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 Diabetic patients are more susceptible to ischemia/reperfusion injury and cardiac 

dysfunction likely due alterations in mitochondrial calcium handling.  The purpose of this 

work was to determine if redox-dependent changes in permeability transition pore 

opening and mitochondrial calcium transients contribute to augmented injury and 

dysfunction in diabetic hearts. Langendorff-perfused streptozotocin-induced diabetic 

hearts were more susceptible to ischemia/reperfusion injury, with infarct sizes of 60+4% 

of the area-at-risk (vs. 46+2% in non-diabetics; P<0.05). Administration of 5uM NIM811 

(non-immunosuppressive derivative of cyclosporine A), 1nM Bendavia (mitochondria-

targeted antioxidant) or 1 uM Minocycline (blocker of mitochondrial Ca influx) at the 

onset of reperfusion reduced diabetic infarct sizes (P<0.05).  Mitochondria isolated from 

the left ventricles of diabetic rats displayed greater sensitivity to Ca-induced 

permeability transition pore opening (P<0.05).  Mitochondrial Ca uptake was slower in 

diabetic when compared to non-diabetic mitochondria (P<0.05), and Na/Ca exchange 

activity was faster in diabetic when compared to non-diabetic, despite no differences in 
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respiratory control ratio and mitochondrial membrane potential between groups. 

Treatment of diabetic mitochondria with 2mM of the reducing agent dithiothreitol 

significantly decreased the sensitivity to PTP opening and normalized mitochondrial 

calcium uniporter activity to non-diabetic levels. These findings suggest that the 

augmented susceptibility to injury and enhanced cardiac dysfunction in the diabetic 

heart is mediated by redox-dependent shifts in mitochondrial calcium handling, and that 

three novel mitochondria-targeted compounds administered at reperfusion may be 

suitable adjuvant reperfusion therapies to attenuate injury in diabetic patients.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



	   3	  
	  

The Physiological and Pathological Role of Mitochondrial Calcium in the Diabetic Heart 

 

 

 

 

A DISSERTATION 

Presented To 

The Faculty of the Department of Kinesiology 

East Carolina University 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

 

 

by 

Ruben C. Sloan, III 

July 2011 

 



	   4	  
	  

 

 

 

 

 

 

 

 

 

 

©Copyright 2011 

The Physiological and Pathological Role of Mitochondrial Calcium in the Diabetic Heart  

 

 

 

 

 

 

 

 

 

 

 



	   5	  
	  

The Physiological and Pathological Role of Mitochondrial Calcium in the Diabetic Heart 

By 

Ruben C. Sloan, III 

APPROVED BY: 

DIRECTOR OF DISSERTATION:___________________________________________  
David A. Brown, Ph.D. 

  
 
COMMITTEE MEMBER:__________________________________________________ 

P. Darrell Neufer, Ph.D. 
 
 

COMMITTEE MEMBER:__________________________________________________ 
Robert C. Hickner, Ph.D. 

 
 

COMMITTEE MEMBER:__________________________________________________ 
Peter A. Farrell, Ph.D. 

 
 

COMMITTEE MEMBER:__________________________________________________ 
Ethan J. Anderson, Ph.D. 

 
 
 
CHAIR OF THE DEPARTMENT OF KINESIOLOGY: 
 
 
    ________________________________________________ 

Stacey R. Altman, J.D. 
 
 
DEAN OF THE COLLEGE OF HEALTH AND HUMAN PERFORMANCE: 
 
 
    ________________________________________________ 

Glen G. Gilbert, Ph.D. 
DEAN OF THE GRADUATE SCHOOL: 
 
 
    ________________________________________________ 

Paul J. Gemperline, Ph.D. 



	   6	  
	  

TABLE OF CONTENTS 

LIST OF FIGURES AND TABLES ix 

LIST OF SYMBOLS AND ABBREVIATIONS x 

Chapter 1:  The Physiological and Pathological Role of Mitochondrial Calcium  

in the Diabetic Heart 

1 

     Introduction 1 

     Models of Diabetes 2 

     IR Injury and the Consequences of Mitochondrial Ca Accumulation 3 

     Mitochondrial Permeability Transition Pore in the Diabetic Heart 5 

     Pharmacological Inhibition of PTP Opening by Targeting Cyclophilin-D 6 

     ”Upstream” Inhibitors of the Mitochondrial Permeability Transition Pore 8 

     Preconditioning as a Method of Protection in Ischemia-Reperfusion Injury 9 

     Physiological Calcium Handling in the Heart 11 

     Calcium handling in the Diabetic Heart 13 

     Conclusions 16 

     Central Hypothesis 17 

Chapter 2:  Increased Susceptibility to Mitochondrial Permeability Transition Pore  

Opening in the Diabetic Heart 

18 

     Abstract 18 

     Introduction 19 

     Materials and Methods 21 

     Results 26 

     Discussion 27 



	   7	  
	  

     Enhanced Sensitivity to PTP Explains Augmented IR Injury in Diabetic Hearts 28 

     Redox Modulated Changes in PTP Opening 31 

     Conclusions 33 

Chapter 3:  Altered Mitochondrial Calcium Handling in the Diabetic Heart 35 

     Abstract 35 

     Introduction 35 

     Material and Methods 37 

     Results 41 

     Discussion 42 

     Conclusions 45 

Chapter 4: High Doses of Ketamine/xylazine Anesthesia Reduce Cardiac 

Ischemia-reperfusion Injury in Guinea Pigs 

46 

     Abstract 46 

     Introduction 47 

     Materials and Methods 49 

     Results 53 

     Discussion 54 

     Anesthetic-induced Reduction in Infarct Size 54 

     Effect of KX Anesthesia on Cardiac Electrical/mechanical Function 56 

     Effect of KX Anesthesia on Coronary Flow 57 

     Standardization of the Anesthetic Regimen 57 

     Potential Mechanisms for Cardioprotection by Ketamine/Xylazine 58 

     Study Limitations 59 



	   8	  
	  

     Conclusions 60 

Chapter 5: Integrated Discussion 61 

REFERENCES 66 

APPENDIX:  Animal Care and Use Protocol 109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   9	  
	  

LIST OF FIGURES AND TABLES 

 

Figure 1.1 Intracellular changes during ischemia in rat myocardium 91 

Figure 1.2 Schematic of putative PTP components 92 

Figure 1.3 Effects of minocycline and Ru360 on mitochondrial Ca influx 93 

Figure 1.4 Effects of Bendavia on infarct size 94 

Figure 1.5 Myocardial calcium transients 95 

Figure 1.6 Schematic of mitochondrial calcium circuit 96 

Figure 2.1 Diabetes study Infarct sizes 97 

Figure 2.2 Arrhythmia scores 98 

Figure 2.3 Respiratory control ratio and membrane potential 99 

Figure 2.4 Calcium retention capacity 101 

Figure 3.1 Mitochondrial uniporter activity 103 

Figure 3.2 Mitochondrial sodium-calcium exchanger activity 104 

Figure 4.1 Ketamine-xylazine study Infarct sizes 105 

Table 2.1 Animal characteristics 106 

Table 2.2 Diabetes study hemodynamics 107 

Table 4.1 Ketamine-xylazine study hemodynamics 108 

  

 
 



	   10	  
	  

LIST OF SYMBOLS AND ABBREVIATIONS 
 
 
+ dP/dt Maximal rate of contraction and relaxation 

ADP  Adenosine diphosphate 

ANT Adenine nucleotide transferase 

ATP Adenosine triphosphate 

BCA Bicinchoninic acid 

bpm Beats per minute 

BSA Bovine serum albumin 

Ca Calcium 

CsA Cyclosporine A 

CyP-D  Cyclophilin D 

DTT Dithiothreitol 

ECG Electrocardiogram 

EDTA Ethylenediaminetetraacetic acid 

Em Emission 

Ex Excitation 

GSH Reduced glutathione 

GSSG Oxidized glutathione 

H2O2 Hydrogen peroxide 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

i.p. Intraperitoneal 

IR Ischemia-reperfusion  

IS Isolation solution 

KX Ketamine/xylazine 



	   11	  
	  

LVDP Left ventricular developed pressure 

MCU Mitochondrial calcium uniporter 

mNCX Mitochondrial sodium/calcium exchanger 

MRI Magnetic resonance imaging 

MVO2 Myocardial oxygen consumption 

Na Sodium 

NADH Nicotinamide adenine dinucleotide 

Pi Inorganic phosphate 

PiC Mitochondrial phosphate carrier 

PTP Permeability transition pore 

R Gas constant 

RCR Respiratory control ratio 

ROS Reactive oxygen species 

RyR2 Ryanodine receptor, cardiac muscle isoform 

SERCA Sarco/endoplasmic reticulum Ca-ATPase 

SR Sarcoplasmic reticulum 

STZ Streptozotocin 

T Temperature 

TPP+ Tetraphenylphosphonium ion 

TTC Triphenyltetrazolium chloride 

v Mitochondrial matrix volume 

V Buffer volume 

VF Ventricular fibrillation 

VT Ventricular tachycardia  

ΔΨm Mitochondrial membrane potential 



	  

	  

Chapter 1 

The Physiological and Pathological Role of Mitochondrial Calcium  

in the Diabetic Heart 

Introduction  

 Worldwide, an estimated 220 million people suffer from diabetes, and this 

number is expected to more than double within the next two decades (83).  In the 

United States, eight percent of the population is diabetic, and nearly 80 million 

individuals are considered to be pre-diabetic (84).  The rising population of diabetics 

(particularly in areas such as eastern North Carolina) has resulted in an enormous 

economic impact, with the total costs associated with diabetes nearing a staggering 

$200 billion annually (84).  The fiscal crisis associated with diabetes is largely due to the 

host of health complications experienced by these individuals.  In particular, diabetic 

patients are at an increased risk for developing heart disease (31) and are four times 

more likely to die following a myocardial infarction than non-diabetics (153).  Moreover, 

hyperglycemia independently increases the risk for mortality (220).   

 In addition to the increased risk for mortality following myocardial infarction, 

diabetic patients experience cardiac dysfunction, independent of coronary artery 

disease or hypertension.  As early as the 1970s, investigators observed that some 

diabetic patients suffering from heart failure had no sign of coronary artery disease or 

hypertension (98, 193).  This generalized condition was termed diabetic cardiomyopathy 

by Rubler and colleagues (193), and presently includes a number of characteristic 

manifestations, including: systolic dysfunction and diastolic dysfunction, left ventricular 
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hypertrophy, impaired contractile reserve, as well as interstitial fibrosis [reviewed in 

(30)]. 

 The mechanisms responsible for the increased incidence of cardiac dysfunction 

and enhanced propensity for death following myocardial infarction in diabetics are not 

clearly understood.  However, insight provided by this work will shed light on these 

mechanisms and may promote the development of novel therapeutic strategies seeking 

to improve cardiac function and decrease the likelihood of heart failure in diabetic 

patients.  Among the candidate mechanisms, a growing body of literature indicates that 

alterations in mitochondrial function may be responsible for the increased cardiac 

dysfunction and propensity for death observed in diabetes [reviewed in (30, 41)]. 

Specifically, diabetic heart mitochondria display enhanced susceptibility to opening of 

the mitochondrial permeability transition pore (PTP) in both humans (8) and animal 

models (23, 174, 232), alterations in substrate utilization (43, 109), decreased metabolic 

enzyme activity (80), depressed respiration (7, 80, 131), altered calcium handling (80, 

181, 215) and increased reactive (ROS) production (32, 45, 128, 234) coupled with a 

decreased capacity to buffer ROS (5, 148, 237).  Chapters 2 and 3 of this work will 

provide insight into the mechanisms underlying the increased susceptibility to death 

following myocardial infarction and the impaired cardiac dysfunction observed in 

diabetic hearts, respectively. 

Models of Diabetes 

 To date, there have been few studies directly investigating the effects of diabetes 

on mitochondrial function in the human heart (7, 8), likely due to the difficulty in 

obtaining adequate human cardiac tissue samples.  Recently, Anderson et al. were the 
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first to demonstrate attenuated mitochondrial respiratory capacity in the presence of 

increased H2O2 production in permeabilized fibers from human atrial tissue (7).   The 

majority of mechanistic studies have involved the use of animals such as db/db (leptin 

receptor mutation) or ob/ob mice (leptin deficient), zucker diabetic fatty rats (leptin 

receptor mutation), or streptozotocin (STZ)-induced diabetic rats. Most studies have 

been conducted using the STZ-induced model of diabetes due to the comparability to 

humans and other animal models of diabetic cardiomyopathy as well as the ease of 

diabetes induction (42).  Similar to both humans (7, 8, 193) and animal models of type 2 

diabetes [reviewed in (41)], hearts from STZ-induced diabetic rats display alterations in 

mitochondrial calcium handling (80, 215), abnormal shifts in substrate utilization (109), 

as well as enhanced oxidative stress (202, 234), characterized by increases in reactive 

oxygen species (ROS) production and a decreased capacity to buffer ROS.  

Specifically, STZ-induced diabetic heart mitochondria exhibit decreased mitochondrial 

calcium influx in the presence of impaired left ventricular function (80, 215) and an 

enhanced susceptibility to PTP opening (174).  Further, STZ-induced diabetic heart 

mitochondria display increases in fatty acid oxidation and depressed glucose oxidation 

coupled with decreased cardiac efficiency (109).     

Ischemia-reperfusion injury and the consequences of mitochondrial Ca accumulation  

	   In order to understand the mechanisms by which diabetic hearts are more 

susceptible to myocardial infarction, a brief overview of ischemia-reperfusion (IR) injury 

is provided.  The first documented observation that coronary artery occlusion could lead 

to cessation of the heart beat was made in 1698 (48).  Since that time, immense 

investigation has been conducted in order to determine the mechanisms by which 
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ischemia, and paradoxically reperfusion, lead to myocardial dysfunction and cellular 

injury.  Following the onset of ischemia, myocardial contractility rapidly declines and this 

is accompanied by acidic pH, arrhythmogenesis, a decline in ATP production and 

cellular overload of Na and Ca (Figure 1.1).  Irreversible cellular death begins between 

15 and 20 minutes following the onset of ischemia, with the duration of ischemia 

correlating positively with clinical infarct size (area of dead tissue) (100).  In addition, it 

is well established that infarct size is a predictor of both short- and long-term mortality 

(22, 86, 87, 105, 106).  

 While reperfusion remains the best treatment for ischemic injury, establishing 

reperfusion can lead to conditions that impair cardiac function. Following reperfusion of 

the tissue, the myocardium may experience stunning, fatal ventricular arrhythmias 

and/or post-ischemic cell death.  Stunning is characterized by prolonged post-ischemic 

dysfunction of viable cells and may last for a few days (126, 127).  In addition to 

stunning, fatal ventricular arrhythmias can ensue in early reperfusion due to 

mechanisms likely involving mitochondrial ROS production (35, 37).  

The cellular death that occurs following IR is multi-factorial.  Although many of 

the pathways are inter-related, the ‘cause of death’ for cardiac cells can include loss of 

membrane integrity, apoptosis, necrosis and autophagy [reviewed in (83)].  Our work 

presented herein will focus on the contribution of PTP-dependent IR injury, and the 

mechanisms that influence PTP opening.  During cardiac ischemia, the loss of 

energetics leads to a significant rise in cytosolic Ca as ATP-dependent Ca pumps can 

no longer sequester cytosolic Ca, but the PTP remains closed due to acidic pH.  At the 

onset of reperfusion, the now-polarized mitochondria provide a sink for the accumulated 
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intracellular Ca, while the surge of oxygen availability leads to a concomitant burst in 

mitochondrial ROS production.  Thus at the onset of reperfusion when mitochondrial Ca 

content and ROS production are high, the conditions for PTP opening are ideal, 

resulting in mitochondrially-driven apoptosis and necrosis, with potentially irreversible 

cardiac damage (96).  Of clinical interest, PTP opening has also been implicated in 

brain (50), renal (67), liver (123) and lung (59) IR injury as well as in diseases such as 

Alzheimer’s (73) and cancer (82). Furthermore, the vast majority of cardiac patients 

experiencing IR arrive in the clinic after the onset of symptoms.  Compounds that are 

effective when administered at reperfusion have enormous clinical potential.  In Chapter 

2, we provide evidence for at least two novel therapies that effectively reduce infarct 

size when given at the onset of reperfusion.   

Mitochondrial Permeability Transition Pore in the Diabetic Heart 

 The PTP is a non-selective pore that forms within the inner membrane of 

mitochondria, allowing for the exchange of molecules less than 1.5 kDa (54, 103).  The 

molecular components of the PTP are controversial, however, there appears to be an 

important role for the mitochondrial phosphate carrier (PiC) (134), and perhaps more 

importantly, the peptidly-prolyl cis-trans isomerase, cyclophilin-D (CyP-D) (216).  In 

addition, a regulatory role for the adenine nucleotide transferase (ANT) seems apparent 

(97), while knockout studies have ruled out a role for the voltage-gated anion channel 

(VDAC) (16).  Halestrap and colleagues proposed a model for the PTP (Figure 1.2) 

where the PiC and ANT may form a heterodimer in the inner membrane of 

mitochondria.  This process is proposed to be catalyzed by CyP-D and initiated during 

conditions of ischemia/reperfusion.  The opening of the PTP is favorable under 
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conditions where mitochondrial Ca is high, and the sensitivity to Ca-induced PTP 

opening is enhanced by alkaline pH, depletion of adenine nucleotides, increases in 

inorganic phosphate (Pi) and likely of most importance, oxidative stress [reviewed in 

(96)]. 	  

 Diabetic heart mitochondria exhibit an enhanced susceptibility to opening of the 

PTP in both humans (8) and animal (23, 174, 232) models of diabetes.  Therefore, it is 

logical that the increased susceptibility to PTP opening observed may be responsible for 

the increased proclivity for death following myocardial infarction in diabetes, however, 

this link has yet to be established. Oliveira and colleagues have shown that the 

probability of PTP opening in isolated diabetic heart mitochondria can be normalized to 

non-diabetic controls with direct inhibition of PTP opening utilizing cyclosporine A (CsA) 

(174), suggesting that blocking PTP opening may potentially attenuate IR injury in 

diabetic hearts. Therefore, it is plausible that inhibition of PTP opening may reduce the 

likelihood for PTP opening and provide protection against IR injury in diabetic hearts. 

Further, the mechanisms responsible for the increased susceptibility to PTP opening in 

diabetic heart mitochondria have not been revealed.  Because oxidative stress 

significantly amplifies Ca-induced PTP opening, the oxidative shift in redox state 

characteristic of the diabetic heart may explain the increased proclivity for PTP opening.  

Chapter 2 will describe how a reductive shift in redox state can decrease the sensitivity 

to PTP opening in isolated diabetic heart mitochondria.   

Pharmacological Inhibition of PTP Opening by Targeting Cyclophilin-D 

 Because PTP opening is a distinctive feature of IR injury, chemical inhibitors that 

prevent/delay PTP opening show promise in protecting against injury.  Strategies that 



	   7	  
	  

target CyP-D have been frequently employed to inhibit PTP opening due to the notion 

that specific targeting of ANT and/or PiC would be deleterious to bioenergetic function.  

To date, a preponderance of studies have inhibited PTP opening by utilizing 

pharmacologic or genetic ablation approaches targeting CyP-D.  A number of studies 

have indicated that inhibition of CyP-D with cyclosporine A (CsA) can decrease the 

probability of PTP opening and attenuate several indices of myocardial IR injury, 

including: infarction (10, 11, 101, 154, 228), left ventricular dysfunction (91, 102, 172), 

cardiomyocyte death (124, 165) and mitochondrial dysfunction (70, 173).   

 In a recent clinical trial (182), the use of CsA at the time of reperfusion reduced 

infarct size in humans by approximately 30% (when assessed by MRI), corroborating 

previous data from animal studies.  Although promising, the use of CsA is confounded 

by a narrow therapeutic window (165), potentially harmful effects to the 

microvasculature (180, 214, 231), deleterious effects on long-term myocardial function 

(132), suppression of mitochondrial respiration (11), lack of protection against 

arrhythmia (4, 34), immunosuppression (15) and nephrotoxicity (163).  Because of 

these potential adverse effects, the use of CsA should be particularly avoided in 

diseased populations that may be susceptible to these conditions.  For example, 

diabetic patients experience depressed immune function (157) as well as high rates of 

kidney failure (2, 188).  In fact, diabetes is the leading cause of renal failure (2).  Due to 

the immunosuppressive and nephrotoxic effects of CsA, its use in the diabetic 

population would likely be precluded. 

 NIM811 is a non-immunosuppressive derivative of CsA developed by Novartis, 

and unlike CsA, NIM811 blocks PTP formation by selectively binding matrix CyP-D and 
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not the cytosolic immunosuppressant, cyclophilin A (222). NIM811 has been shown to 

decrease infarct size and directly block Ca-induced PTP opening in intact rabbit hearts 

and isolated rabbit cardiac mitochondria, respectively (12), by specifically binding CyP-

D.  NIM811 may prove to be a useful therapeutic tool for the treatment of myocardial IR 

injury, and Chapter 2 describes our use of NIM 811 to attenuate injury in the diabetic 

heart. 

”Upstream” Inhibitors of the Mitochondrial Permeability Transition Pore 

 Given the relationship between mitochondrial Ca overload and PTP opening, 

blocking mitochondrial Ca influx can also decrease the open probability of PTP and 

decrease myocardial IR injury.  Several blockers of the MCU, namely ruthenium red 

(RR) and ruthenium 360 (Ru360) (89), have been shown to protect the heart from IR 

injury (46, 85).  However, the use of RR and Ru360 are confounded by non-specific Ca-

blocking effects (120, 192) that may impair systolic and potentially diastolic function.  

These compounds also show membrane impermeability (21, 189), which would 

decrease the likelihood of intracellular entry of the drug into target tissues.  The 

tetracycline antibiotic, minocycline, is just as effective in blocking MCU as Ru360 

(Figure 1.3).  Minocycline has been shown to diminish cardiac IR injury (190, 195) and 

has high permeability in cardiac tissue (190), making it an attractive candidate for 

protecting cardiac tissue during reperfusion by reducing mitochondrial calcium overload.  

 Due to the powerful effects of oxidative stress on enhancing PTP formation, it is 

no surprise that scavengers of free radicals (24, 146, 185, 197) have been shown to 

decrease the likelihood of PTP opening and provide protection.  An investigation by 

Rajesh et al. revealed a significant decrease in myocardial infarct size in rats that 
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received the antioxidant MCI-186 30 minutes prior to a 30-minute ischemic insult (185).  

Other studies have employed the use of Mn superoxide dismutase (MnSOD) mimetics 

such as M40403 (146) and SC-52608 (24), each of which decreased myocardial IR in 

vitro and in vivo, respectively.  Investigators have also utilized glutathione (GSH) (197) 

or the GSH precursor, N-acetyl cysteine (NAC), (68) and observed decreases in IR 

injury.  While these data are promising, antioxidants have provided disappointing 

outcomes in clinical patients (3, 79, 140, 159, 240).  Because the chief site of 

intracellular ROS production is within the mitochondria (213), antioxidants that target 

mitochondria would provide the greatest efficacy in reducing ROS during times such as 

IR when the ROS burden is high.  A recent review by Murphy and Smith discusses the 

potential use of antioxidants conjugated to the lipophilic cation triphenylphosphonium 

(TPP+) (161).  The lipophilic and cationic properties of TPP+ would allow the conjugated 

antioxidants to penetrate biological membranes and accumulate in mitochondria, but 

one limitation to their use is that uptake is based on mitochondrial membrane potential, 

which may be collapsed in early reperfusion (when the drug uptake is needed the most).   

 Recently, the antioxidant peptide Bendavia (SS31 in the literature) has been 

shown to attenuate myocardial IR injury (49). Bendavia has been shown to diminish 

ROS in several tissues (205), and has the unique property of targeting to mitochondria 

whether they are polarized or not (H Szeto, unpublished observations). Thus, Bendavia 

would provide efficient scavenging at the source of greatest ROS production (213).  Our 

group has shown that administration of Bendavia at reperfusion (across a wide 

concentration spectrum) provides protection against IR injury (Figure 1.4).  

Preconditioning as a Method of Protection in Ischemia-Reperfusion Injury 
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 A large number of agents can reduce injury when given before ischemia, a 

general phenomenon called cardiac preconditioning.  Preconditioning tissue with 

several sub-lethal bouts of ischemia before a long ischemia can reduce myocardial IR 

injury [first described in 1986 by Murry et al. (162)].  These investigators found that four 

cycles of five minutes of ischemia and five minutes of reperfusion immediately prior to a 

40-minute ischemic insult in dogs could provide cardioprotection (measured by a 25% 

decrease in infarct size) when compared to non-preconditioned hearts.  The 

cardiprotection provided by preconditioning was not accompanied by differences in 

coronary flow, suggesting that other cellular mechanisms were responsible for the 

cardioprotective effect.  There are two windows of protection afforded by 

preconditioning [reviewed in (113, 160, 207, 238)].  The first window of protection 

appears to be within one hour following the initiation of the first preconditioning ischemic 

episode, while the second window of protection appears to be approximately 24 hours 

following preconditioning.  While the second window of protection appears to be due to 

alterations in gene expression and protein synthesis, the first window of protection is too 

short for such adaptations to take place.  Therefore, it is widely accepted that the 

cardioprotection afforded by first-window preconditioning is due to changes in cellular 

signaling pathways (see previous reviews on preconditioning), some of which may 

involve down regulation of PTP (111).   

 Complimenting studies that demonstrate ischemic preconditioning can protect 

against IR injury, several studies have shown that a variety of drugs when given before 

an ischemic insult can provide protection (26, 27). Among the large number of 

pharmacological preconditioning agents, anesthetic-induced preconditioning (with 
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inhalants) is observed in a variety of tissues (20, 61, 116, 119, 183, 225) and in species 

ranging from laboratory mice (151), rats (119, 141), guinea pigs (187), rabbits (92), 

dogs (152, 227) and human patients undergoing surgery (20, 116).  While the use of 

anesthesia-induced preconditioning is an unlikely candidate for the treatment of 

myocardial infarction, it does have implications for patients undergoing transplantation 

surgery, where tissues such as liver, kidney, lung and heart become ischemic.   Chapter 

4 of the current work will discuss the cardioprotective effects of the anesthetic cocktail, 

ketamine-xylazine, in isolated hearts from guinea pigs.   

Physiological Calcium Handling in the Heart 

While intracellular overload of Ca can lead to both necrosis and apoptosis (94-

96), it is well established that Ca is a key regulator of both myocardial contraction and 

the ATP producing metabolic processes that support myocardial contraction (89, 90).  

Both cytosolic (28, 76, 130) and mitochondrial (80, 181, 215) Ca handling have been 

revealed to be impaired in the diabetic heart, which could explain a portion of the 

cardiac dysfunction observed in the diabetic condition.  In order to understand how 

dysfunctional Ca handling in the diabetic heart contributes to cardiac dysfunction, a brief 

review of myocardial Ca handling is provided (Figure 1.5).  

Under physiological conditions, a small amount of extracellular Ca enters the 

cardiac myocyte down its electrochemical gradient through the L-type Ca channels in a 

process initiated by sarcolemmal depolarization.  Entry of extracellular Ca into the 

cytosol triggers the release of comparatively large quantities of Ca by the Ca-sensitive 

ryanodine receptors (RyR2) located on the sarcoplasmic reticular (SR) membrane in a 

process known as Ca-induced Ca-release.  Ca then binds to troponin C and allows for 
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the interaction of actin and myosin, initiating systole.  In order for diastole to take place, 

cytosolic Ca must return to baseline levels (~100nM).  The major routes for Ca uptake 

are the ATP-dependent sarco/endoplasmic reticulum Ca-ATPase (SERCA), 

sarcolemmal NCX and Ca-ATPase and mitochondria.  

The critical role of Ca in the myocardium does not terminate at the level of 

contraction and relaxation.  Ca is a vital activator of several key sites of NADH 

production and metabolic control within the mitochondria.  Not only does Ca enter and 

leave the cytosol on a beat-to-beat basis, but it has also been suggested to enter the 

mitochondria on a beat-to-beat basis (189).  Under physiological conditions, Ca enters 

the mitochondria down its electrochemical gradient through the mitochondrial Ca 

uniporter (MCU) (18, 64, 89) and exits in a sodium-dependent manner through the 

mitochondrial Na-Ca exchanger (mNCX) (54-56, 176) (Figure 1.6).  Nearly 40 years 

ago, Ca was shown to both directly and indirectly activate NADH producing enzymes 

such as pyruvate dehydrogenase, isocitrate dehydrogenase, and α-ketoglutarate 

dehydrogenase (66, 99, 167).  In addition to activation of NADH production, Ca can 

directly contribute to the activity of complex V of the mitochondrial electron transport 

system.  Even in the presence of NADH, the activity of the FoF1 ATPase is inhibited in 

the absence of Ca (217).  Providing support for the activation of the NADH producing 

enzymes and the ATPase, increasing mitochondrial Ca levels leads to an increase in 

ATP synthesis, while decreasing mitochondrial Ca decreases ATP synthesis (115).  

Therefore, Ca entry into mitochondria is critical to ATP production and support of 

myocardial contraction.  Due to the regulatory role of Ca for both contraction and ATP 

production, Balaban proposed the concept of “parallel activation” in myocardial supply 
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and demand matching (17).  Alterations in Ca handling could impair the ability of 

mitochondria to meet the myocardial energy demand with the appropriate supply of 

energy.  This energy mismatch can result in myocardial mechanical failure (i.e. 

depressed left ventricular ejection fraction, decreased ventricular compliance, etc.), 

thus, in such a situation, an adequate supply of nutrients may not be unable to reach 

systemic tissues.     

Due to the important role of mitochondrial Ca in ATP production (115), recent 

evidence has suggested that mitochondrial Ca handling may be altered failing hearts 

(138, 139).  A study by Liu and O’Rourke revealed that myocytes from a guinea pig 

model of heart failure had decreased levels of NADH, and treatment with CGP-37157  

(inhibitor of mNCX) significantly increased NADH.  These data suggest that an increase 

in mitochondrial Ca can improve mitochondrial bioenergetics in diseased hearts.  This 

study supports previous work (115), suggesting that maintenance of mitochondrial Ca is 

integral to ATP production and that a decrease in mitochondrial Ca can result in heart 

failure.  

Calcium Handling in the Diabetic Heart 

Interestingly, many characteristics of diabetic hearts overlap with those of heart 

failure, including both systolic (75, 193) and diastolic dysfunction (33, 198, 200) as well 

as metabolic inflexibility (38, 147, 226).  Diabetic hearts exhibit abnormal cytosolic Ca 

homeostasis, characterized by increased diastolic and/or decreased systolic Ca levels 

[reviewed in (135)].  A study by Allo et al. demonstrated that the activity of both the 

sarcolemmal Na-Ca exchanger and sarcolemmal Ca-ATPase were decreased in 

diabetic hearts (6).  In addition, a study by Ganguly and colleagues provided evidence 
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of decreased SERCA activity coupled with impaired diastolic dysfunction (84).    

Complimentary to this study, overexpression of SERCA2a (subunit of the SERCA) 

improves impairments in contractility in diabetic mice (219), suggesting that 

dysfunctional cytosolic Ca handling may contribute to the cardiac dysfunction observed 

in diabetes, and cytosolic Ca levels have been shown to influence mitochondrial Ca 

(189).  Therefore, aberrant cytosolic Ca handling observed in diabetic hearts may 

translate to changes in mitochondrial Ca.  Moreover, the overlap in the characteristics of 

failing non-diabetic hearts with those of diabetic hearts (described above) may also 

suggest that mitochondrial Ca could be altered in diabetes.  The recent observation by 

Liu and O’Rourke that mitochondrial Ca handling is altered in heart failure may translate 

to the diabetic heart.  Previous studies have suggested that mitochondrial Ca influx is 

slower in isolated mitochondria from diabetic hearts (80, 181, 215), and Chapter 3 of 

this work will provide compelling direct evidence that mitochondrial Ca influx through 

MCU and Ca efflux via mNCX are altered in isolated diabetic heart mitochondria, in the 

absence of differences in ΔΨm.   

Tanaka and colleagues demonstrated reduced Ca influx into diabetic 

mitochondria.  However, the reduced mitochondrial Ca uptake observed in diabetic 

hearts was coupled with a decrease in mitochondrial membrane potential (ΔΨm).  

Because ΔΨm is the primary driving force for mitochondrial Ca influx, a decrease in ΔΨm 

will decrease Ca influx into mitochondria.  Therefore, it is difficult to determine whether 

the difference in mitochondrial Ca influx observed in this study was solely due to 

decreased ΔΨm differences or if other factors were involved, such as altered expression 

of MCU or mNCX.  Moreover, the ΔΨm measurements were determined using the 
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lipophilic cation TPMP+ in myocytes.  When used in intact cells, the driving force for 

TPMP is a combination of mitochondrial and sarcolemmal membrane potentials.  Given 

that diabetic hearts are well-known to have lower repolarizing K+ currents (133), 

diminished TPMP uptake (as seen by Tanaka et al.) could be due to smaller 

sarcolemmal membrane potential and independent of ΔΨm. Flarsheim and coworkers 

also demonstrated a reduction in mitochondrial Ca influx in diabetic rat hearts (80).  

However, they did not measure ΔΨm in this study.  In addition, these observations were 

made using the Ca indicator, arsenazo III, which as been shown to enhance the 

production of ROS (155).  

Based on the bioenergetic importance of mitochondrial Ca, decrements in the 

activity of these mitochondrial Ca pathways may be responsible for the impaired cardiac 

function and decreased cardiac efficiency observed in both human (178, 179) and 

animal models of diabetes (31, 32). Because supply-demand mismatch is a 

distinguishing feature of clinical heart failure (60, 62, 166), it is logical that the impaired 

mitochondrial Ca handling observed in diabetes may be responsible for the cardiac 

dysfunction observed.  While there have been mechanistic studies to explain alterations 

in cytosolic Ca handling in diabetic hearts (219, 230), until this work, there has been no 

mechanistic insight into the alterations observed in mitochondrial Ca handling.  Diabetic 

heart mitochondria display an oxidative shift in redox state characterized by increased 

ROS production (32, 45, 128, 234) and a decreased capacity to buffer ROS (5, 148, 

237).  In particular, diabetic hearts display a decrease in the activity of glutathione 

peroxidase and Cu/Zn superoxide dismutase (5) as well as impairments in catalase 

activity (237).  Oxidative shifts in redox state can alter the activity of cytosolic Ca 
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handling proteins (65, 218).  For example, oxidative stress induces Ca leak from RyR2 

(65, 218) in heart failure, and this leak can be reversed with the antioxidants vitamin C 

and E (65). No laboratories have investigated the effects of the oxidative shift in redox 

state characteristic of the diabetic heart on mitochondrial Ca handling.  Chapter 3 of this 

work will provide cogent evidence that the oxidative shift in redox state characteristic of 

the diabetic heart directly impairs mitochondrial calcium handling, and this impairment 

can be normalized with a reducing agent. 

Conclusions 

 The continuously growing diabetic population exhibits signs of heart failure, 

independent of coronary artery disease and hypertension.  In addition, diabetics are 

more likely to die following myocardial infarction when compared to non-diabetics, and 

accordingly, ischemic heart disease is the leading cause of death among the rapidly 

growing diabetic population.  Animal models of diabetes also exhibit increased 

proneness for cardiac injury, characterized by heightened propensity for 

electromechanical dysfunction and cell death. Cardiac mitochondrial dysfunction has 

been recently proposed as a culprit in the enhanced susceptibility of the diabetic heart 

to failure and ischemic injury.  Specifically, diabetic heart mitochondria display 1) an 

increased propensity for PTP opening 2) impairments in mitochondrial Ca handling and 

3) an oxidative shift in redox state.  However, the impact of this shift in redox state on 

increased likelihood for PTP opening and impaired mitochondrial Ca handling has not 

been realized.  In order to develop effective therapeutic strategies designed to mitigate 

cardiac dysfunction and decrease IR injury in the diabetic heart, the underlying cellular 

mechanisms must be elucidated. 
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Central Hypothesis 

 Chapter 2 will investigate the hypothesis that increased propensity for PTP 

opening characterized by diabetic hearts is responsible for the increased myocardial IR 

injury observed. We believe that the oxidative shift in redox state characteristic of the 

diabetic heart increases the likelihood for PTP opening and impairs mitochondrial Ca 

handling in diabetic hearts.  It is further hypothesized that shifting the redox state 

towards a more reduced state will decrease the likelihood of PTP opening and improve 

mitochondria Ca handling in diabetic hearts.      

 The observations of this work support the hypotheses that 1) the increased 

susceptibility to PTP opening is responsible for the increased likelihood of myocardial IR 

injury in diabetes and 2) the oxidative shift in redox state characteristic of the diabetic 

heart is responsible for the increased propensity to PTP opening and the impaired 

mitochondrial Ca handling observed in the diabetic heart.  Insights provided by this work 

may provide invaluable preventative measures or therapeutic treatments for diabetic 

patients that suffer myocardial infarction and/or heart failure. 

 

 

 

 

 

 



	  

	  

Chapter 2 

Increased Susceptibility to Mitochondrial Permeability Transition Pore  

Opening in the Diabetic Heart 

Abstract 

 Diabetic patients are more susceptible to ischemia/reperfusion (IR) injury, likely 

due to enhanced mitochondrial permeability transition pore (PTP) opening.  The 

purpose of this study was to: 1) determine if three novel mitochondria-targeted 

compounds administered at the onset of reperfusion protect diabetic hearts from injury 

and 2) determine if redox-dependent changes in PTP opening contribute to augmented 

injury in diabetic hearts. Langendorff-perfused STZ-induced diabetic hearts were more 

susceptible to IR injury, with infarct sizes of 60+4% of the area-at-risk (vs. 46+2% in 

non-diabetics; P<0.05). Administration of 5uM NIM811 (non-immunosuppressive 

derivative of cyclosporine A), 1nM Bendavia (mitochondria-targeted antioxidant) or 1uM 

minocycline (blocker of mitochondrial Ca influx) at the onset of reperfusion reduced 

diabetic infarct sizes (P<0.05). Mitochondria isolated from the left ventricles of diabetic 

rats displayed greater sensitivity to PTP opening (P<0.05).  Treatment of diabetic 

mitochondria with 2mM of the reducing agent dithiothreitol and 4 days of daily treatment 

with Bendavia significantly decreased the sensitivity to PTP opening. These findings 

suggest that the augmented susceptibility to injury in the diabetic heart is mediated by 

redox-dependent shifts in PTP opening, and that three novel mitochondria-targeted 

compounds administered at reperfusion may be suitable adjuvant reperfusion therapies 

to attenuate injury in diabetic patients.  
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Introduction 

 Presently, the United States is home to approximately 26 million diabetic 

individuals (84), and by the year 2025, it is estimated that the global population of 

diabetics will reach 300 million (125).  Diabetes significantly increases the probability of 

death following myocardial infarction (153), with hyperglycemia independently 

increasing the risk for mortality (220).  The underlying mechanisms responsible for 

augmented injury in diabetics are not clear.  This paucity in the literature provides a 

substantial barrier for the development of effective therapeutic strategies seeking to 

diminish ischemic injury in diabetic patients.  Elucidating the cellular mechanisms that 

contribute to the cardiac dysfunction and augmented ischemic injury observed in the 

diabetic condition may foster novel putative treatments for diabetic patients that 

experience myocardial infarction.   

 While the etiology for the increased risk of ischemic injury is undoubtedly multi-

factorial, a growing body of evidence suggests that aberrant mitochondrial function 

plays a significant role in the pathogenesis of the increased proclivity for death observed 

in these patients [reviewed in (41)].  Specifically, diabetic heart mitochondria exhibit an 

increased propensity for mitochondrial permeability transition pore opening (PTP) (8, 

23, 174, 232), coupled with an oxidative shift in redox state, characterized by increased 

reactive oxygen species (ROS) production (32, 45, 128, 234) and a decreased capacity 

to buffer ROS (5, 148, 237).   Mitochondrial overload of Ca can lead to the emergence 

of the mitochondrial permeability transition pore (PTP), particularly under conditions of 

oxidative stress [reviewed in (93, 95, 96)].  PTP opening results in depolarization of 

mitochondrial membrane potential (ΔΨm) and hydrolysis rather than generation of ATP, 
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followed by subsequent loss of cardiac electromechanical function and cell death.  PTP 

induction is particularly favorable during ischemia/reperfusion (IR).  During cardiac 

ischemia, the loss of energetics leads to a significant rise in cytosolic Ca as ATP-

dependent Ca pumps can no longer reduce cytosolic Ca.  At the onset of reperfusion, 

the now-polarized mitochondria provide a sink for the accumulated intracellular Ca, 

while the surge of oxygen availability leads to a concomitant burst in mitochondrial ROS 

production.  Thus at the onset of reperfusion when mitochondrial Ca content and ROS 

production are high, the conditions for PTP opening are ideal.  

 Diabetic heart mitochondria demonstrate an enhanced susceptibility to opening 

of the PTP in both humans (8) and animal models of diabetes (23, 174, 232).  It is 

certainly plausible that the increased susceptibility to PTP opening observed in the 

diabetic heart may be responsible for the increased proclivity for death following 

myocardial infarction.  However, until this investigation, that link had yet to be 

established in diabetic hearts.  Further, the mechanisms responsible for the increased 

susceptibility to PTP opening in diabetic heart mitochondria have not been revealed.  

Because oxidative stress significantly amplifies Ca-induced PTP opening, the oxidative 

shift in redox state characteristic of the diabetic heart (described above) may explain the 

increased proclivity for PTP opening.  Here, we demonstrate that directly inhibiting PTP 

opening utilizing NIM811 (non-immunosupressive derivative of CsA) and indirectly 

inhibiting PTP opening with Bendavia (novel mitochondria-targeted antioxidant) and 

minocycline (blocker of mitochondrial Ca influx) reduces infarct size in isolated diabetic 

hearts and to the same extent as drug treated non-diabetic hearts.  Further, we provide 

evidence that a reductive shift in the redox state of isolated diabetic heart mitochondria 
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decreases the sensitivity to Ca-induced PTP opening.  The observations of this work 

suggest that the increased propensity for IR injury in diabetic hearts is due to enhanced 

susceptibility to PTP opening, and the shift in redox state characteristic of the diabetic 

heart increases the likelihood for PTP opening and impairs mitochondrial Ca handling. 

Materials and Methods 

 All reagents used were of the highest grade commercially available (Sigma-

Aldrich, United States).  Calcium green 5N salt was purchased from Invitrogen 

(Carlsbad, CA, USA).     

 All animal studies were approved by the East Carolina University Institutional 

Animal Care and Use Committee and were in accordance with the principles stated in 

the Guide for the Care and Use of Laboratory Animals.  Male Sprague-Dawley rats (7-9 

weeks old) were housed in a temperature (22oC) and light-controlled (12 hour light/12 

hour dark) environment and fed standard rat chow (Research Diets, New Brunswick, 

NJ, USA) and water ad libitum.  

 After at least five days of acclimation to the facility, diabetes was induced with a 

single intraperitoneal (i.p.) injection of streptozotocin (STZ, 65 mg/kg) dissolved in 100 

mM sodium citrate (pH = 4.5) following a 12-hour overnight fast.  Control animals 

received an i.p. injection of sodium citrate.  All experiments were performed 2 weeks 

following STZ injection.  Blood glucose was determined using a commercially available 

glucometer (One Touch Ultra 2, LifeScan, Milpitas, CA, USA 

 Beating hearts were removed from anesthetized (ketamine/xylaine; 85/15 mg/kg) 

rats via bilateral thoracotomy and perfused (perfusion pressure of 75 mmHg) in a 

retrograde fashion on a modified Langendorff apparatus using an established protocol 
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previously described by our group (204).  Hearts were perfused with a modified Krebs-

Henseleit buffer containing (in mM): 118 NaCl, 24 NaHCO3, 4.75 KCl, 1.2 KH2PO4, 1.2 

MgSO4, 2.0 CaCl2, and 10 glucose (gassed with 95/5% O2/CO2).  Hearts were bathed in 

a buffer-filled perfusion chamber maintained at 37°C for the duration of the experiments. 

Following the initiation of perfusion, hearts were instrumented for the simultaneous 

observation of mechanical and electrical function.  A buffer-filled latex balloon (size 5, 

Harvard Apparatus, Holliston, MA, USA), calibrated at the beginning of each day using 

a digital manometer, was inserted into the left ventricle (via the mitral valve) for the 

measurement of left ventricular developed pressure (LVDP), with balloon volume 

adjusted to establish a diastolic pressure of 5-8 mmHg.  Three electrodes were placed 

into the buffer-filled perfusion chamber for the measurement of volume-conducted ECG.  

A pre-established protocol of electrode placement was utilized to obtain a signal 

analogous to Lead II of a typical 12-lead ECG (34, 35).  Coronary flow rates were 

monitored constantly with a flow probe (Transconic Systems, Ithaca, NY, USA) 

connected in series with the perfusion line. All physiological parameters were 

continuously monitored and stored on a personal computer using commercially 

available software (Chart, AD Instruments, Colorado Springs, CO, USA).  Heart rate 

was calculated using the LVDP trace, and maximal rates of contraction and relaxation 

(±dP/dt) were calculated using the derivative of the LVDP trace. 

 Following a 10 minute baseline period, ischemia/reperfusion was initiated 

similarly to that described previously by our group (204).  Hearts were exposed to global 

no-flow ischemia by stopping perfusion for 20 minutes.  At the end of the index 

ischemia, static buffer from the perfusion lines was washed out (via an accessory port 
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proximal to the aortic cannula), and reperfusion was allowed to ensue for 2 hours with 

or without the presence of 5 mM NIM811 [inhibitor of the PTP(11)], 1 nM Bendavia 

[mitochondrial-targeted antioxidant (210)] or 1 uM minocycline (blocker of mitochondrial 

calcium influx, Figure 1.4).  Because treatment at the start of reperfusion is most 

clinically relevant, these drugs were introduced at the start of the 2-hour reperfusion 

protocol.  At the end of reperfusion, the left ventricle was dissected, sliced into 5mm-

thick slices, incubated in 1% triphenyltetrazolium chloride (TTC) for 10 minutes (37°C) 

and digitally photographed for subsequent infarct size analysis.  TTC stained viable 

tissue bright red, while infarcted tissue appeared pale in color.  Infarct size was 

expressed as the infarcted area as a percentage of the left ventricle (calculated using 

ImageJ software, NIH, Bethesda, MD, USA).  Arrhythmias were scored as described 

previously by our group (34, 35, 204) and were in accordance with the Lambeth 

Conventions (57, 223). Arrhythmias were scored during the reperfusion period as 

follows: 0 = 0 – 49 ventricular premature beats; 1 = 50 – 499 ventricular premature 

beats; 2 = > 499 ventricular premature beats and/or 1 episode of spontaneously 

reverting ventricular tachycardia (VT) or ventricular fibrillation (VF) less than 60 sec in 

total duration; 3 = > 1 episode of VT or VF that is < 60 sec total duration; 4 = reverting 

VT or VF or both that is < 120 s in total duration; 5 = VT or VT or both that is > 120 sec 

in combined duration; 6 = non-reverting (fatal) VT or VF that began > 15 min after 

reperfusion; 7 = fatal VT/VF that began between 5 min and 15 min after reperfusion; 

8 = fatal VT/VF that began less than 5 min after reperfusion.   

 Cardiac mitochondria were isolated from the left ventricle of hearts utilizing a 

protocol similar to Boehm et al. (25).  For the mitochondrial isolation, all steps were 



	   24	  
	  

performed at 4°C, and all instruments for the procedure were chilled overnight prior to 

the isolation at 4°C.  Rat hearts were excised from anesthetized rats (as described 

above) and immersed in 10 mL ice-cold isolation solution (IS) containing (in mM): 300 

sucrose, 10 sodium-hepes and 0.2 EDTA. The left ventricle was isolated, weighed, and 

rinsed in fresh IS buffer.  Hearts were minced into 2-3 cm3 cubes and subjected to 2 

minutes of digestion using 1.25 mg trypsin, diluted in 10 mL of IS (pH = 7.2).  Following 

digestion, 6.5 mg of trypsin inhibitor was added, diluted in 10 mL IS buffer + BSA 

(1mg/mL) at pH = 7.4.  Tissue was resuspended in 10 mL IS buffer + BSA and 

homogenized with a teflon Potter-homogenizer.  The homogenate was centrifuged at 

600g for 10 minutes, and the supernatant was then centrifuged at 8000g for 15 minutes.  

The supernatant was discarded, and the pellet re-suspended in 10 mL IS buffer + BSA.  

This step was repeated one more time, and the final pellet was stored on ice in ~150 mL 

IS buffer.  Mitochondrial protein content was determined using a BCA protein assay.  

 To determine the quality of our mitochondrial preparations, respiratory control 

ratios (RCR) were measured using a Clark-type micro-oxygen electrode 

(Microelectrodes, Bedford, NH, USA).  Reactions were conducted in a closed, 

magnetically stirred chamber in 2.5 mL mitochondria assay buffer containing (in mM): 

125 KCl, 5 HEPES, 2 K2PO4, 1 MgCl2 and 0.5 mg mitochondria (25o C, pH = 7.3).  

Following a two-minute equilibration period, mitochondria were energized with 5 mM 

glutamate/5 mM malate to initiate state 2 respiration.  State 3 respiration was initiated 

with the addition of 2.5 mM ADP.  RCRs were calculated by dividing the state 3 

respiration by the state 2 respiration.   
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 Mitochondria (0.75 mg) were suspended in mitochondria assay buffer (described 

above) and supplemented with the fluorescent probe 1 µM calcium green 5N salt (Ex = 

506 nm, Em = 532) to track changes in extramitochondrial calcium.  Fluorescence was 

measured using a spectrophotometer (Photon Technology International, Birmingham, 

NJ, USA). Calcium-induced permeability transition pore (PTP) opening experiments 

were performed under state 2 conditions. Mitochondria were energized with 5 mM 

glutamate/5 mM malate.  Mitochondrial permeability transition pore opening was 

induced by subjecting mitochondria to 50 nmole CaCl2 pulses at 3-minute intervals.  

PTP induction was denoted by the inability of mitochondria to take up calcium (sharp 

increase in extramitochondrial calcium fluorescence).  Data were quantified as the 

amount of calcium needed to induce PTP opening (nmoles CaCl2/mg mitochondria).  

For experiments where redox state was manipulated, energized mitochondria were 

treated with either 200 µM diamide or 2 mM dithiothreitol (DTT) for the 10 minutes prior 

to and throughout each experimental protocol.  Previous work from our laboratory has 

indicated that this concentration of diamide can elicit oxidative stress by significantly 

lowering GSH/GSSG (35).  Others have shown that this concentration of DTT can act 

as a reducing agent and decrease the likelihood of PTP opening under oxidative 

conditions (63).   

 A sub-set of rats (for PTP experiments) was treated daily with the mitochondria-

targeted antioxidant, Bendavia (aka SS-31 in the literature).  In this sub-set of STZ-

induced diabetic rats and control rats, BendaviaTM (1.5 mg/kg in 0.9% saline) was 

injected (i.p.) daily for the 4 days prior to each mitochondrial isolation day. 
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 Data are presented as mean + SEM.  Statistical analyses were performed using 

one-way ANOVA or two-way ANOVA (as appropriate), with Newman-Keuls post-hoc 

analysis for comparison between groups.  The level of significance was established at P 

< 0.05. 

Results 

 Animal characteristics.  Rat body weights, heart weights (corrected for body 

weight) and fasting glucoses are presented in Table 2.1.  STZ treated rats had 

significantly lower body weights as well as lower heart weights when compared to non-

STZ treated rats (P<0.05).  In order to confirm diabetes in STZ treated rats, we 

measured fasting blood glucose.  STZ treated rats displayed significantly higher fasting 

glucose levels when compared to non-STZ treated rats (495 + 21.9 vs. 114 + 1.43, 

respectively; P<0.05). 

 Infarct size.  Infarct sizes and representative infarct pictures are presented in 

Figure 2.1. Langendorff-perfused hearts from STZ treated rats were more susceptible to 

IR injury, with infarct sizes of 60+4% of the area-at-risk (vs. 46+2% in non-diabetics; 

P<0.05). Administration of 5uM NIM811 (non-immunosuppressive derivative of 

cyclosporine A), 1nM Bendavia (mitochondria-targeted antioxidant) and 1 uM 

minocycline at the onset of reperfusion significantly reduced diabetic infarct sizes 

(P<0.05) and to the same extent as NIM811 and Bendavia treated non-diabetic animals 

(P>0.05).  

 Hemodynamics.  Hemodynamics are presented in Tables 2.2.  There were no 

significant differences in hemodynamic parameters before the ischemic period nor at 

the end of reperfusion (P>0.05).  During the baseline and at the end of reperfusion, left 
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ventricular developed pressure, maximal rates of contraction (+dP/dt) and relaxation (-

dP/dt), and coronary flow rates were similar between all groups.    

 Arrhythmia scores.  Arrhythmia scores are presented in Figure 2.2.  There were 

no differences in the incidence arrhythmias as measured by infarct size. 

 Respiratory control ratio.  Respiratory control ratios are presented in Figure 2.3.  

There were no differences in respiratory control ratios between mitochondria isolated 

from STZ and non-STZ treated rats (P>0.05), suggesting that the quality of 

mitochondrial preparation was not different between groups.  

 Calcium-induced PTP opening.  Fluorescence data for Ca-induced PTP opening 

as well as representative traces are depicted in Figure 2.4.  Isolated mitochondria from 

the left ventricle of STZ treated rats required significantly less calcium in order to induce 

PTP opening when compared to non-STZ treated rats (P<0.05), demonstrating that STZ 

treated rats have an enhanced sensitivity to Ca-induced PTP opening.  The enhanced 

sensitivity to PTP opening in STZ treated rats was significantly decreased (P<0.05) 

when isolated mitochondria were treated with 2 mM dithiothreitol or when animals 

received daily i.p. injections of 1.5 mg/kg Bendavia for the four days leading up to the 

experimental day.  However, treatment with DTT and Bendavia did not normalize Ca-

induced sensitivity to non-diabetic control levels.  Treatment with 200 uM diamide 

significantly increased the sensitivity to Ca-induced PTP opening in non-STZ treated 

rats (P<0.05) but had no effect on Ca-induced PTP sensitivity in STZ treated rats (vs. 

respective controls), suggesting that the redox state of diabetic isolated mitochondria 

can not be oxidized further.    

Discussion 
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 In this study, we hypothesized that the increased susceptibility to ischemia-

reperfusion (IR) injury observed in diabetes is due to an increased probability for 

mitochondrial permeability transition pore opening (PTP).  Moreover, we hypothesized 

that the increased propensity for PTP opening displayed by the diabetic heart was the 

result of an oxidative shift in the redox state.  The major findings of this work are 1) 

direct inhibition of PTP opening with NIM811 and indirect inhibition of PTP with 

Bendavia and minocycline significantly reduce infarct size in isolated diabetic hearts to 

the same extent as drug treated non-diabetic control hearts and 2) four days of 

treatment with Bendavia and treatment of isolated diabetic heart mitochondria with 

dithiothreitol significantly reduce the sensitivity to Ca-induced PTP opening.  To our 

knowledge, no previous study has described the cardioprotective effects of blocking 

PTP opening at the onset of reperfusion in diabetic animals.  Moreover, we are the first 

to show that a reductive shift in the redox state of isolated diabetic heart mitochondria 

decreases the sensitivity to Ca-induced PTP opening.   

Enhanced Sensitivity to PTP Explains Augmented IR Injury in Diabetic Hearts 

 Since first described nearly four decades ago (193), scores of investigators have 

attempted to uncover the mechanisms underlying diabetic cardiomyopathy [reviewed in 

(29, 30)].  Recently, an emerging body of evidence [reviewed in (41)] has pointed 

towards mitochondrial dysfunction as a potential culprit for the increased probability for 

death following myocardial infarction in these patients.  In particular, diabetic heart 

mitochondria display an enhanced propensity for PTP opening (8, 23, 174, 232), and 

PTP opening is widely accepted to be a distinctive feature of IR injury.  Because PTP 

opening is a hallmark of IR injury, inhibition of PTP opening provides substantial 



	   29	  
	  

protection against injury [reviewed in (96)].  However, until this work, no investigators 

had employed the use of PTP inhibition in diabetes to attenuate augmented myocardial 

IR injury. 

 Strategies that target cyclophilin D (CyP-D), a distinctive feature of the PTP, have 

been frequently employed to directly inhibit PTP opening (94-96).  A number of studies 

have indicated that inhibition of CyP-D with cyclosporine A (CsA) can decrease the 

probability of PTP opening and attenuate several indices of myocardial IR injury in non-

diabetic animals, including: infarction (10, 11, 101, 154, 228), left ventricular dysfunction 

(91, 102, 172), cardiomyocyte death (124, 165) and mitochondrial dysfunction (70, 173).  

In a recent clinical trial (182), the use of CsA at the time of reperfusion reduced infarct 

size in humans by approximately 30% (when assessed by MRI), corroborating previous 

data from animal studies.  Although promising, the use of CsA is confounded by a 

narrow therapeutic window (165), potentially harmful effects to the microvasculature 

(180, 214, 231), deleterious effects on long-term myocardial function (132), suppression 

of mitochondrial respiration (11), lack of protection against arrhythmia (4, 34), 

nephrotoxicity (163), and immunosuppression (15).  Due to the high rates of renal 

failure (2) and depressed immune function (157) in diabetic patients, we chose to 

employ the use of NIM811 to block PTP opening in isolated diabetic hearts.  NIM811 is 

a non-immunosuppressive derivative of CsA developed by Novartis, and unlike CsA, 

NIM811 blocks PTP formation by selectively binding matrix CyP-D and not the cytosolic 

immunosuppressant, cyclophilin A (222). It is widely accepted that CyP-D initiates PTP 

opening, and NIM811 has been shown to decrease infarct size and directly block Ca-
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induced PTP opening in intact non-diabetic rabbit hearts and isolated rabbit cardiac 

mitochondria, respectively (12), by specifically binding CyP-D.   

 A previous study demonstrated that the enhanced propensity for PTP opening in 

isolated diabetic heart mitochondria could be normalized to non-diabetic controls with 

CsA treatment (174).  In order to determine whether inhibition of PTP opening could 

attenuate myocardial IR injury in diabetic whole hearts to the same extent as non-

diabetic hearts, we utilized NIM811.  Corroborating previous reports (9, 69, 110, 129, 

144, 145, 199), we demonstrate that diabetic hearts are more susceptible to IR injury, 

as measured by a 30 percent increase in infarct size in our study.  The significance of 

our work is that directly inhibiting PTP opening with NIM811 at the onset of reperfusion 

attenuates infarct size to the same extent as NIM811 treated non-diabetic hearts, 

suggesting that the increased propensity for IR injury in diabetic hearts is due to an 

enhanced susceptibility to PTP opening.  

 In addition to directly blocking PTP opening by targeting CyP-D, several 

investigators have shown that indirectly inhibiting PTP opening by reducing the ROS 

burden (112, 168, 185) and/or mitochondrial Ca influx (190, 195) can attenuate 

myocardial IR injury in non-diabetic hearts.    Because the diabetic myocardium is 

characterized by an increased ROS burden (7), we hypothesized that the increase in 

oxidative stress associated with the diabetic heart may enhance the susceptibility to 

PTP opening and increase ischemic injury.  To determine if indirectly inhibiting PTP 

opening by scavenging mitochondrial ROS production decreases IR injury in diabetic 

hearts, we used the novel cell permeable compound Bendavia (SS31 in the literature).  

With its dimethyl-tyrosine residue and permeability properties, Bendavia is a 
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mitochondria-targeted scavenger of ROS (49).  In our experiments, we introduced 

Bendavia at the onset of reperfusion following a 20-minute period of global ischemia.  

Further, we show that indirect inhibition of PTP by decreasing mitochondrial Ca influx 

with minocycline also decreases cardiac IR injury in isolated diabetic hearts.  

Collectively, our data indicate that both direct and indirect inhibition of PTP opening 

attenuates IR injury as measured by a decrease in infarct size in isolated diabetic 

hearts.  Like NIM811, treatment with Bendavia and minocycline reduced infarct size in 

diabetic hearts to the same extent as drug treated non-diabetic control hearts.  These 

findings suggest that the increased susceptibility to IR injury in diabetic hearts is due to 

an enhanced susceptibility to PTP opening, mediated by an augmented ROS burden.  

Redox Modulated Changes in PTP Opening 

 There is scant evidence to explain the mechanisms responsible for the increased 

susceptibility to PTP opening in diabetic hearts.  Recently, two independent laboratories 

have demonstrated that CyP-D expression is elevated in diabetic hearts (142, 232), 

which could potentially explain a portion of the increased propensity for PTP opening.  

However, these studies did not consider potential post-translational mechanisms such 

as redox modifications that may alter the activity of CyP-D and lead to enhanced PTP 

opening.   In a recent investigation, human CyP-D was shown to be redox regulated 

(136).  In this study, Cys203 of CyP-D exhibited redox sensitivity, in that oxidation led to 

decreased isomerase activity and formation of an intramolecular disfulfide bridge with 

Cys157.  Several studies have shown that the diabetic heart displays an oxidative shift in 

redox state, characterized by increased reactive oxygen species (ROS) production (32, 

45, 128, 234) and a decreased capacity to buffer ROS (5, 148, 237) [also reviewed in 
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(41)].  Until this work, the link between oxidative stress and the enhanced sensitivity to 

Ca-induced PTP opening had not been established.  Our data are in accordance with 

previous studies conducted in both humans (8) and animal models of diabetes (23, 174, 

232), demonstrating that diabetic heart mitochondria have an enhanced sensitivity to 

PTP opening.  The novelty of our work is that the augmented sensitivity to Ca-induced 

PTP opening displayed by isolated diabetic heart mitochondria was significantly 

reduced when mitochondria were treated with the reducing agent, diothiothreitol (DTT) 

and when animals were treated with Bendavia intraperitoneally for four days.  Based on 

the observation that CyP-D activity can be redox modulated, it is tempting to speculate 

that CyP-D is more oxidized in diabetic heart mitochondria when compared to non-

diabetic controls.  Therefore, the potential mechanism for DTT and Bendavia-induced 

improvements may be due to redox modification of CyP-D.  However, future 

investigation is needed in order to support this hypothesis.   

 The Ca-induced sensitivity to PTP opening in diabetic mitochondria was not 

completely normalized with DTT or Bendavia.  One reason for this may have been that 

the reducing power of the DTT concentration used in our study may not have been 

enough to overcome the oxidized state of the redox sensitive PTP component.  

However, this seems unlikely due to the well known reducing capacity of DTT (74, 107, 

108).  Another possible explanation may be that a portion of the enhanced propensity 

for PTP opening in diabetic hearts is due to alterations in mitochondria-independent 

mechanisms, such as cell signaling pathways known to alter PTP opening [reviewed in 

(160)].  Although these pathways may be altered by redox state, they would not be 

present In our isolated mitochondrial preparation.  Nevertheless, the significant 
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decrease in sensitivity to PTP opening in diabetic heart mitochondria evoked by a 

reductive shift in redox state is a significant finding due to the fact that a reduction in the 

open probability of PTP has been shown to improve outcomes in patients with 

myocardial infarction (182).   

 In our study, DTT had no effect on the sensitivity to Ca-induced PTP opening in 

non-diabetic isolated heart mitochondria.  These data are in accordance with others (66) 

in that treatment with a reducing agent (DTT) can not decrease the sensitivity to Ca-

induced PTP opening unless conditions of oxidative stress are prevailing (63).  In 

addition, we demonstrate that the sensitivity to Ca-induced PTP opening was highly 

sensitive to treatment with diamide in isolated heart mitochondria from control but not 

diabetic animals.  Treatment with diamide enhanced the sensitivity to Ca-induced PTP 

opening in control animals to the same extent as non-treated and diamide treated 

diabetic heart mitochondria.  Taken together, these data support the hypothesis the 

oxiditaive shift in redox state characteristic of the diabetic heart is responsible for a 

portion of the enhanced sensitivity to PTP opening.    

Conclusions  

 In summary, these experiments provide evidence that the enhanced 

susceptibility to PTP opening in diabetic heart mitochondria explains the augmented 

myocardial ischemia-reperfusion injury observed.  In addition, the increased propensity 

for PTP opening characteristic of the diabetic heart is redox-dependent, and a reductive 

shift in redox state decreases the Ca-induced sensitivity to PTP opening.  



	  

	  

Chapter 3 

Altered Mitochondrial Calcium Handling the Diabetic Heart 

Abstract 

 Many diabetic patients exhibit signs of heart failure, including both systolic and 

diastolic dysfunction, independent of coronary artery disease or hypertension.  Due to 

the key role of mitochondrial calcium (Ca) in supply-demand matching, impairments in 

mitochondrial calcium displayed by the diabetic heart have been implicated in 

myocardial dysfunction. The purpose of this study was to: 1) definitively determine if 

mitochondrial Ca influx via mitochondrial Ca uniporter (MCU) and efflux via 

mitochondrial Na-Ca exchanger are impaired in diabetes and 2) determine if redox-

dependent changes in mitochondrial Ca transients contribute to altered mitochondrial 

Ca handling in diabetic hearts.  Mitochondria isolated from the left ventricles of STZ-

induced diabetic rats displayed slower Ca uptake when compared to non-diabetic 

mitochondria (P<0.05), and Na/Ca exchange activity was faster in diabetic when 

compared to non-diabetic (P<0.05), despite no differences in respiratory control ratio or 

mitochondrial membrane potential between groups.  Treatment of diabetic mitochondria 

with 2mM of the reducing agent dithiothreitol significantly normalized MCU activity to 

non-diabetic levels. These findings suggest that diabetic heart mitochondria have 

reduced mitochondrial Ca content under physiological Ca concentrations and that the 

reduction in MCU activity is redox dependent.  Results from this study provide insight for 

the potential mechanisms underlying supply-demand mismatching in diabetic hearts.    

Introduction 
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 Approximately eight percent of the US population is diabetic (84), and by the year 

2025, it is estimated that the global population of diabetics will reach 300 million (125).  

Nearly 40 years ago, Rubler and colleagues observed manifestations of heart failure in 

patients suffering from diabetes, independent of coronary artery disease and 

hypertension (193).  Specifically, these investigators observed that diabetic patients had 

pathological left ventricular hypertrophy and myocardial fibrosis.  This heightened 

cardiac dysfunction observed in diabetic patients, independent of coronary artery 

disease or hypertension was termed diabetic cardiomyopathy (193).  Since that time, 

several other manifestations of diabetic cardiomyopathy have been observed.  

Presently, characteristics of diabetic cardiomyopathy include: systolic and diastolic 

dysfunction, left ventricular hypertrophy, impaired contractile reserve and interstitial 

fibrosis [reviewed in (30)].  Mechanisms underlying cardiac dysfunction in diabetics are 

still not clear.  This paucity in the literature provides a substantial barrier for the 

development of effective therapeutic strategies seeking to diminish heart failure in 

diabetic patients.  Elucidating the cellular mechanisms that contribute to the augmented 

cardiac dysfunction in the diabetic condition may foster novel treatments for diabetic 

patients that experience heart failure.   

 Many characteristics of idiopathic diabetic cardiomyopathy overlap with those of 

coronary artery disease/hypertension-induced heart failure in non-diabetic patients, 

including both systolic (75, 193) and diastolic dysfunction (33, 198, 200) as well as 

metabolic inflexibility (38, 147, 226).  While the pathogenesis of diabetic 

cardiomyopathy is likely due to a number of variables, an emerging body of evidence 

suggests that aberrant mitochondrial function plays a significant role in the cardiac 
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dysfunction observed in these patients [reviewed in (30, 41)].  Diabetic heart 

mitochondria exhibit impaired calcium (Ca) handling (80, 181, 215) coupled with an 

oxidative shift in redox state, characterized by increased reactive oxygen species (ROS) 

production (32, 45, 128, 234) and a decreased capacity to buffer ROS (5, 148, 237).  

Mitochondrial Ca is essential for cardiac function in that mitochondrial Ca serves as a 

nexus between myocardial supply and demand.  Mitochondrial Ca fluxes are integral to 

ATP supply and demand matching [reviewed in (89)].  Ca serves as a key activator for 

several NADH producing enzymes such as pyruvate dehydrogenase, isocitrate 

dehydrogenase, and α-ketoglutarate dehydrogenase (66, 99, 167).  In addition to 

activation of NADH production, there is evidence to support that Ca directly contributes 

to the activity of complex V of the mitochondrial electron transport system (217). Under 

physiological conditions, Ca enters the mitochondria chiefly through the mitochondrial 

calcium uniporter (MCU) and exits through the mitochondrial Na-Ca exchanger (mNCX) 

(189).     

Based on the bioenergetic importance of mitochondrial Ca, decrements in the 

activity of these mitochondrial Ca pathways may be responsible for the impaired cardiac 

function and decreased cardiac efficiency observed in both human (178, 179) and 

animal models of diabetes (31, 32). Because supply-demand mismatch is a 

distinguishing feature of clinical heart failure (60, 62, 166), it is logical that the impaired 

mitochondrial Ca handling observed in diabetes may be responsible for the cardiac 

dysfunction observed.  To date, there has been no mechanistic insight into the 

alterations observed in mitochondrial Ca handling.  Several investigators have shown 

that an oxidative shift in redox state can alter the activity of cytosolic Ca handling 
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proteins (65, 218).  However, no laboratories have investigated the effects of the 

oxidative shift in redox state characteristic of the diabetic heart on mitochondrial Ca 

handling.  

 Here, we provide evidence that mitochondrial Ca influx is decreased via MCU 

and mitochondrial Ca efflux via mNCX is higher in isolated diabetic heart mitochondria.  

Further, we demonstrate that the impaired MCU activity in isolated diabetic heart 

mitochondria can be normalized to non-diabetic controls when treated with the     

reducing agent, dithiothreitol.  These observations suggest that the shift in redox state 

characteristic of the diabetic heart impairs mitochondrial Ca handling. 

Materials and Methods 

 All reagents used were of the highest grade commercially available (Sigma-

Aldrich, United States).  Calcium green 5N salt was purchased from Invitrogen 

(Carlsbad, CA, USA).     

 All animal studies were approved by the East Carolina University Institutional 

Animal Care and Use Committee and were in accordance with the principles stated in 

the Guide for the Care and Use of Laboratory Animals.  Male Sprague-Dawley rats (7-9 

weeks old) were housed in a temperature (22oC) and light-controlled (12 hour light/12 

hour dark) environment and fed standard rat chow (Research Diets, New Brunswick, 

NJ, USA) and water ad libitum.  

 After at least five days of acclimation to the facility, diabetes was induced with a 

single intraperitoneal (i.p.) injection of streptozotocin (STZ, 65 mg/kg) dissolved in 100 

mM sodium citrate (pH = 4.5) following a 12-hour overnight fast.  Control animals 

received an i.p. injection of sodium citrate.  All experiments were performed 2 weeks 
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following STZ injection.  Blood glucose was determined using a commercially available 

glucometer (One Touch Ultra 2, LifeScan, Milpitas, CA, USA 

 Cardiac mitochondria were isolated from the left ventricle of hearts utilizing a 

protocol similar to Boehm et al. (25).  For the mitochondrial isolation, all steps were 

performed at 4°C, and all instruments for the procedure were chilled overnight prior to 

the isolation at 4°C.  Rat hearts were excised from anesthetized rats (as described 

above) and immersed in 10 mL ice-cold isolation solution (IS) containing (in mM): 300 

sucrose, 10 sodium-hepes and 0.2 EDTA. The left ventricle was isolated, weighed, and 

rinsed in fresh IS buffer.  Hearts were minced into 2-3 cm3 cubes and subjected to 2 

minutes of digestion using 1.25 mg trypsin, diluted in 10 mL of IS (pH = 7.2).  Following 

digestion, 6.5 mg of trypsin inhibitor was added, diluted in 10 mL IS buffer + BSA 

(1mg/mL) at pH = 7.4.  Tissue was resuspended in 10 mL IS buffer + BSA and 

homogenized with a teflon Potter-homogenizer.  The homogenate was centrifuged at 

600g for 10 minutes, and the supernatant was then centrifuged at 8000g for 15 minutes.  

The supernatant was discarded, and the pellet re-suspended in 10 mL IS buffer + BSA.  

This step was repeated one more time, and the final pellet was stored on ice in ~150 mL 

IS buffer.  Mitochondrial protein content was determined using a BCA protein assay.  

 To determine the quality of our mitochondrial preparations, respiratory control 

ratios (RCR) were measured using a Clark-type micro-oxygen electrode 

(Microelectrodes, Bedford, NH, USA).  Reactions were conducted in a closed, 

magnetically stirred chamber in 2.5 mL mitochondria assay buffer containing (in mM): 

125 KCl, 5 HEPES, 2 K2PO4, 1 MgCl2 and 0.5 mg mitochondria (25o C, pH = 7.3).  

Following a two-minute equilibration period, mitochondria were energized with 5 mM 
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glutamate/5 mM malate to initiate state 2 respiration.  State 3 respiration was initiated 

with the addition of 2.5 mM ADP.  RCRs were calculated by dividing the state 3 

respiration by the state 2 respiration.   

 In a method similar to that used by Kamo et al. (117), mitochondrial membrane 

potential (ΔΨm) was determined based on the activity of the lipophilic cation, 

tetraphenylphosphonium (TPP+) using a TPP+ - selective electrode and a Ag/AgCl 

reference electrode (World Precision Instruments, Sarasota, FL, USA).  Changes in 

voltage were monitored on a Dell computer using commercially available software 

(Chart, AD Instruments, Colorado Springs, CO, USA). The ΔΨm was estimated from the 

equation: ΔΨm	  =	  58*log(v/V)	  –	  58*log(10FΔE/2.3RT-‐1)	   (117),	  where	  ΔE, deflection in TPP+ 

voltage from baseline; R, gas constant; T, temperature; v, mitochondrial matrix volume; 

V, buffer volume. The baseline voltage was taken before addition of substrate, and 

mitochondrial matrix volume was assumed to be of 1µL/mg protein (191).  Based on a 

previous study (104), we assumed that matrix volumes were similar between STZ-

induced diabetic rats and non-diabetic rats.  For ΔΨm experiments, both the TPP+ - 

selective electrode and reference electrode were placed in a magnetically stirred 

chamber containing 2.5 mL mitochondria assay buffer (described above) and 0.5 mg 

mitochondria, supplemented with 1.2 µM TPP+
.  Identical to RCR experiments, 

mitochondria were energized with 5 mM glutamate/5 mM malate.  State 3 respiration 

was initiated with the addition of 2.5 mM ADP.	  

 Mitochondria (0.75 mg) were suspended in mitochondria assay buffer (described 

above) and supplemented with the fluorescent probe 1 µM calcium green 5N salt (Ex = 

506 nm, Em = 532) to track changes in extramitochondrial calcium.  Fluorescence was 
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measured using a spectrophotometer (Photon Technology International, Birmingham, 

NJ, USA).  Mitochondrial calcium uniporter (MCU) and sodium-calcium exchanger 

(mNCX) activity experiments were performed under state 2 conditions, energized with 5 

mM glutamate/5 mM malate.  MCU activity was measured by adding a 50 nmole pulse 

of CaCl2 to mitochondria, and the disappearance of calcium from the extramitochondrial 

solution was monitored.  The disappearance of calcium was quantified by calculating 

the tau (time to 63% of baseline fluorescence).  mNCX activity was determined utilizing 

methods similar to those used in original works by Crompton and colleagues (55, 56).  

Specifically, mitochondria were loaded with 150 nmoles CaCl2.  Following the complete 

uptake of the calcium bolus and stabilization of extramitochondrial fluorescence, mNCX 

activity was initiated by the addition of 15 mM NaCl.  To quantify mNCX activity, the 

area under curve was calculated for the two minutes following addition of NaCl.  Two 

minutes was chosen because this is the time point where the mNCX-induced calcium 

extrusion reached a steady plateau.  For experiments where redox state was 

manipulated, energized mitochondria were treated with either 200 µM diamide or 2 mM 

dithiothreitol (DTT) for the 10 minutes prior to and throughout each experimental 

protocol.  Previous work from our laboratory has indicated that this concentration of 

diamide can elicit oxidative stress by significantly lowering GSH/GSSG (35).  Others 

have shown that this concentration of DTT can act as a reducing agent and decrease 

the likelihood of PTP opening under oxidative conditions (63). 

 Data are presented as mean + SEM.  Statistical analyses were performed using 

one-way ANOVA or two-way ANOVA (as appropriate), with Newman-Keuls post-hoc 
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analysis for comparison between groups.  The level of significance was established at P 

< 0.05. 

Results 

 Animal characteristics.  Rat body weights, heart weights (corrected for body 

weight) and fasting glucoses are presented in Table 2.1.  STZ treated rats had 

significantly lower body weights as well as lower heart weights when compared to non-

STZ treated rats (P<0.05).  In order to confirm diabetes in STZ treated rats, we 

measured fasting blood glucose.  STZ treated rats displayed significantly higher fasting 

glucose levels when compared to non-STZ treated rats (495 + 21.9 vs. 114 + 1.43, 

respectively; P<0.05). 

 Respiratory control ratio.  Respiratory control ratios are presented in Figure 2.3.  

There were no differences in respiratory control ratios between mitochondria isolated 

from STZ and non-STZ treated rats (P>0.05), suggesting that the quality of 

mitochondrial preparation was not different between groups.  

 MCU and mNCX activity.  Mitochondrial calcium uptake via MCU was 

significantly slower in isolated mitochondria from STZ treated rats when compared to 

non-STZ treated (Figure, 3.1; P<0.05) as measured by tau (time to 63% calcium 

uptake).  Further, mitochondrial calcium efflux via mNCX was significantly faster in STZ 

treated rats (vs. non-STZ treated rats, P<0.05; Figure 3.2).  The impairment in MCU 

activity observed in STZ treated isolated rat mitochondria was normalized to control with 

treatment of 2 mM dithiothreitol.   

 Mitochondrial membrane potential.  Mitochondrial membrane potentials are 

presented in Figure 2.3.  To rule out mitochondrial membrane potential as a potential 
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factor governing Ca transients, we used the TPP+-selective probe.  There were no 

differences in State 2 nor State 3 mitochondrial membrane potentials (P>0.05), 

suggesting no differences in the electrical driving force for Ca entry into mitochondria. 

Discussion 

 In this study, we hypothesized that impaired mitochondrial calcium (Ca) handling 

displayed by the diabetic heart is the result of an oxidative shift in the redox state of 

diabetic heart mitochondria.  The major findings of this work are 1) mitochondrial 

calcium influx through MCU is diminished in diabetic heart mitochondria 2) 

mitochondrial calcium efflux via mNCX is increased in isolated diabetic heart 

mitochondria 3) a reductive shift in redox state of isolated diabetic heart mitochondria 

normalizes mitochondrial Ca influx.  To our knowledge, we are the first to show that 

decreased mitochondrial Ca influx through MCU in diabetic hearts can be normalized 

with a reductive shift in redox state.   

It is widely accepted that mitochondrial Ca fluxes are integral to ATP supply and 

demand matching [reviewed in (89)].  Ca serves as a key activator for several NADH 

producing enzymes such as pyruvate dehydrogenase, isocitrate dehydrogenase, and α-

ketoglutarate dehydrogenase (66, 99, 167).  Because of the essential bioenergetic role 

of Ca in the myocardium, alterations in mitochondrial Ca fluxes can be detrimental to 

normal cardiac function and efficiency.  Under physiological conditions, Ca enters the 

mitochondria chiefly through the mitochondrial calcium uniporter (MCU) and exits 

through the mitochondrial Na-Ca exchanger (mNCX) [(189).  Previous studies have 

provided evidence that mitochondrial Ca influx was slower in isolated mitochondria from 

diabetic hearts (80, 181, 215).  Tanaka and colleagues demonstrated reduced Ca influx 



	   43	  
	  

into diabetic mitochondria.  However, the reduced mitochondrial Ca uptake observed in 

diabetic hearts was coupled with a decrease in mitochondrial membrane potential 

(ΔΨm).  Because ΔΨm is the primary driving force for mitochondrial Ca influx, a decrease 

in ΔΨm will decrease Ca influx into mitochondria.  Therefore, it is difficult to determine 

whether the difference in mitochondrial Ca influx observed in this study was solely due 

to decreased ΔΨm or if other factors were involved, such as altered expression of MCU 

or mNCX.  Moreover, the ΔΨm measurements were determined using the lipophilic 

cation TPMP+ in myocytes, which may have been influenced by reduced K+ repolarizing 

currents observed in diabetes (133).  Flarsheim and coworkers also demonstrated a 

reduction in mitochondrial Ca influx in diabetic rat hearts (80).  However, they did not 

measure ΔΨm in this study.  In addition, these observations were made using the Ca 

indicator, arsenazo III, which as been shown to enhance the production of ROS (155), 

and it has been observed that ROS can modulate the activity of other intracellular Ca 

handling proteins (65, 218).  Based on our findings and in light of these data, ROS 

induced by arsenazo III may have confounded the results of that study.   

In our mitochondrial Ca transient experiments, we directly observed Ca 

movements utilizing the fluorescent probe Ca-Green 5N, and to our knowledge, no 

other laboratories have shown that MCU activity can be altered by redox state in 

diabetic hearts.  Here, we substantiate the previous findings that mitochondrial Ca influx 

is slower in diabetic heart mitochondria, and this impairment is do to an oxidative shift in 

redox state.  However, like others (221), we did not observe differences in ΔΨm and can 

therefore rule out its electrical driving force as a causative factor for altered 

mitochondrial calcium transients.  It should be mentioned that we cannot rule out the 



	   44	  
	  

possibility of MCU differential expression between diabetic and non-diabetic heart 

mitochondria.  One potential explanation for the slower MCU activity in diabetic heart 

mitochondria might be due to decreased expression of MCU.  Until recently, the 

molecular identity of the MCU has remained elusive (18, 177).  In light of these new 

investigations, measurement of MCU expression in diabetic heart mitochondria is 

possible.  Determination of MCU expression in diabetic heart mitochondria will provide 

insight into the mechanisms responsible for decreased mitochondrial Ca influx.   

In addition to reduced MCU activity, we observed altered mNCX activity in 

mitochondria from diabetic hearts.  We found that mNCX activity is increased in STZ-

induced diabetic rat heart mitochondria, while Flarsheim and colleagues found no 

difference in activity for the same duration of diabetes (80).  One reason for these 

differences may be due to the fact that the ROS generation caused by arsenazo III used 

in their study may have abolished possible differences in mNCX activity. Another 

potential reason for these differences may be the fact we used 15 mM NaCl (as 

opposed to 10 mM NaCl by Flarsheim et al.) to induce Ca efflux via mNCX, and 15 mM 

NaCl induces greater Ca efflux from mitochondria than 10 mM (55, 56).  We chose this 

concentration because 15 mM NaCl has been shown to induce near maximal Ca efflux 

via mNCX (55) and may therefore allow us to see maximal differences.  Nevertheless, 

under our experimental conditions, we observed that isolated mitochondria from diabetic 

rat hearts display decreased MCU activity and increased mNCX activity.  Liu and 

O’Rourke observed that inhibition of mNCX with CGP-37157 can reverse decrements in 

NADH production in heart failure (138).  Taken together, these findings suggest that the 

increased mNCX activity observed in diabetic mitochondria in our study may lead to 
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bioenergetic compromise and explain a portion of the cardiac dysfunction observed in 

diabetes.    

From a mechanistic perspective, no investigators have explored the link between 

the oxidative shift in redox state characteristic of the diabetic heart and impaired 

mitochondrial Ca handling.  Here, we demonstrate that the impaired mitochondrial Ca 

influx through MCU can be rescued with DTT treatment, suggesting that an oxidative 

shift in the redox state of diabetic heart mitochondria is responsible for the impaired 

MCU activity.   These findings are significant because mitochondrial Ca influx is 

imperative for cardiac function, and improving mitochondrial influx via MCU may 

decrease the cardiac dysfunction observed in diabetic hearts. 

Our findings suggest that under physiological [Ca], Ca is low in diabetic heart 

mitochondria.  Extrapolating these in vitro findings to in vivo conditions, diabetic 

mitochondria would likely have less mitochondrial Ca.  Because increasing 

mitochondrial Ca levels leads to an increase in ATP synthesis, while decreasing 

mitochondrial Ca decreases ATP synthesis (115), it is plausible that the decreased MCU 

activity and increased mNCX activity observed in our study explain, at least in part, the 

cardiac dysfunction and inefficiency observed in diabetic hearts.    

Conclusions  

 In summary, these experiments provide evidence that mitochondrial Ca influx is 

slower in diabetic hearts while sodium-induced efflux of Ca is increased.  Further, MCU 

activity is redox-dependent and impaired mitochondrial Ca influx can be normalized with 

a reductive shift in redox state.  



	  

	  

Chapter 4 

High Doses of Ketamine/xylazine Anesthesia Reduce Cardiac Ischemia- 

reperfusion Injury in Guinea Pigs 

Abstract 

Choosing an appropriate anesthetic protocol that will have minimal effect on the 

experimental design can be difficult.  Guinea pigs have highly variable responses to a 

variety of injectable anesthetics, including ketamine/xylazine (KX).  Because of this 

variability, supplemental doses are often required to obtain an adequate plane of 

anesthesia.  Our group is interested in studying the isolated guinea pig heart, and we 

must anesthetize guinea pigs prior to harvesting the heart.  In this study, we sought to 

determine if larger doses of KX protected isolated guinea pig hearts against myocardial 

ischemia/reperfusion injury.  Male Hartley guinea pigs, Crl:HA, (275-300g; n=14) were 

anesthetized with one of two doses of KX (Lower: K-85mg/kg, X-15 mg/kg or Higher: K-

200mg/kg, X-60mg/kg).  Following thoracotomy, hearts were subjected to 20 minutes of 

ischemia followed by 2 hours of reperfusion. The higher dose of KX significantly 

reduced myocardial infarct size when compared to the lower dose (36 ± 3 vs. 51 ± 6 %, 

respectively; P<0.05).  Further, the higher dose of KX improved hemodynamic function 

as measured by increases in both left ventricular developed pressure (49 + 4 vs. 30 + 8 

mmHg, respectively, P<0.05) and maximal rate of left ventricular relaxation (-876 + 70 

vs. -576 + 120 mmHg/sec, respectively, P<0.05), however, the higher dose of KX did 

not have an impact on the maximal rate of left ventricular contraction or coronary flow.  

In addition, the incidence of arrhythmias was unchanged by the higher dose of KX.  



	   47	  
	  

These results provide evidence that supplementation of KX to ensure an adequate 

anesthetic plane may introduce unwanted variability in ischemia/reperfusion studies.   

Introduction 

In many studies using animals, measurements collected on proteins, cells, or 

organs, must be done following proper anesthesia, but anesthetizing animals always 

comes with the caveat that the anesthesia itself may be inevitably altering the behavior 

of the system in question.  Choosing a suitable anesthesia protocol that will have 

minimal influence on the outcome measurements in a study while still providing an 

adequate plane of anesthesia, is an area of ongoing interest (209). 

Among laboratory animal models used in biomedical research, guinea pigs are 

known to have highly variable responses to a variety of anesthetic agents, particularly 

those injected both intraperitoneally and intramuscularly (13, 39, 58, 81, 88, 122, 184, 

208), however, the mechanism for this variation is not known.  Due to the variability in 

responsiveness from injections, and lack of a tail for intravenous delivery, many 

researchers prefer halogenated inhalation anesthetics (such as isoflurane, halothane, 

desflurane, enflurane or sevoflurane) for adequate anesthesia in guinea pigs.  While the 

use of volatile gas anesthetics is appropriate in many research disciplines, for 

investigators studying ischemia/reperfusion injury, all of these agents are 

contraindicated due to confounding effects of the anesthetics themselves.   For 

example, previous studies have shown that administration of volatile anesthetics 

confers protection against ischemia/reperfusion injury across species in tissues 

including heart (53, 61, 141, 183, 206), brain (119, 211, 225), kidney (116), lung (137) 

and liver (20).  Accordingly, many scientists interested in ischemia/reperfusion injury 



	   48	  
	  

employ various injectable drug classes as anesthetics.  One of the most common 

injectable anesthetics used for surgical procedures is a ketamine/xylazine (KX) 

combination, and the recommended KX dosage for guinea pigs varies considerably (30 

to 120 mg/kg for ketamine and 0.2 to 13 mg/kg for xylazine (77)).  This wide range likely 

reflects the difficulty in adequately anesthetizing guinea pigs for surgical procedures 

with KX (39), often necessitating supplemental injections (186).   

Our group is interested in cardiac ischemia/reperfusion injury, and when 

compared to other rodents such as the rat or mouse, the guinea pig is preferred 

because the electrophysiological profile of the guinea pig heart more closely resembles 

larger animals (35, 201), yet guinea pigs are easier to manage than larger mammals. 

Because the effect of KX on cardiac function and infarction is negligible compared to 

other means of anesthesia (53), KX is often utilized in cardiac experiments.  Consistent 

with other investigators (13, 58, 81, 88, 122, 184, 208), we have observed that the 

effectiveness of KX is highly variable among guinea pigs, and that supplemental 

injections of KX are often required in order to achieve an adequate surgical plane of 

anesthesia.  In previous studies, we anecdotally noticed that guinea pigs who required 

supplemental KX injections also appeared to have less cardiac damage after 

ischemia/reperfusion.  Given that we are focused on identifying novel treatments that 

protect the heart (34-39), variability introduced by the anesthetic regimen could 

significantly hinder the interpretation of our data.   

In this study we sought to determine if higher KX doses used to anesthetize our 

guinea pigs preconditioned isolated hearts against subsequent ischemic injury.  We 

hypothesized that hearts from animals receiving higher doses of KX would be protected 



	   49	  
	  

against experimental ischemia/reperfusion injury.  Here, we show that higher doses of 

KX significantly reduce myocardial infarct size and preserve hemodynamic function 

when compared to lower doses of KX.  

Materials and Methods 

A total of 14 male Hartley guinea pigs, Cavia porcellus, (275-300 g, 

approximately 30 days old) were obtained from a commercial vendor (Charles River 

Laboratories, Raleigh, NC). Based on health surveillance programs performed by the 

vendor and research institution, the guinea pigs were free from: Sendai virus, PVM, 

Reo, LCMV, GAV, Encephalitozoon cuniculi, Bordetella bronchiseptica, Streptococcus 

pneumoniae, S. zooepidemicus,  Klebsiella sp., Salmonella sp., ectoparasites, and 

endoparasites.  In order to minimize the effects of external stimuli, the following 

environmental conditions were maintained.  Animals were socially/group housed (3 -4) 

per cage in a room housing only that species.  The cages contained aspen bedding 

chips (Northeastern Products Corporation, Warrensburg, NY).  All animals were allowed 

a minimum of 5 days to acclimate following shipping prior to their experimental use.  

Standard guinea pig chow (Lab Diet ProLab 5P18, St. Louis, MO) was fed ad libitum 

and all animals were offered automatic water via lixits.  Environmental enrichment in the 

form of PVC tubes and vegetables were given to the guinea pigs.  Routine husbandry 

care was performed by the same husbandry technician, when possible, to help 

familiarize the animals to routine husbandry procedures.   

All research adhered to the principles stated in the Guide for the Care and Use of 

Laboratory Animals (169).  The protocol was approved by the East Carolina University 

Institutional Animal Care and Use Committee and was performed in a facility accredited 
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by the Association for the Assessment and Accreditation of Laboratory Animal Care 

(AAALAC), International.   

On each experimental day, animals were randomly assigned to one of two 

ketamine/xylazine anesthesia protocols as described in Table 3.1.  The lower dose 

protocol used in this study was recommended by the veterinary staff and is the typical 

dosage of KX used for surgical anesthesia in guinea pigs among investigators at our 

institution.  Although the lower dose protocol of KX (85/15 mg/kg) is at the higher range 

of dosages suggested (77), our previous experience indicated that as many as 3 

supplemental doses of the lower dose protocol were sometimes needed to achieve a 

surgical plane of anesthesia suitable for guinea pig thoracotomy, particularly following 

failure to achieve anesthesia with the initial dose.  For this reason and in consultation 

with the veterinary staff, we chose the concentrations of KX in the higher dose group 

(Table 3.1).  Each anesthetic cocktail was administered to the guinea pigs via 

intraperitoneal injection.  Fifteen minutes following KX injection, animals were tested for 

righting, toe-pinch, and corneal reflexes.  Animals in the lower dose group were without 

righting and corneal reflexes, however, we observed a toe-pinch reflex in several 

animals that received the lower dose KX (which would normally warrant a supplemental 

injection).  Therefore, because we sought to standardize the anesthetic dose for each 

animal to ascertain the effects on cardiac function, cervical dislocation was performed in 

all anesthetized animals immediately prior to thoracotomy to account for varied reflex 

responsiveness.  Cervical dislocation was performed in guinea pigs in a manner similar 

to the procedure for cervical dislocation in other rodents as described in the AVMA 2007 

euthanasia guidelines (1).  Fifteen minutes following i.p. injection of KX, cervical 
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dislocation was performed on anesthetized guinea pigs by a highly trained individual 

under the direct supervision of the attending veterinarian and with prior approval by the 

East Carolina University Institutional Animal Care and Use Committee. Although 

cervical dislocation was performed in 275-300g guinea pigs in this study (greater than 

the <200g recommendation for other rodents not under anesthesia), the dislocation was 

performed on anesthetized animals (who had no righting or corneal reflexes) and there 

were no complications with any of the animals.  Immediately following cervical 

dislocation, hearts were excised via midline thoracotomy. The aorta was secured 

around a cannula of a modified Langendorff apparatus (isolated perfused heart model) 

and retrogradely perfused (at 75 mmHg constant perfusion pressure) with buffer 

consisting of (in mM): 118 NaCl, 24 NaHCO3, 1.2 KH2PO4, 4.75 KCl, 1.2 MgSO4, 2.0 

CaCl2, and 10 glucose (equilibrated with 95/5 % O2/CO2), as described previously (35).  

A latex balloon (Harvard Apparatus Balloon size #6) was inserted through the mitral 

valve and into the left ventricle.  Cardiac hemodynamic and electrical parameters 

including: left ventricular developed pressure, perfusion pressure, coronary flow rates, 

maximal rates of contraction and relaxation, and volume-conducted electrocardiogram, 

were measured constantly throughout the protocol. These parameters of cardiac 

function were collected and digitized using the Powerlab System (A.D. Instruments Inc, 

USA & Canada), and stored on a personal computer for subsequent analysis. 

Following a 15 minute equilibration period, hearts were subjected to no-flow 

ischemia (global ischemia) for a period of 20 minutes.  Following the ischemic period, 

flow was re-established for a period of 2 hours (reperfusion). 
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At the end of the reperfusion period, hearts were cut down from the cannula, and 

the right ventricle and atria were removed.  In order to assess the amount of tissue 

death, infarct size was assessed histologically as previously described (36).  Briefly, the 

left ventricle was sliced into four slices from apex to base.  Each slice was weighed and 

incubated in a 1% 2,3,5-triphenyltetrazolium chloride (TTC) solution for 10 minutes in a 

slow shaking water bath (37o C). Measurement of infarct size using TTC staining is 

considered the gold standard for quantification of cardiac ischemia/reperfusion injury in 

numerous species, including dogs, rabbits, and rodents (78, 114, 228). Following the 

brief incubation, both sides of each slice were photographed with a digital camera 

associated with a dissecting microscope.  Infarct areas were quantified using computer 

software (ImageJ software, NIH, USA).  Total area at risk and infarct area were 

measured for each side of each slice and corrected for the wet weight of each slice.  All 

slices were averaged, and final infarct size was expressed as a percentage of the left 

ventricle. 

 Arrhythmias were characterized as previously described (34) using the guidelines 

established by the Lambeth Conventions and scored using a system similar to that 

described by Curtis and Walker (57). Arrhythmias were scored during the reperfusion 

period as follows: 0 = 0 – 49 ventricular premature beats; 1 = 50 – 499 ventricular 

premature beats; 2 = > 499 ventricular premature beats and/or 1 episode of 

spontaneously reverting ventricular tachycardia (VT) or ventricular fibrillation (VF) less 

than 60 sec in total duration; 3 = > 1 episode of VT or VF that is < 60 sec total duration; 

4 = reverting VT or VF or both that is < 120 s in total duration; 5 = VT or VT or both that 

is > 120 sec in combined duration; 6 = non-reverting (fatal) VT or VF that began 
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> 15 min after reperfusion; 7 = fatal VT/VF that began between 5 min and 15 min after 

reperfusion; 8 = fatal VT/VF that began less than 5 min after reperfusion.  In addition to 

arrhythmia scoring, total time in VT/VF was determined throughout reperfusion.   

 All data are presented as mean ± SEM.  A Student’s t-test was used to determine 

differences between groups, and statistical significance was established using an alpha 

level of 0.05. 

Results 

 Infarct size.  Representative infarct pictures and infarct size data are presented in 

Figure 4.1.  Following 20 minutes of ischemia and 2 hours of reperfusion, infarct size 

was significantly lower in hearts from animals receiving higher dose KX (n=7) when 

compared to the lower dose KX (n=7) treated animals (36 ± 3 vs. 51 ± 6 %, respectively; 

P<0.05).  This reduction in infarct size suggests that KX dose-dependently influences 

the development of cell death. 

   Hemodynamics.  There were no significant differences in hemodynamic 

parameters before the 20 minute ischemic period (Table 4.1).  During this baseline 

period, left ventricular developed pressure, maximal rates of contraction (+dP/dt) and 

relaxation (-dP/dt), and coronary flow rates were similar between the higher dose and 

lower dose KX groups.  Because normoxic hemodynamic function begins to decline in 

hearts after approximately 1.5 hours in our model (36), we examined hemodynamic 

differences between groups one hour into reperfusion.  One hour into the reperfusion 

period, there was a significant improvement in left ventricular developed pressure and 

maximal rate of relaxation in animals anesthetized with higher dose KX. There were no 
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significant differences between higher or lower dose KX groups in maximal rate of 

contraction or coronary flow during the reperfusion period (Table 1; P>0.05).  

 Electrocardiographic changes.  There were no observable differences in the 

incidence of reperfusion arrhythmias between higher dose and lower dose KX groups.  

Neither arrhythmia scores nor total time in ventricular tachycardia/fibrillation were 

influenced by the anesthetic regimen (data not shown).    

Discussion 

 This study was conducted to determine if higher doses of ketamine/xylazine (KX) 

anesthesia influenced cardiac ischemia/reperfusion injury. The variable tolerance of 

guinea pigs for KX anesthesia often leads to supplemental injections before surgical 

procedures can be performed, yet this supplementation of anesthetic may alter the 

physiology of the heart.  In this study, we show that higher dose KX reduces myocardial 

infarct size and preserves hemodynamic function in guinea pig hearts exposed to 

ischemia/reperfusion.  To the best of our knowledge, this is the first demonstration that 

higher doses of KX used to anesthetize guinea pigs protect the heart against ischemic 

injury. 

Anesthetic-induced Reduction in Infarct Size 

 The appropriate anesthesia protocol for animal studies is something that all 

laboratory animal veterinarians and investigators must take into consideration.  For 

scientists interested in studying ischemia/reperfusion injury, this task becomes 

considerably more complicated.  Inhalation agents are easy to administer and effective 

at providing anesthesia, yet are well known to confer protection against subsequent 

ischemia/reperfusion injury (also known as “preconditioning” the tissue against 
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infarction), reviewed in (61).  Anesthetic-induced preconditioning (with inhalants) is 

observed in a variety of tissues (20, 61, 116, 119, 183, 225) and in species ranging from 

laboratory mice (151), rats (119, 141), guinea pigs (187), rabbits (92), dogs (152, 227) 

and human patients undergoing surgery (20, 116).  

In cardiac ischemia/reperfusion studies, anesthesia, rather than euthanasia, is 

utilized to obtain a beating heart in order to avoid ischemic preconditioning, a 

phenomenon that has been extensively shown influence infarct size (19, 26, 239). In 

cardiac studies directly comparing the infarct-limiting effect of anesthetic regimens, 

inhalation anesthetics are the most robust in reducing infarct size when compared to 

injectable anesthetics (53, 224).  Due to the cardioprotection afforded by halogenated 

anesthetics, injectable anesthetics such as KX, pentobarbital or propofol are most 

frequently used in ischemia/reperfusion studies.  Among these injectable regimens, KX 

anesthesia exerts a smaller influence on infarct size than propofol or pentobarbital (53, 

92, 224).  Recent recommendations against the use of pentobarbital due to a narrow 

safety window and questions of efficacy (40, 203, 233) provide further support for KX 

anesthesia.  Lending additional support for the use of KX anesthesia, propofol is given 

intravenously and therefore can be difficult to administer in guinea pigs due to the 

difficulty associated with gaining IV access.  

 While KX appears to be an appropriate anesthetic regimen for 

ischemia/reperfusion studies, the difficulty attaining an adequate plane of anesthesia, 

especially in the guinea pig, frequently necessitates anesthetic supplementation (often 

multiple times) (39).  Although supplementing the anesthetic is very common (and often 

necessary to achieve an adequate surgical plane), the authors are not aware of any 
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reports where increasing the anesthetic dose was shown to alter ischemia/reperfusion 

injury.  In this study, we compared a higher dose to a lower dose of KX in the guinea pig 

and found that the higher KX dose reduced infarct size by approximately 30%, 

indicating that supplemental anesthetic KX doses may be introducing variability into 

experimental data by disproportionally preconditioning the tissue.   

Effect of KX Anesthesia on Cardiac Electrical/mechanical Function   

 In addition to examining the effect of varying KX doses on infarct size, we also 

examined the influence of higher dose KX on cardiac function. The absence of baseline 

differences in left ventricular function between higher and lower KX doses (Table 1) is 

consistent with previous reports showing that KX anesthesia had minimal effects on 

baseline pressure development (53).  This lack of influence on baseline cardiac function 

also provides support for KX use in cardiac functional studies given that volatile 

anesthetics are all potent negative inotropes (51-53, 71, 72, 118, 143, 149, 170, 171, 

194, 227, 229). 

Although different types of anesthetic drugs have been shown to influence 

recovery and incidence of arrhythmia (14, 156, 164, 235), we are not aware of studies 

that have examined the influence on post-ischemic functional recovery with a specific 

injectable anesthetic regimen.  Following ischemia, higher dose KX anesthesia 

preserved the pumping ability of the left ventricle (Table 3.1).  To the best of our 

knowledge, the finding that higher doses of KX influence the mechanical recovery of the 

heart during reperfusion is novel, and underscores the need for standardization of 

anesthetic agents (discussed below). The dose of KX used in anesthesia did not 

influence the propensity for ventricular arrhythmia in our study.  These findings are also 



	   57	  
	  

notable, as investigators who are primarily interested in cardiac electrophysiology may 

not need to be as concerned about the influence of KX anesthesia on propensity for 

arrhythmia.   

Effect of KX Anesthesia on Coronary Flow 

 In order to determine if differences in coronary perfusion could account for the 

cardioprotection we observed with high KX, we measured coronary flow rates from 

hearts in the study. Given that the xylazine is an agonist to α-2 adrenergic receptors, we 

postulated that the higher KX regimen may be constricting the coronary arteries and 

leading to hypoxic/ischemic preconditioning of the myocardium.  Higher doses of KX did 

not alter the coronary flow rate during the baseline period or reperfusion, indicating that 

the cardioprotection with higher KX doses is independent of altered cardiac perfusion.   

Standardization of the Anesthetic Regimen 

In terminal surgery studies where supplemental KX could confound the outcome 

variables, we propose an alternative means for tissue harvest.  The combination of KX 

followed by a physical method of euthanasia by appropriately trained individuals in 

anesthetized animals (K: 85 mg/kg and X: 15 mg/kg, as described in the Materials and 

Methods) successfully standardizes the dose of anesthetic while ensuring animals are 

rendered insensate prior to thoracotomy and heart removal.  It is important to note that 

this alternative is only applicable to terminal procedures where euthanasia is acceptable 

with regard to the experimental conditions.  In survival or in vivo studies where 

procedures are performed on anesthetized animals, the necessary supplementation to 

maintain a surgical plane of anesthesia may be unavoidable.  In this case, the need to 

document the amount of anesthetic administered to each animal is of primary 
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importance, and potential variability introduced by anesthetic supplementation must be 

acknowledged as a limitation to the experimental design.   

Although our study examined the effect of a higher KX dose on cardiac 

ischemia/reperfusion injury, we should note that higher doses of KX anesthesia may 

also alter infarct size in other tissues exposed to ischemia/reperfusion.  Similar to 

cardiac tissue, brain, liver, and kidney tissues may also be affected by higher doses of 

KX.  We suspect that like cardiac tissue, infarct size following ischemia may also be 

reduced in these tissues when supplemental KX doses are used during anesthesia, but 

future studies must be conducted to support this notion. 

Potential Mechanisms for Cardioprotection by Ketamine/Xylazine 

 In our study, we increased the dosage of both ketamine and xylazine and 

determined that in combination, KX acts as a cardioprotectant following 

ischemia/reperfusion injury.  While we cannot decipher the individual effects of higher 

ketamine or xylazine doses on myocardial ischemia/reperfusion injury, we will briefly 

speculate on mechanisms of action for each compound. Ketamine is a dissociative 

anesthetic that exerts its inhibitory actions by deactivating the N-methyl d-aspartate 

receptor (NMDAR), a non-selective cation channel. We are not aware of any studies 

directly examining the cardioprotective effects of ketamine, but ethanol, another 

NMDAR antagonist, has been shown to have cardioprotective properties (121, 175, 

212).  It is possible that increased glutamate release after NMDAR inhibition, which 

preconditions other tissues against cell death (196), was responsible for the reduction in 

ischemia/reperfusion injury observed in the higher dose KX group. Ketamine 

equilibrates into tissues rapidly, with a serum half-life of 13 minutes in rodents following 
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ip injection (150).  We cannot rule out the possibility that higher ketamine groups had 

greater heart uptake of ketamine, and that the protection observed may have involved 

higher tissue levels of ketamine.  However, a previous study administered ketamine 

immediately before ischemia and found that it had no effect on infarct size (158), 

arguing against a correlation between tissue ketamine levels and protection from 

infarction.    

Xylazine is both an analgesic and sedative, and has been shown to be an α2-

adrenergic agonist (44). Stimulation of α2-adrenergic receptors in heart leads to 

vasoconstriction, which might result in ischemic preconditioning of the tissue.  However, 

we saw no differences in baseline coronary flow rates between higher and lower KX 

doses, which suggests that any vasoconstricting properties of xylazine must be minimal 

and/or short-lived. Based on previous reports where increasing the xylazine content 

dose-dependently influenced cardiac function (236), and in other studies where treating 

with ketamine alone immediately prior to ischemia did not alter infarct size (158), it is 

tempting to speculate that increased doses of xylazine may be responsible for the 

cardioprotection observed in this study.   Future studies are needed to determine if 

increases in ketamine or xylazine alone contribute to cardioprotection, or if an increased 

combination of the two is necessary for cardioprotection (as observed herein). 

Study Limitations 

One limitation to our study is that there is no true control group, as all animals 

received KX prior to harvesting the heart.  While we cannot determine the extent of 

protection induced by the low-dose KX group compared to a “no-drug” group, we chose 

not to perform cervical dislocation on un-anesthetized animals to be in accordance with 
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AVMA guidelines on rodents greater than 200g (1). This limitation is also found in the 

literature, where studies comparing different anesthetics also have no true control group 

(53, 92, 158).  Among the studies contrasting different anesthetics, the magnitude of 

infarct-size reduction following KX anesthesia is modest, especially when comparing to 

volatile anesthetics that exert a much more profound influence on infarct size (53, 92).   

Furthermore, our study was specifically designed to test two distinct 

concentrations of KX.  Anesthetic supplementation with small incremental doses may 

not sufficiently precondition the heart as much as the wider range used herein, but it is 

clear that large differences in KX doses can substantially influence the susceptibility of 

the heart to injury.  Awareness of the potentially confounding effects of anesthetic 

supplementation, especially in animals where an adequate plane of anesthesia is 

difficult to achieve, should help investigators with the most accurate interpretation of 

their data.  It is not our purpose to suggest the use of the high dose protocol for 

anesthetizing guinea pigs, however, we want to emphasize the fact that the use of 

additional doses of KX can confound the interpretation of data obtained in cardiac 

ischemia/reperfusion studies.   

Conclusions 

In this study we found that higher doses of KX used to anesthetize guinea pigs 

led to a reduction in myocardial infarct size and led to improved hemodynamic function 

after experimental ischemia/reperfusion.  In studies examining ischemic injury, 

significant supplementation of KX to ensure adequate anesthesia in guinea pigs may be 

introducing unwanted variability. 



	  

	  

Chapter 5 

Integrated Discussion 

 

 This work has provided novel insight into the mechanisms underlying cardiac 

dysfunction and the enhanced susceptibility to death following myocardial infarction in 

diabetic patients.  In addition, this work has demonstrated that the anesthetic cocktail, 

ketamine-xylazine, can precondition the heart and provide protection against ischemia-

reperfusion (IR) injury.  This report provides support for the hypothesis that the 

augmented ischemic injury observed in diabetic patients is due to an enhanced 

propensity for mitochondrial permeability transition pore (PTP) opening.  Support for this 

hypothesis lies in the fact that direct and indirect inhibition of PTP opening at the onset 

of reperfusion following 20 minutes of ischemia in isolated diabetic rat hearts resulted in 

a significant decrease in infarct size.  Infarct size was reduced to the same extent in 

diabetic hearts when compared to non-diabetic hearts, suggesting that enhanced PTP 

opening is the primary factor governing augmented injury in the diabetic heart.  Perhaps 

of most clinical relevance, we introduced the use of three novel mitochondria-targeted 

therapies to achieve reduction in infarct size.  Because mitochondria appear to be one 

of the primary entities governing IR injury through induction of PTP, the ability of 

NIM811, Bendavia and minocycline to target mitochondria and inhibit PTP opening is 

ideal.   

 Coupled with an enhanced susceptibility to ischemic injury, diabetic patients 

exhibit several signs of heart failure, including: systolic and diastolic dysfunction, left 

ventricular hypertrophy and interstitial fibrosis, independent of coronary artery disease 
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or hypertension.  An emerging body of evidence has indicated that aberrant calcium 

(Ca) handling may be responsible for the manifestations of heart failure present in many 

diabetic individuals.  Calcium handling is required for the mechanical work performed by 

the heart as well as the mitochondrial ATP producing processes that support 

contraction.  In order to adequately support energy production with demand, 

mitochondrial Ca levels must be coordinated.  Ca enters the mitochondria down its 

electrochemical gradient through the mitochondrial Ca uniporter (MCU) and exits the 

mitochondria in a sodium-dependent manner via the Na-Ca exchanger (mNCX).  This 

work has illustrated that mitochondrial Ca handling is impaired in diabetic hearts.  

Specifically, mitochondrial Ca influx was decreased, while sodium-induced Ca efflux 

was increased.  These findings suggest that mitochondrial Ca may be low in diabetic 

hearts under physiological [Ca].  These findings compliment those of a recent study 

where inhibition of mNCX activity rescued heart failure (139).  Because a decrease in 

mitochondrial Ca can lead to bioenergetic compromise, the results of this work indicate 

that the cardiac dysfunction observed in diabetic patients may be due to impaired 

mitochondrial Ca handling, similar to that seen heart failure.     

 Taken together, the findings that diabetic heart mitochondria are able to retain 

less Ca via the activities of MCU and mNCX in the presence of enhanced sensitivity to 

Ca-induced PTP opening should not be misinterpreted.  To reference Dr. Andrew 

Halestrap, like Dr. Jekyll and Mr. Hyde, mitochondria possess two distinct personas: 

under physiological conditions, mitochondria utilize Ca to maintain ATP production in 

order to meet the cellular demand.  However, when overloaded with Ca, mitochondria 

summon their dark side and may induce necrotic and/or apoptotic cell death.  The 
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distinct role of mitochondria during physiological and pathological (i.e. ischemia-

reperfusion) conditions underscores the importance for careful regulation of 

mitochondrial Ca.  From a Teleological perspective, it is interesting to speculate that in 

the diabetic heart, mitochondria may be down regulating mitochondrial Ca levels in an 

attempt to decrease the likelihood of PTP opening and avoid cellular injury, since 

mitochondrial Ca overload is a significant contributor to PTP induction.  

 This work demonstrated that blocking mitochondrial Ca at the onset of 

reperfusion provided significant protection in both non-diabetic and diabetic isolated rat 

hearts subjected to a 20-minute ischemic insult.  While the acute use of mitochondrial 

Ca blockers may be a beneficial treatment during times of Ca overload in diabetic 

hearts, drugs such as minocycline may be detrimental to normal cardiac function.  The 

reduction in mitochondrial Ca observed in diabetic hearts may be further exacerbated 

with the use of minocycline.  Therefore, chronic use of minoclycline and/or other 

compounds that decrease mitochondrial calcium may need to be avoided in diabetic 

populations or other conditions characterized by bioenergetic compromise such as 

patients with heart failure. 

 Chapter 4 of this work was ancillary to the main body, however, it is significant in 

that ketamine-xylazine (KX) can precondition the heart and protect against IR injury.  

The implications of this study are that continuous supplementation of KX anesthesia 

often required in guinea pigs may introduce confounding results in IR injury studies.  

While we did not provide mechanistic insight into the cardioprotective properties of KX 

in our experiments, a recent study by Chang and colleagues revealed that ketamine can 

depress cytosolic Ca levels in hepatocytes (47) and therefore may be able to decrease 
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intracellular Ca overload.  However, the impact of ketamine on mitochondrial Ca was 

not revealed.  Based on the previously described relationship of cytosolic and 

mitochondrial Ca, these observations provide support for the hypothesis that that 

ketamine may decrease the likelihood of PTP opening by reducing cellular and 

mitochondrial overload of Ca.  

Future directions 

 In this work, we demonstrated that diabetic hearts are more susceptible to IR 

injury, and this increased propensity for IR injury was due to enhanced PTP opening.  

Further, PTP opening in isolated mitochondria from diabetic hearts was shown to be 

redox-modulated.  Because CyP-D has been shown to be redox-modulated, it would be 

interesting to determine if CyP-D is more oxidized in diabetic heart mitochondria when 

compared to non-diabetic and if this shift in redox state is associated with the enhanced 

propensity for PTP opening in diabetic hearts.  This determination could be made 

utilizing the redox western blotting technique and could provide insight into a potential 

therapeutic target in diabetic patients.  It would also be worthwhile to determine if MCU 

and mNCX are oxidized in diabetic hearts.  The present data would suggest that MCU 

in diabetic hearts is characterized by an oxidative shift in redox state.  Further, 

manipulation of mitochondrial Ca in isolated diabetic hearts exposed to varying 

workloads may provide insight into how mitochondrial Ca handling alters cardiac 

function in diabetes.  For instance, increasing mitochondrial Ca influx with spermine or 

decreasing mitochondrial efflux utilizing CGP-37157 may improve cardiac function in 

diabetic hearts.  While this work has provided many insights into the mechanisms 

underlying enhanced injury and cardiac dysfunction in diabetes, future investigation is 
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needed in order to gain additional insight and promote the development of therapeutic 

strategies seeking to mitigate these pathologies.      
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Figure 1.1 Time course of intracellular changes in rat myocardium during ischemia; 

ΔΨm, mitochondrial membrane potential; ΔΨp, sarcolemmal membrane potential; 

SarcKATP, sarcolemmal ATP-sensitive potassium channels; PTP, mitochondrial 

permeability transition pore; adapted from Frasier et al., 2011. 
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Figure 1.2 Schematic of inner mitochondrial membrane depicting putative components 

of the permeability transition pore during normoxia; IMM, inner mitochondrial 

membrane; ANT, adenine nucleotide transferase; PiC, mitochondrial phosphate carrier; 

CyP-D, cyclophilin D; figure from Brown and O’Rourke, 2011.    
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Figure 1.3 Confirmation in isolated mitochondria that minocycline is just as effective as 

Ru360 at blocking mitochondrial calcium uptake via MCU; Ca, calcium; MCU, 

mitochondrial calcium uniporter. 
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Figure 1.4 Effect of Bendavia on infarct size in guinea pig hearts subjected to 20 

minutes of ischemia followed by 120 minutes of reperfusion.  Data are presented as 

mean + SEM.  *, P<0.05 versus non-drug treated control. 
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Figure 1.5 Schematic depiction of cytosolic and mitochondrial calcium transients in 

myocardium.  SR, sarcoplasmic reticulum; RyR, ryanodine receptor; SERCA, ATP-

dependent sarco/endoplasmic reticulum Ca-ATPase; MCU, mitochondrial calcium 

uniporter; mNCX, mitochondrial sodium-calcium exchanger. 
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Figure 1.6 Schematic depiction of the mitochondrial calcium circuit. IMM, inner 

mitochondrial membrane; OMM, outer mitochondrial membrane; MCU, mitochondrial 

calcium uniporter; mNCX, mitochondrial sodium-calcium exchanger; PTP, permeability 

transition pore; MTP-131, Bendavia; figure courtesy of Dr. David A. Brown. 
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Figure 2.1 Representative infarct pictures and quantification of infarct sizes.  TTC 

stained viable tissue bright red, while infarcted tissue appears pale in color. Upper left, 

control; upper right, STZ; lower left STZ+NIM811; lower middle, STZ+Bendavia; lower 

right, STZ+minocycline; Control, non-diabetic rats; STZ, diabetic rats; data are 

presented as mean + SEM; *, P<0.05 versus non-drug treated control; #, P<0.05 versus 

non-drug treated STZ; N=5-10 in each group.        
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Figure 2.2 Representative trace of transition from normal sinus rhythm to ventricular 

fibrillation, as well as quantification of arrhythmia scores from isolated rat hearts 

following 20 minutes of ischemia and 120 minutes of reperfusion.  VF, ventricular 

fibrillation; Control, non-diabetic rats; STZ, diabetic rats; data are presented as mean + 

SEM.  There were no significant differences between groups, N=5-10 in each group.   
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Figure 2.3 Representative trace and quantification (next page) of mitochondrial 

membrane potential and respiratory control ratio from isolated heart mitochondria; there 

were no differences in State 2 or State 3 membrane potentials or respiratory control 

ratios between STZ and control rats; P>0.05; Control, non-diabetic; STZ, diabetic. 
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Figure 2.3 continued 
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Figure 2.4 Representative fluorescence trace of Ca-induced PTP opening in STZ versus 

STZ+DTT isolated heart mitochondria as well as quantification (next page) of calcium 

retention capacity in isolated mitochondria. Control, non-diabetic; STZ, diabetic; DTT, 

dithiothreitol; PTP, permeability transition pore; *, P<0.05 versus non-drug treated 

control; #, P<0.05 versus non-drug treated STZ; N=7-10 in each group 
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Figure 2.4 continued 
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Figure 3.1 Representative trace and quantification of mitochondrial calcium uptake; 

Control, non-diabetic; STZ, diabetic; DTT, dithiothreitol; *, P<0.05 versus non-drug 

treated control, N=7-10 in each group. 
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Figure 3.2 Representative trace and quantification of mitochondrial sodium-induced 

calcium efflux; Control, non-diabetic; STZ, diabetic; *, P<0.05 versus control, N=9-12 in 

each group. 
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Figure 4.1 Representative infarct pictures and quantification of infarct sizes.  TTC 

stained viable tissue bright red, while infarcted tissue appears pale in color. Lower dose 

KX (left); Higher dose KX (right); IA, infarcted area; AAR, area at risk; KX, ketamine-

xylazine; data are presented as mean + SEM; *, P<0.05 versus lower dose; N=7 in each 

group. 
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Table 2.1 Animal characteristics.  BW, body weight; HW, heart weight; FG, fasting 

glucose; C, control; STZ, diabetic; *, P<0.05 versus control 

 

 

 C STZ 

BW (g) 348 + 6.8 307 + 12.4* 

HW/BW (mg/g) 5.29 + 0.12 4.44 + 0.17* 

FG (mg/dL) 114 + 1.4 495 + 21.9* 
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Table 2.2 Baseline and end of protocol hemodynamics. C, non-diabetic; STZ, diabetic; 

LVDP, left ventricular developed pressure; +dP/dt, maximal rate of left ventricular 

contraction; -dP/dt, maximal rate of left ventricular relaxation; CF, coronary flow.  Data 

are presented as mean + SEM; there were no significant differences between groups; 

N=5-10 in each group.        

 

Baseline Hemodynamics 

 C STZ 

LVDP  
(mmHg) 

123+11.7 119+9.3 

+dP/dt  
(mmHg/sec) 

4312+444 3580+367 

-dP/dt  

(mmHg/sec) 
-2791+223 -2266+254 

CF  

(mL/min/g) 
8.3+0.7 8.8+1.5 

 

 

 

Hemodynamics at the end of reperfusion 

 C  C+N C+B C+M STZ STZ+N STZ+B STZ+M 

LVDP  

(mmHg) 
30 + 7 22 + 4 34 + 3 36 + 6 26 + 3 25 + 3 24 + 4 32 + 9 

+dP/dt 
(mmHg/sec) 

768 + 96 734 + 101 913 + 216 1239 + 195 816 + 126 703 + 117 789 + 174 758 + 173 

-dP/dt 

(mmHg/sec) 
-535 + 63 -518 + 73 -704 + 63 -786 + 101 -489 + 63 -456 + 57 -475 + 75 -456 + 57 

CF  

(mL/min/g) 
3.8 + 0.4 2.5 + 0.3 3.7 + 0.2 4.1 + 0.2 4.3 + 0.7 3.7 + 0.2 4.0 + 0.6 4.3 + 0.8 
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Table 4.1 Doses of ketamine/xylazine used in the lower and higher dose groups and 

hemodynamic parameters of the guinea pig heart taken at baseline and one hour into 

reperfusion. K, ketamine; X, xylazine; LVDP, left ventricular developed pressure 

(mmHg); +dP/dt, maximal rate of left ventricular contraction (mmHg/sec); -dP/dt, 

maximal rate of left ventricular relaxation (mmHg/sec); coronary flow (mL/min/g wet 

weight). Data are shown as mean + SEM. *, P<0.05.  

 

  

Lower Dose 

K-85mg/kg X-15 mg/kg 

i.p. 

 

Higher Dose 

K-200mg/kg X-60mg/kg 

i.p. 

 

P-value 

Baseline 

     LVDP 

     +dP/dt  

     -dP/dt  

     Coronary Flow 

 

82 + 8 

1947 + 187 

-1512 + 146 

6.3 + 0.6 

 

96 + 10 

2138 + 97 

-1579 + 85 

7.0 + 0.6 

 

0.28 

0.41 

0.71 

0.43 

Reperfusion 

      LVDP 

     +dP/dt 

     -dP/dt 

     Coronary Flow 

 

30 + 8 

833 + 186 

-576 + 120 

4.5 + 0.9 

 

49 + 5 

1190 + 94 

-876 + 70 

4.3 + 0.6 

 

0.04* 

0.13 

0.04* 

0.86 
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