data compositing,
which reduces data volumes for bathymetry modeling and
limits the derivation of per-pixel uncertainty.

Recently, spaceborne Ice, Cloud and Elevation Satellite-
2 (ICESat-2) data has emerged as a means of collecting
bathymetry training data, enabling timely and consistent col-
lections. Limited studies have begun to investigate bathymetric
data calibration [27], [28] and a number of studies have
generated study site to island scale maps of bathymetry
at 10–30 m spatial resolution [25], [29], [30], [31]. These
have predominantly relied on established linear relationships
between optical reflectance and depth[18], [17], which recent
tests have suggested can out–perform machine learning ap-
proaches in limited cases [25]. However, these tests were non-
exhaustive and the role of machine learning has yet to be fully
explored, particularly as they implement in–model weighting
of variables based on the strength of the relationship which
is not readily achieved with a linear or multi–linear model.
Despite this emergence, there are few available frameworks
[32], [33] for ICESat-2 bathymetry photon extraction that
are not labor and time intensive. Though commercial tools
do exist for machine learning bathymetry extraction [34]
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there are currently no open–source tools capable of both
extracting ICESat-2 bathymetric photons and generating robust
bathymetry models. TCarta do provide both workflows and
tools to achieve this but as a private commercial entity require
substantial economic investment. Advances in this domain will
help pave the way for a purely spaceborne SDB approach
to mapping bathymetry at regional and larger scales [35],
[36]. Here, we provide one such approach to alleviate these
limitations, providing automated bathymetry photon extraction
with a machine learning data fusion approach for modeling
bathymetry with low error.

II. METHODS

A. Study Site

The chosen study site is the Great Bahamas Bank around
the island of Andros in the Bahamas, Caribbean (Figure 1).
Andros is a flat–topped isolated carbonate island bordered on
the east by the tongue of the Ocean, a deep water region
reaching a depth of 2000 m. Water depths within the Bahamas
region are typically shallow (0-10 m) and contrast heavily with
the Tongue of the Ocean and other surrounding deeper waters.
Islands in the wider region are composed of Aeolian sands and
limestone built on the Florida-Bahamas Platform. The wider
Bahamas region is composed of 700 islands, cays and coral
reefs and contains a number of distinct geomorphic features,
including the Great Bahamas Bank. The region has a tropical
climate which is heavily influenced by the Gulf Stream and
hurricanes which frequently impact the region.

B. ICESat-2 Data

The Ice, Cloud and Elevation Satellite-2 (ICESat-2) is a
laser altimeter launched in September 2018. ICESat-2 carries
a photon counting lidar, the Advanced Topographic Laser
Altimeter System (ATLAS), which is composed of three pairs
of beams each separated in the across track direction by 3.3 km
and 90 m between each pair. Each pair of lasers is divided
into a strong and a weak beam, based on a 1:4 energy ratio.
Each laser has a 10 KHz repetition rate at a wavelength of
532 nm. Each footprint has a diameter of 10 m and is separated
by 70 cm. ICESat-2 geolocated photon data is provided in
the ATL03 product [37]. Detailed instrument specifics can
be found in [38]. All ICESat-2 data available over the study
site were queried, subset and downloaded from the National
Snow and Ice Data Center (NSIDC) using the ICEPYX python
software [39]. A total of 265 ICESat-2 tracks (version 5) were
downloaded between 2021-01-03 through 2021-09-29, each
containing up to three strong lasers each.

To extract bathymetric photons from ICESat-2 tracks, we
created the C-SHELPh (Classification of Sub-aquatic Height
Extracted Photons) python tool to locate and separate training
photons. This algorithm detects the dense clustering of pho-
tons, synonymous with returns from a surface, over a dense
grid whose dimensions are specified by user inputs. Default
values include 0.5 m in the vertical (height) direction and
10 m in the horizontal (along track latitude) direction. Photons
are corrected for refraction following [27] and transformed
to EGM08 from WGS84 ellipsoid height. Ocean surface

temperature used for the refraction correction is retrieved
automatically to match the ICESat-2 acquisition date and
location from the Jet Propulsion Laboratory’s GHRSST Level
4 Global Foundation Sea Surface Temperature Analysis via
the OpenDap website [40]. Initially, dense clusters of photons
detected around a height of 0 m are classified as ocean
surface photons and the median height is used to determine
a water surface. Below this value, dense photon clusters are
identified on a per–grid–cell basis when meeting a user defined
threshold percentile value. This threshold value enables grids
that include less dense noise photons where there are no
bathymetric returns to be excluded. Once selected, the photon
depth was determined from the water surface height and were
output into a GeoPackage (GPKG) file. Only strong lasers
were considered for this work. A suite of threshold values were
run for each track and the best results were chosen based on
manual inspection of the output plots. Manual inspection was
determined based on both the quantity of incorrectly classified
noise and accurately classified bathymetry surface photons
(Figure 2). This step ensures that no erroneous classified
photons are used as training data and such is the ability of
C-SHELph to classify millions of photons, even a conserva-
tive approach is able to yield large training data banks for
modeling. In locations where high-resolution bathymetry data
is available, this step could be automated by assessing the error
of the ICESat-2 derived height in comparison to reference data.
This generated 224 individual ICESat-2 bathymetric tracks to
use as model training data.

All points within each GPKG that intersected a land mask
polygon were removed to ensure no false training was pro-
vided. This provided a database of 18,954,960 bathymetric
photons for model training. To reduce the compute time of
the regression modeling a 5 % subsample was extracted by
selecting every 20th photon. The data was combined to create
a training dataset of 947,748 photons, while the remainder was
used for validation.

C. Landsat Imagery

Landsat 8 data was downloaded from the Google Public
dataset (https://cloud.google.com/storage/docs/public-datasets/
landsat) using the tools within the Atmospheric and Radiomet-
ric Calibration of Satellite Imagery (ARCSI) software [41].
For this study, all the Landsat 8 scenes from 2021 for 12 rows
and paths of data that crossed the study site, with a cloud
cover of 50% or less, were downloaded, totalling 221 scenes.
Each of the Landsat images were then corrected to surface
reflectance using a dark-subtraction algorithm within ARCSI
and the USGS FMASK provided cloud mask was applied
to the imagery. An SRTM DEM was used as input for the
calibration. Each Landsat scene was corrected to 30 m spatial
resolution in the local utm zone and included the blue, green,
red, near-infrared (nir), shortware infrared (swir) and swir2
bands. After visual inspection, the FMASK was judged to
perform poorly over water, thus an additional cloud mask was
created. Pixels that intersected an independent water mask and
had swir and swir2 bands >0.005 reflectance were classified
as cloud. These pixels were then dilated using a 9 × 9 window.
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Fig. 1. Great Bahamas Bank study site, centered around the island of Andros in the Caribbean. Low resolution bathymetry information and vector layers
provided by Natural Earth. Free vector and raster map data available at www.naturalearthdata.com.

Fig. 2. Example of the manual selection of the C-SHELPh processed ICESat-2 tracks. Top: Poor isolation of the bathymetry surface with noise classified
as surface points due to their density. This is evidenced by the red haze of classified photons near the blue water surface. Bottom: Successful identification
of the bathymetric surface without the erroneous classification of noise photons (black). The quality of the signal-to-noise isolation determines the processed
ICESat-2 photons selected for training.

These new cloud masks were then applied to the Landsat
scenes to mask out remaining clouds. Finally a land mask was
used to remove all land surface pixels, leaving ocean pixels
only.

D. Machine Learning Model

Additional pre-processing and data management was carried
out using the Remote sensing and GIS Library (RSGISLib;
[42]) python software. For each of the 221 Landsat scenes,
the Landsat data was subset to the red, green and blue bands
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and additional ratio bands of green/blue and blue/green were
calculated to create a five band image. For each bathymetric
photon the pixel value was extracted from each of the five
image bands. These bathymetric depths and reflectance values
were passed into a scikit-learn [43] Extra Trees Regressor via
RSGISLib, using 100 estimators. K-fold fitting with 5 splits
and 10 repeats were used to parameterize the model. The input
training data was split into an 80:20 ratio for modeling and
testing. As the study site intersects four UTM zones, the output
bathymetric models were combined and mosaicked onto a
common grid. To create this, a WGS84 5 × 5 vector grid
of 1 degree cells was generated and RSGISLib tools were
used to intersect a vector tile index of the bathymetry models
within it. For each vector grid cell, each image that intersected
it was resampled with a nearest neighbor interpolation to
that grid. The bathymetry models were then reduced to a
single image using four descriptive statistics; mean, median,
max and standard deviation. This resulted in 25 individual
composite bathymetry images per statistic (e.g., max), derived
from each bathymetry model that intersected a given grid cell.
The 25 grid cells, now all on a common reference frame, were
mosaicked to create one image. The benefit of this was that
the reduction is done on a per-pixel basis per grid cell and this
circumvented image edge effects common with tiling multiple
acquisitions.

E. Validation

The bathymetric photons were not validated as they were
generated at a much higher spatial resolution and vertical
accuracy than existing bathymetric models, particularly those
derived over large regional areas, as shown in [25]. For this
reason, independent ICESat-2 data was used in the Landsat
derived bathymetry model validation. From the 95% remaining
bathymetric photons data bank (see previous section), we
excluded the extreme shallow water values outside of Andros
Island leaving 15,583,933 points for validation. The maximum,
median and mean pixel values from the bathymetry models
were extracted for each validation bathymetry point. The
RMSE was then calculated from the residual error for each
model.

III. RESULTS

A. ICESat-2 Bathymteric Extraction

Bathymetric photons were successfully extracted from the
ICESat-2 tracks, where a sub-aquatic surface was detected.
The extraction model was able to run automatically with the
user required only to select the threshold value that yielded the
highest signal-to-noise ratio. An example of the extracted pho-
tons is visible in Figure 3. A total of approximately 19 million
individual bathymetric depths were detected, providing results
at a much more time and economically efficient rate than
field based surveys. The extracted photons covered an area
from 21.611955◦ to 27.636068◦ latitude and -79.470479◦ to
-74.752996◦ longitude. The minimum depth values extracted
were 0.75 m and the maximum depths were 30.45 m, with a
mean and median depth of 4.69 m and 4.26 m, respectively.

The reduced training data size of 947,748 (5 %) depth loca-
tions had a minimum depth of 0.75 m and a maximum depth of
30.3 m (median 4.3 m). The subsequently withheld validation
data contained corresponding minimum and maximum depths
of 0.75 m and 30.45 m respectively. The model was robust
against false positives which could be readily excluded with
the user defined density threshold. The model was successful
over a wide turbidity gradient, interpreted by the density of
noise photons, successfully extracting surfaces in both clear
and turbid conditions. At greater depths of ≥40 m, there was
a low density of sub-aquatic returns and thus these depths
could not be extracted. Where there was a strong return from
a sub-aquatic depth, this was not a limitation.

B. Landsat Derived Bathymetry Models

A total of 221 individual bathymetry models were created
and were successfully reduced into three spatially continuous
models, representing the median, max and mean depths for
the study site. The median model is provided in Figure 4.

The median and mean composites are visually comparable,
with the models closely following the patterns observed in
high-resolution imagery (e.g., Google Earth/MAXAR). Shal-
lowest waters are observed around the island of Andros and
shoal complexes around Schooner Cay, Exuma Cay, and the
Great Bahamas Bank (Figure 5) are observed, with water depth
increasing towards the outer edges of the bay. Both maps
contained a noisy speckled region, indicative of error in the
model and not accurate derivation of depth. The maximum
depth contained broadly similar patterns but had increased
noise from the selection of the maximum pixel depth selection
and some image edge effects were visible. The maximum
composite produced the lowest quality aesthetic product.

C. Validation

Overall the median composite had the lowest RMSE from
15,583,933 independent validation points in the Andros shal-
low water region. The median composite produced the lowest
RMSE of 0.32 m, closely followed by the mean bathymetry
composite of 0.35 m. The maximum composite had a sub-
stantially larger RMSE of 1.25 m. Each Landsat derived
bathymetry model was accompanied by its own model perfor-
mance metrics, using the internal training:testing split on an
80:20 ratio and estimates of residual error and its distribution.
Also provided are the k–fold cross–validations to reflect the
robustness of each Extra Trees Regressor (Table I). For the
median composite we assessed the change in absolute residual
error with depth, with the majority of errors rarely exceeding
20 cm and occurring predominantly at shallower depths.
Absolute error did not increase with model depth. This is
shown in Figure 6 alongside validation summary statistics of
the three composites.

As the bathymetry models are composed of composite
values from a range of individual models, it was possible
to calculate per-pixel standard deviation and standard error
(Figure 7). Both standard deviation and standard error were
low, ≤ 0.5 and ≤ 1.25 respectively, across the majority of the
study site and larger values occurring at deeper bathymetric

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3192825

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

Fig. 3. ICESat-2 sub-aquatic photons. Top) Raw ICESat-2 data transformed to orthemetric (EGM08) height. Bottom) Bathymetric classified photons (red)
and surface classified photons (blue) from C-SHELPh. The algorithm is robust against a phenomenon known as ringing, whereby an artificial repeat of the
surface is produced offset from the true surface, as visible below the red selected photons.

Fig. 4. A single bathymetric model generated from a single Landsat image (left) and a spatially continuous median composite for the Bahamas region (right)
demonstrating a range of depths, with the deepest depths at the outer edge of the island complexes, such as at the Tongue of the Ocean.

Fig. 5. Geomorphological features mapped with the bathymetry model. A) and B) show two distinct features with fine-scale variations in elevation.

depth estimates. This figure also highlights a region of deep
bathymetry within the shallow bay (24.5◦ N, -79.3◦ E), inter-
preted as model noise and not accurate derivation of depth.

IV. DISCUSSION

We have developed an open source workflow for regional-
scale bathymetry mapping from purely spaceborne data, ca-
pable of generating maps with low error. We demonstrate C-
SHELPh, a means of automating the extraction of bathymetric
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TABLE I
5 OF 50 K-FOLD MODEL RESULTS FOR A SINGLE LANDSAT DERIVED BATHYMETRY MODEL

n r2 explained median mean mean root mean norm root bias (m) norm bias variance noise
variance absolute absolute squared squared squared mean bias (m) squared (m)
score error (m) error (m) error (m) error (m) error (m) (m) (m)

0 0.970 0.970 0.141 0.235 0.164 0.404 8.042 -0.001 -0.022 0.000 0.164 0.000
1 0.968 0.968 0.142 0.236 0.175 0.418 8.325 -0.010 -0.194 0.000 0.175 0.000
2 0.969 0.969 0.144 0.239 0.171 0.414 8.217 -0.003 -0.063 0.000 0.171 0.000
3 0.969 0.969 0.143 0.237 0.175 0.419 8.343 -0.011 -0.220 0.000 0.175 0.000
4 0.971 0.971 0.142 0.235 0.160 0.400 7.947 -0.006 -0.123 0.000 0.160 0.000
5 0.968 0.968 0.142 0.238 0.178 0.422 8.359 -0.010 -0.192 0.000 0.178 0.000

RMSE RMSE% R2

Max 1.25 22.1 0.89
Med 0.33 6.7 0.99
Mean 0.35 7.1 0.99

Fig. 6. Left: Relationship between ICESat–2 observed depth and modeled depth. There is no relationship between depth and residual error, with the majority
of errors being small and occurring across all depths. Right: Summary statistics of the validation data for each of the three composite bathymetry maps.

photons from ICESat-2 tracks, capable of the required or-
thometric calibration and geometric correction of the photons
caused by the refraction of the laser at the air/ocean interface.
C-SHELPh was able to extract photons to depths of 40 m,
making it suitable for nearshore coastal waters. The extraction
of 224 ICESat tracks totalling 18,954,960 points demonstrates
the ability of C-SHELPh to work at scale to create large
training banks of data for regional scale studies. Further
developments to C-SHELPh could include the extraction of a
detailed water surface to characterize waves and the automated
online lookup of water salinity, to further the accuracy of the
refraction correction. The simplistic approach of C-SHELPh
to detect point density over a grid enables it to be readily tuned
and modified, allowing it to be specifically customized. In
some instances, in very shallow (≤0.5 m) waters C-SHELPh is
susceptible to the under-classification of bathymetric photons
as the sea surface is approached and confusion increases. This
parameter is, however, customizable within the algorithm and

this confusion can be mitigated against. This approach is more
standardized and simplistic than [32] and achieves satisfactory
results. Furthermore, as C-SHELPh is written in python it can
fit easily into existing open source workflows and is open to
the community for modification and improvement.

Our use of a machine learning regressor was able to generate
regional-scale spatially continuous seamless composites of
bathymetry, with high model accuracy and low RMSE values
of 0.32 m. We were able to utilize a state-of-the-art algorithm
in a field that has traditionally relied on linear relationships
[18], [17] between variables, allowing us to exploit both
linear and non-linear relationships to derive improved results.
Traditionally, non–linearity in models increases uncertainties,
but a machine learning algorithm is able to exploit this to
reduce overall error. These models were capable of using
millions of data points for robust modeling and validation,
while remaining vigorous against over fitting. Our workflow
is built upon RSGISLib [42] to enable efficient access to
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Fig. 7. Left: Standard error map of the region, detailing increased errors at increased depths. Right: Standard deviation map of the study site used to determine
standard error. A region of innacuractely modeled deep bathymetry within the shallow bay at 24.5◦ N, -79.3◦ E, is visible.

advanced scikit-learn [43] machine learning algorithms and
model parametization. Tools within RSGISLib allow the ef-
ficient extraction of raster–to–point values for training and
validation, efficient regridding of the results to a common
frame and the reduction of over 200 bathymetry images to a
single seamless mosaic, easily formed into a workflow through
python bindings and enabling the integration of other common
python modules such as Pandas, GeoPandas and Matplotlib.
This efficiency enabled a regional-scale bathymetry map to
be created at high spatial resolution (30 m), allowing high
spatial detail to be mapped, such as geomorphological features.
The ability to process hundreds of individual Landsat scenes
reduces the reliance upon image composites which have been
used in cloudy regions to date, sometimes spanning numerous
years [25]. This reduces image artefacts, such as cloud edges
and image edge–effects, which are known to degrade optical
composites, while combining pixels with varying reflectance
values due to atmospheric conditions and solar angle. Instead,
compositing the bathymetry models enables several maps to be
generated at once, including minimum, maximum, mean and
median, rather than just one single model. However, the model
is not limited to these common statistical reducers, in fact any
statistical reduction can be used to determine the most accurate
model. This allows full flexibility in the workflow to generate
the most robust bathymetric model. Furthermore, the use of
individual images enables the derivation of per–pixel variance
and maps of bathymetry standard deviation and standard error.
This enables the spatial distribution of uncertainty to be
mapped across the study site at high-resolution. Per–image
model statistics are also generated for detailed assessment of
each model, including internal residual scores and model fit.
Finally, this workflow is not limited to Landsat data alone and
is applicable to any visible wavelength imagery, thus it can
be applied to Sentinel-2, PlanetScope and MAXAR data to

derive increased spatial resolution if required.
The acquisition of bathymetry maps from purely spaceborne

data is being more readily facilitated, yet standardized methods
are still in their infancy and machine learning algorithms
have yet to be fully explored, with numerous studies utilizing
traditional linear methods [25], [33], [35], [44], [45]. We
demonstrate that machine learning algorithms are well placed
to tackle non–linear relationships between reflectance and
ocean depth, evidenced by the low uncertainties measured in
this study. Future work could focus on the use of additional
machine learning algorithms and further exploration of model
parametrization, including the use of additional optical bands,
such as the Landsat coastal band, as well as associated
band ratio combinations and statistical reducers (e.g., mode,
percentiles) in addition to the of maximum, mean and median.
Furthermore, our approach is applicable to all optical remote
sensing imagery with short wavelength visible bands, thus
from an applications perspective, the use of additional data
such as Sentinel-2 and PlanetScope/MAXAR imagery should
be investigated.

V. CONCLUSION

We provide a means of end-to-end bathymetry mapping with
purely spaceborne data. We map the shallow waters around the
Bahamas island of Andros, extracting 224 separate ICESat-2
bathymetric photon tracks and fusing them with 221 Landsat
8 images to create a single bathymetric map with an RMSE
of 0.33 m. Our open source workflow, based upon mature and
efficient software and advanced machine learning algorithms,
paves the way for anyone to have access to contemporary
regional-scale bathymetry mapping. Our innovative approach
will enable the community to further the mapping and ecosys-
tem accounting of important blue carbon coastal environments
by providing more readily accessible spatially continuous
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maps of ocean depth and subaquatic structure. The ability
to derive spaceborne bathymetric models will help advance
studies into habitat characterization, storm surge modelling,
coastal protection, fisheries and sea level rise as well as other
sciences that serve the Blue Economy.
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VI. CODE AVAILABILITY
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