
RESEARCH Open Access

Theoretical aspects and modelling of cellular
decision making, cell killing and information-
processing in photodynamic therapy of cancer
Ioannis Gkigkitzis1,2

From IEEE International Conference on Bioinformatics and Biomedicine 2012
Philadelphia, PA, USA. 4-7 October 2012

Abstract

Background: The aim of this report is to provide a mathematical model of the mechanism for making binary fate
decisions about cell death or survival, during and after Photodynamic Therapy (PDT) treatment, and to supply the
logical design for this decision mechanism as an application of rate distortion theory to the biochemical
processing of information by the physical system of a cell.

Methods: Based on system biology models of the molecular interactions involved in the PDT processes previously
established, and regarding a cellular decision-making system as a noisy communication channel, we use rate distortion
theory to design a time dependent Blahut-Arimoto algorithm where the input is a stimulus vector composed of the time
dependent concentrations of three PDT related cell death signaling molecules and the output is a cell fate decision. The
molecular concentrations are determined by a group of rate equations. The basic steps are: initialize the probability of
the cell fate decision, compute the conditional probability distribution that minimizes the mutual information between
input and output, compute the cell probability of cell fate decision that minimizes the mutual information and repeat
the last two steps until the probabilities converge. Advance to the next discrete time point and repeat the process.

Results: Based on the model from communication theory described in this work, and assuming that the activation
of the death signal processing occurs when any of the molecular stimulants increases higher than a predefined
threshold (50% of the maximum concentrations), for 1800s of treatment, the cell undergoes necrosis within the
first 30 minutes with probability range 90.0%-99.99% and in the case of repair/survival, it goes through apoptosis
within 3-4 hours with probability range 90.00%-99.00%. Although, there is no experimental validation of the model
at this moment, it reproduces some patterns of survival ratios of predicted experimental data.

Conclusions: Analytical modeling based on cell death signaling molecules has been shown to be an independent
and useful tool for prediction of cell surviving response to PDT. The model can be adjusted to provide important
insights for cellular response to other treatments such as hyperthermia, and diseases such as neurodegeneration.

Background
Conventional cancer therapies include radiation and
chemotherapies, surgery, and a combination of any or all
of those therapies. The treatments themselves have impor-
tant side effects, even life-threatening. Chemotherapy is
known to impose difficulties because drugs often produce

harmful side effects and x-rays sometimes damages normal
tissue. Photodynamic therapy offers an alternative, less
invasive treatment for such illnesses such as several types
of cancers. It involves the use of three basic components
[1]: a photosensitizer, a light-absorbing molecule that is
activated by the second element, light of a corresponding
wavelength, and third, molecular oxygen is consumed dur-
ing the photochemical reaction to produce cytotoxic
agents, thus destroying neoplastic tissue. It is accepted that
cell photo-killing (induced in cultured cells) may involve all
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three main cell death morphologies described, i.e. apopto-
tic, necrotic and autophagy cell death [2]. Dynamic model-
ing of cell fate exists, for apoptosis/necrosis [3] and for
autophagy [4], in a single cell model. In a previous work
[5] we established a model of oxygen transport and cell
killing in Type II PDT. This model can be directly linked
to these cell fate models, to provide a coherent model of
the major biochemical events in PDT on the basis of major
components and the main features of the intracellular
interactions. Based on existing system biology models [3-5]
it is possible to develop a detailed a molecular interaction
diagram that summarizes the major biochemical features
of the photochemical processes, together with a corre-
sponding system of molecular interactions, rate equations,
reaction constants and initial conditions. In the modeling
and simulation sections we briefly summarize these major
facts of the cell biochemistry of Type II PDT, since the
focus of this contribution is the study of the cell decision
mechanism of a single cell model in response to PDT treat-
ment and the probability of cell survival.
Information can be defined in terms of its ability to

increase the probability of something being true [6] and
it is carried on a channel which is a physical mechanism
for communication. A channel is distinguished by having
a limit on its ability to carry information and by the fact
that it is susceptible to random interference, called noise
[6]. Whenever energy is transferred, information is trans-
ferred. In PDT, light energy is absorbed by the photosen-
sitizers and then transferred to oxygen and other
molecules, through a cascade of reactions in the environ-
ment of a cell [7]. The PDT treatment parameters act as
a “source” generating the input information that the
system of molecular network and interactions within a
cell must communicate to the “receiver” or the cell [7].
Information is encoded by the parameters of the light
and the photosensitizer doses as the source “words” or
“code” (death signals) and is transformed into a form,
through activated photosensitizers, that can be trans-
mitted through the “channel” of molecular interactions.
When decoded by molecular “thresholds”, the input
information can be converted to a channel output that
has the form of a cell’s state in terms of necrosis, apopto-
sis, autophagy or survival [7]. The performance-efficiency
of such a bio-communication system and its usefulness
for modeling the experimental data is quantified through
the assignment of numerical values to the variations and
errors that the system may produce. In particular, the
mechanism that governs the generation of the source
signal and the distortion measure that penalizes the
bio-coding errors and determines the fidelity of the
reproduction of the cell killing signal need is identified
through measurable quantities - functions. Ultimately, the
goal is to design and model an optimal treatment strategy
that, through the scheme of intracellular biochemical

reactions, may lead to reproduction of the PDT death
signal output after processing by the cell, with an average
distortion that does not exceed a specified upper level D,
for a single tumor cell model (or in general, a tumor cell
population).
The treatment pattern of the a priori setting para-

meters (light density, photosensitizer concentration,
etc.), is related to the data bio-compression of the death
signal through molecular interactions, and the classifica-
tion of the signal as to cell death or cell survival is done
with a possible statistical error that is assigned a numer-
ical penalty: the distortion function or distortion mea-
sure d[7]. The distortion function d does not in itself
wholly determine a cell decision. What is important is
the relationship between the distortion function and the
prior probability distributions of cell death signaling
molecules. It is possible to have two different distortion
functions which lead to the same decision when the
prior probability distributions associated with each,
compensate for the details of each distortion function.
Combining the three elements of the prior probability
(distributions of molecular concentrations), the cell data
(distortion tolerance of the cellular system), and the dis-
tortion function then allows cell fate decisions to be
based on minimizing the mutual information between
input and output. The minimization of the mutual
information as an application of rate distortion theory
to decision making mechanisms in biology has been
adapted for testing a framework for designing and ana-
lyzing binary decision-making strategies in cellular sys-
tems [8], for the information-theoretic characterization
of the optimal gradient sensing response of cells [9] and
for the rate distortion approach to protein symmetry
[10] among other applications. The mutual information
of two random variables in general, measures the infor-
mation that × (input) and Y (output) share: it measures
how much knowing one of these variables reduces the
entropy of the other. This reduction of the entropy will
be compensated by the cell either by interaction with
the environment, while it is in a vulnerable state and its
survival probability decreases, or by cell death.
There are two kinds of cell division: mitosis and meiosis.

Mitosis is essentially a duplication process: It produces two
genetically identical “daughter” cells from a single “parent”
cell. All cells must replicate their DNA prior to cell divi-
sion. This assures that each new cell produced receives all
of the genetic material necessary to survive and reproduce.
Therefore certain information that is formless and does
not change or die nor is it composed of matter, is “carried”
from one cell to the next and is “reproduced” and it is
always present in every cell structure.
John Von Neumann posed and solved the following

question: what kind of logical organization is sufficient
for an automaton to control itself in such a manner that
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it reproduces itself? [11]. A cellular automaton is speci-
fied by giving a finite list of states for each cell, a distin-
guished state called the blank state, and a rule which
gives the state of a cell at time t+1 as a function of its
own state and the states of its neighbors at time t. It
consists of a cellular space and a transition function
defined over this space. Finite automata constitute the
basis of Turing machines [11]. Von Neumann was
the first to provide an algorithmic model of a self-repro-
ducing automaton, the Universal Constructor, a self-
replicating machine in a cellular automata environment
and (in a brief summary) he proved that the construc-
tion of this sort of automaton would necessitate the
solution to four fundamental problems [11,12]:

a. to store instructions in a memory;
b. to duplicate these instructions;
g. to implement an automatic factory (“Universal
Constructor”), able to read the memory instructions,
and, based on them, to construct the components of
the system;
δ. to manage all these functions by means of a cen-
tral control unit.

A self-reproducing system must contain the program of
its own construction. This program is a sort of consistent
and complete abstract image of the system. In other
words, self-reproduction needs programming and proces-
sors (software -for information based replication- and
hardware). The solution to these problems mentioned
above may be found in living things as observed by mod-
ern biology. An efficient mechanism of information sto-
rage and an elegant mechanism of duplication of the DNA
molecule may be the one and only perfect solution to the
twin problems of information storage and duplication for
self-replicating automata [12]. But more importantly, Von
Neumann understood that any information-based replica-
tor must contain inside itself (among other indispensable
things) a symbolic representation of itself, an “image” of
itself. The relation between the replicator (hardware) and
the image (a structure of symbols, the software) is a func-
tional relation of dependence, since the symbolic represen-
tation consists of directives and instructions that must be
interpreted by the replicator machinery for constructing a
copy of itself. As reported by Luis Rocha in his 2012 Fall
lecture notes “Biologically-inspired computing”, Indiana
University, Von Neumann proposed this scheme before
the structure of the DNA molecule was uncovered by
Watson and Crick, though after the Avery-MacLeod-
McCarty experiment which identified DNA has the carrier
of genetic information.
With respect to Von Neumann’s Universal Constructor

we need to notice first that the four principles (a,b,g,δ)
mentioned above are irreducible in complexity and

secondly that the concept of the symbolic representation-
based self-reproduction implies a language (a symbol sys-
tem, a syntactic code to be used to map instructions into
construction commands for replication. In copying a
description, the syntactic aspects are replicated. This
indicates that the appropriate framework for the study of
such systems could be information theory as discussed
below. It is important to decipher the meaning of infor-
mation available to a cell as something that determines
its activity. Information has no mass, energy, or spatial
extension, it cannot be seen, touched, or smelled. Never-
theless it is a distinct, objective entity. The cell, as an
information system has the ability to discriminate and
select between cell fates (which is what we call cell deci-
sion making). In fact, the manifestation of information
can be found in the existence of alphabets (where as
alphabet we interpret the set of physical states that can
be realized in some system), the combination of codes
(where as a code we consider a collection of the letters of
alphabets that follow some pattern-words) and the vari-
ety of codes that determine the state of the system.

Methods
A brief summary of major molecular pathways and
biochemical events induced by PDT
We briefly mention here (the biochemistry of PDT has
been extensively studied by several other investigators and
various publications exist in the medical literature) that in
PDT there is a contribution of two reaction mechanisms
(Type I and Type II) which result in damage mechanisms
that depend on oxygen tension and photosensitizer con-
centration. Here we adopt our previous PDT modeling
scheme of Type II PDT which is considered to be the
major reaction mechanism [5]. Singlet oxygen 1O2, a
highly reactive state of oxygen, is a cytotoxic agent gener-
ated during PDT treatment. Singlet oxygen is produced
during PDT via a triplet-triplet annihilation reaction
between ground state molecular oxygen (which is in a tri-
plet state) and the excited triplet state of the photosensiti-
zer (which then returns to its singlet ground state). First, a
photosensitizer, a light-absorbing molecule that alone is
harmless and has no effect on tissue, is activated by the
second element, directed light of a corresponding wave-
length that is delivered to the patient [7], selectively target-
ing the abnormal tissue. Molecular oxygen is consumed
during the photochemical reaction to produce cytotoxic
agents, thus destroying neoplastic tissue. Besides singlet
oxygen and other reactive oxygen species (ROS), activation
of caspase cascades known as “executioner caspases” such
as caspase-3, -6 and -7 is the next step of the apoptosis/
necrosis process [13]. The active executioner caspases
cleave cellular substrates, which leads to characteristic bio-
chemical and morphological changes observed in dying
cells. Active caspases are potent effector of post-treatment
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cell apoptosis: For the intrinsic cell death pathway, apopto-
sis is triggered by intracellular events such as DNA
damage and oxidative stress. For the extrinsic cell death
pathway, apoptosis is triggered by extracellular stimuli
such as TNF and TRAIL. A sharp increase in the levels of
caspase 3 indicates the beginning of apoptosis. A very
early step upon illumination is cytochrome c release from
the mitochondria into the cytosol of treated cells [7]. A
possible correlation exists between the cytochrome c
release and the loss of the mitochondrial membrane
potential and might be related to MOMP (mitochondrial
permeability transition pore). Calcium ion release through
MOMP is correlated to cytochrome c loss. PDT has a very
subtle effect on mitochondrial membrane. Cells could die
from ATP depletion (necrosis) or indeed follow the apop-
tosis activation of the caspase-pathway. Caspase 3 is the
caspase that cleaves a large number of proteins that are
involved in cell structure and maintenance, such as PARP.
Cleaved PARP has been used as the marker of the apopto-
tic extent. PDT treatment with Pc 4, BPD, or aluminum
phthalocyanine (AlPc) has been shown to lead to cleavage
of PARP in different cell lines [7,14]. A schematic repre-
sentation of known molecular pathways and biochemical
events induced by PDT is given in (Figure 1).

Rate distortion theory
An input vector signal will represent the combined sti-
mulus of different PDT cell death inducing-molecules
(Figure 2). We have previously shown [7] in that we can
solve an ODE group that describes the major molecular
interactions and levels of concentrations during PDT
treatment in time domain and obtain the normalized
concentrations X(t) = (x1(t), x2(t), x3(t)) where:

x1(t) = [1O2]/[1O2]max, x2(t) = [cPARP]/[cPARP]max, x3(t) = [Casp3]/[Casp3]max (1)

PDT treatment starts at t = 0, and ends at a later time
t = td (this can be 10 to 30 minutes and determines the
optical dose for a given photon density). Observation
ends at t = tmax = 30 hours. We define p (x1, x2, x3) as
the probability by which the source produces the “word”
(normalized molecular concentration levels)
x(t) = (x1(t), x2(t), x3(t))[15] at time t . For a continuous
distribution, starting with ε = 0.001 or ε < 0.001 we
define the bump function approximation to the delta
function, in the phase space of the normalized concen-
trations:

p (x1, x2, x3) =
1
ε2

η
(x1, x2, x3

ε

)
(2)

η (x1, x2, x3) = η(x) =

⎧⎨
⎩

exp
(

− 1
1 − |x|2

)
if |x| < 1

0 if |x| ≥ 1
(3)

We notice that this is a molifier of the Dirac delta
function (hε converges to δ in the sense of measures,

ηε
L1−→ δ), and for values of ε small enough, the radius of

the compact support is shorter than the step size of the
spatial grid of the simulations. We initialize the marginal
probability distribution of the cell decision with binary
values for the variable y as equal to:

q(y) =
{

q0 for y = 0(death)
1 − q0 if y = 1(survival)

(4)

A distortion measure is defined as d
(
x1, x2, x3|y

)
,

which is a measure of the penalty charged for reprodu-
cing the strength of the cell death signal described by
the vector stimulus x = (x1, x2, x3) by the decision y and
thus quantifies how disadvantageous a given decision y
is in response to a given stimulus x. The most common
distortion measures the Hamming distortion measures
of the form:

d(x1, x2, x3|y) =

⎧⎨
⎩

xi ≥ xth
i x1 < xth

1 , x2 < xth
2 , x3 < xth

3
y = death 0 d1

y = survival d2 0
(5)

Where the first inequality hold for at least one xi and
d1, d2 are real positive numbers. The distortion function
describes the goals of a decision-making pathway by
quantifying how disadvantageous, or ‘’distorted,’’ a deci-
sion y is in response to a stimulus x = (x1, x2, x3). In our
case, suppose that when all molecular concentrations
are below a threshold xth

i , the cell should not die; for at
least one concentration greater than its fixed threshold
xth

i , the cell should die. In practice, the thresholds may
not be clear and a cell can be forgiven for make either
decision in response to a stimulus close to the thresh-
old. To represent this situation, a graded distortion
function needs to be used [8]. The mechanism by which
data is gathered, stored, and utilized by the cell are
poorly understood, and rate distortion theory may pro-
vide some insight into this function [8]. The “decom-
pressed” data strength (cell decision) may be different
from the original data (level of cell death stimulation).
Typically, there is some distortion between the original
and reproduced signal. This distortion measure, may be
cell dependent, or time dependent, describing essential
features of a cell, such as how does a cell estimate the
state of its environment, how does it quantify alternative
decisions, and how does it relate these decisions to the
maximization of the fitness of the population [8]. In
other words, the distortion measure is the penalty for an
incorrect classification of the level of a molecular
concentration, which leads to errors in the stimulus pat-
tern recognition, which in this frame is the assignment
of a cell fate probability to the given input by the bio
molecular reactions. For the purposes of information
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Figure 1 Schematic representation of the known molecular pathways and biochemical events induced by PDT . A schematic
representation of the known molecular pathways and biochemical events induced by PDT treatment leading to cell death. A molecular
interaction graph with information about the potential dynamic behavior of a cellular system that can be translated into mathematical terms
that are suitable for computer simulation. Blue color: Reactions that lead to the activation of the photosensitizer(Photofrin in our case) and the
generation of reactive oxygen species (ROS). The kinetic mathematical model of [5] is used to describe the molecular pathways. Red color:
Exposition to tumour necrosis factor (TNF) or TNF-related apoptosis-inducing ligand (TRAIL) as a result PDT treatment activate effector caspases
that dismantle the cell. The kinetic mathematical model of [3] is used to describe the molecular dynamics. Light blue (aqua): The interplay
between autophagy and apoptosis in response to oxidative stress. A signaling mathematical model introduced in [4] is used to describe the
dynamics. Yellow color: Components and interactions that have either been observed or conjectured in the literature but no equation has been
identified (thin lines) or they have been observed and we have a mathematical equation to describe them (thick lines). An arrow signifies the up
regulation process of a cellular molecular component as a signalling response to another molecular component, and a line with a vertical line
segment signifies the down regulation process of a cellular molecular component as a signalling response to another molecular component.
A coherent PDT mathematical model has been synthesized from the three kinetic models, with the necessary modifications to account for
biochemical events, such as the initiation of the degradation process of Bcl-2 by ROS that could bind to Bax to prevent its activation. All rate
equations, initial molecular concentrations, coefficients and constants can be found in the supplementary information tables in the author’s
dissertation (”Mathematical Modelling of Oxygen Transport, Cell Killing and Cell Decision Making in Photodynamic Therapy of Cancer Gkigkitzis,
Ioannis ECU, 2012) as well as the above mentioned references.
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theory a discrete channel is described by a probability
transition matrix Q(y|x1, x2, x3) where Q is the condi-
tional probability of receiving the y output-signal letter
given that the (x1, x2, x3) input letter signals were trans-
mitted. As a conditional probability it is related to

the probability distributions of the random vector
x = (x1, x2, x3) and the random variable y, by the equation:

q(y) =
∑

x1x2x3

pX (x1, x2, x3) Q
(
y|x1, x2, x3

)
(6)

Figure 2 The Rate Distortion Algorithm for Survival probability of a cell.
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In the minimization of the mutual information defined
below, the conditional probability matrix Q will be cal-
culated through a relation that is derived by the method
of Lagrange multipliers [8,15]:

Q
(
y|x1, x2, x3

)
=

q(y) · es·d(x1,x2,x3|y)∑
y′

q(y′) · es·d(x1,x2,x3|y′) (7)

where s is taken to be a negative number. This is the
Lagrange multiplier for the method of calculus of varia-
tions, which is used to find the optimal cell decision prob-
ability q and conditional probability Q by minimizing the
average mutual information between source (stimulus vec-
tor) and receiver (cell/cell decision) [16] (Finding extrema
of a function is a most common problem, but difficulties
often arise when one wishes to maximize or minimize a
function subject to fixed outside conditions or constraints.
The method of Lagrange multipliers is a powerful tool for
solving this class of problems without the need to expli-
citly solve the conditions and use them to eliminate extra
variables). We calculate the strategy as defined by equation
(5) and (6) that minimizes the average mutual information
between the input (x1, x2, x3) (death stimuli, normalized
concentrations) and the output (decision y), and the deci-
sion probability for cell survival (Figure 3) or cell death by
implementing a time dependent optimization Blahut
Arimoto algorithm (Figure 2). The average mutual infor-
mation is defined as [15,16]:

I(pX , Q) =
∑

x1,x2,x3,y
pX (x1, x2, x3) Q

(
y|x1, x2, x3

)
log

Q
(
y|x1, x2, x3

)
q(y)

(8)

The rate distortion function R(D) is defined as

R(D) = minQ∈QDI(p, Q) (9)

where, QD is defined as the collection of all condi-
tional probabilities-strategies Q

(
y|x1, x2, x3

)
such that

d(Q) ≤ D where the expected distortion is given by [16]

D =
∑

x1,x2,x3,y

pX (x1, x2, x3) Q
(
y|x1, x2, x3

)
d
(
x1, x2, x3|y

)
(10)

The function R(D) describes the amount of informa-
tion needed to be preserved by this biochemical data
compression scheme of the source output which is
given in the form of levels of molecular concentrations,
so that reproduction of the death/survival signal can be
subsequently generated from the compressed data with
average distortion less than or equal to some specified
value D (the rate distortion function R(D) has been initi-
ally defined as the effective rate at which the source pro-
duces information and passes it to the “user”, subject to
the constraint that the “user” can tolerate an average
distortion D [16]). According to [8] the complexity and
(metabolic) cost of a channel generally varies directly
with its capacity, and a less complex strategy is more
likely to be followed and be realized by a biological sys-
tem. With minimal information I and a cell dependent
distortion measure d, the optimal strategy incorporates
randomness to generate biological variation. With
respect to the distortion measure d, following [8] one
can notice that while this analysis requires knowing the
probability distribution of stimuli as well as the condi-
tional probability distributions of probabilities-strategies,
an experimental estimate of these distributions through
survival curves can produce an approximation of the dis-
tortion function around which the pathway is optimized.
Starting from:

Q
(
y = y2|x1, x2, x3

)
=

q(y2) · e−s·(x1,x2,x3|y)

q(y = y1) · e−s·d(x1,x2,x3|y=y1) + q(y = y2) · e−s·d(x1,x2,x3|y=y2)
(11)

And solving for the distortion measure, we get:

d
(
x1, x2, x3|y = y2

)
=

1
s

· log[
Q(y = y1|x1, x2, x3) · q(y = y2)
Q(y = y2|x1, x2, x3) · q(y = y1)

] + d(x1, x2, x3|y = y1) (12)

We can pick d(x1, x2, x3|y = y1) such that

min
{
d
(
x1, x2, x3|y = y2

)
, d

(
x1, x2, x3|y = y1

)}
= 0 (13)

And this determines the distortion measure.

Logical design
Computation of cell decision discrete probability
q(y = survival), distortion D and rate distortion function
R(D) is performed using the method of Lagrange multi-
pliers. The problem is solved computationally using the

Figure 3 Survival probability curves. A sample of a survival probability
curves as predicted by the Blahut Arimoto algorithm for the cell model.
Value of the parameter s = -10-2, -10-3, -10-4 Photon density r = 106 cm-3.
Photo sensitizer (Photofrin) concentration in a cell [S0] = 5 × 1013 cm-3.
Single cell oxygen concentration [3O2] = 6.06 × 1017 cm-3.
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Blahut-Arimoto algorithm. We summarize the basic
steps:

a) Assign a value ε that determines the accuracy of
the algorithm.
b) Initialize the exponential function es·d(x1,x2,x3|y).
c) Initialize the probability distribution of the decision
q0(y) = q(y) as a binary distribution as in equation (4).
d) Given q(y) compute the conditional probability
distribution Q(y|x1, x2, x3) that minimizes the
mutual information I(pX , Q) while satisfying the
condition of equation (6).
e) Update the probability q(y) that minimizes the
mutual information by using equation (5).
f) Calculate the distortion D given by the equation (9).
g) Calculate the rate distortion function given by [16]:

R(D) = s · D −
∑

x1,x2,x3

pX(x1, x2, x3) · log

⎛
⎝∑

y

q(y) · es·d(x1,x2,x3|y)

⎞
⎠ − TU + TL

2 (14)

The convergence of the algorithm depends on the dif-
ference between two bounds the lower and upper bound
([15],Theorem 7):

TL = maxy log(c(y)) (15)

TU =
∑

y

p(y) log(c(y)) (16)

The algorithm gives better convergence for small dif-
ference between these two bounds in absolute value:

|TU − TL| < ε (17)

h) Iterate steps (a-g) for all simulation times t, and
this yields qt(y = survival) = qsurvival(t) for one set
values of PDT treatment parameters: photo-density r,
drug concentration [S0] and initial molecular oxygen
concentration [3O2]i.
i) (optional) Vary ([3O2]i, [S0], [F]) where F is the
fluence, [3O2]i is the molecular oxygen concentration
in the cell, [S0] is the concentration of ground state
photosensitizer, and ([F]is the fluence (see [5]) and
obtain corresponding survival curve
qsurvival = q([3O2]i, [S0], [F], t) for optimization of flu-
ence/drug dose modeling parameters for the biomo-
lecular mechanism studied and the given choice of
molecular components of the stimulus vector). Fit to
experimental data of survival curves to find the opti-
mal range for the parameters.

Survival functions - predator prey models
Survival functions can be derived using predator-prey
model. The predator-prey model has been used for the
description of the survival probability in dynamic energy

budget models [17] under the assumption that that the
per capita death rate has two contributions, a constant
loss due to random misfortunes, and a density-dependent
loss due to predation, with a Holling Type II functional
form. This model was designed to predict the growth and
reproduction patterns of a species based on the charac-
teristics of individual organisms, particularly the strategy
used to allocate resources.. This model takes an indivi-
dual-based approach where all members of the prey
population are “copies” of one individual, and each
“copy”, could be the “model individual” itself. The use of
a predator-prey model (a continuous model used for the
simulation of discrete population dynamics) for the mod-
eling of survival probability(a continuous variable) sug-
gests the quantization of survival probability. Indeed, the
quantization of probability has been proposed by other
authors [18,19]. The existence of the “chance-quantum”
(c.q.), implies certain axioms [Go 43]. For example, if the
probability of an event is equal to or greater than one c.
q., it may ultimately occur, if an event has a calculated
probability of less than one cq. it will not occur, for an
event having an appreciable probability (equivalent to
many cq.), a change in surrounding conditions leading to
a computed change in probability of less than one cq.
will in fact cause no change in the probability of the
event, etc.
Survival Units Duality refers to the idea that the life a

cell (or survival probability) can be discretized (quan-
tized) in quanta of life (survival units) which are
assumed here as the basic units of life in every cell. New
cells are produced by existing cells, and therefore the
termination of a cell does not allow to assign any mor-
phological or biochemical characteristics to the life of
the cell itself, since these characteristics can only be
considered as the manifestations of the monitoring,
interaction and response of the cell, as a biochemical
unit undividedly united to cellular life (“life units”), to
the extracellular environment. Cellular life (survival pro-
baility) is a set of life units (survival probaility quanta),
where each cellular life unit contains the whole com-
plete life of the cell in itself, therefore allowing the cell
to repair itself after any loss of survival units due to the
attack of cell death inducers or other factors (Figure 3).
Therefore, the survival probability of a cell is a set that
contains itself within each of its elements (survival pro-
bablity quanta or units). This idea is not new in mathe-
matics. This is in accordance with Von Neumann’s idea
that any information-based replicator must contain
inside itself a symbolic representation of itself, an
“image” of itself.

Russell’s paradox and information
A set is a collection of objects, or elements. Sets are
defined by the unique properties of their elements and
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sets and elements may not be mentioned simulta-
neously, since sets are determined by their elements and
therefore one notion has no meaning without other.
Bertrand Russell, while working on his “Principia Math-
ematica“ (Principles of Mathematics) in 1903, he discov-
ered a paradox that arised from Frege’s set theory that
leads to a contradiction [20]. It says “the set of all sets
which are not members of themselves contains itself.” In
mathematical terms, let S = {x : x /∈ x}, then S Î S ⇔ S ∉ S.
Although the precise rules for set formation have been
under intense investigations and several different logical
systems have been proposed, sets that contain themselves
as elements, like S, are definitely ruled out, as “abnormal”.
Based on the work Russell and Whitehead, Kurt Gödel
was able to show that a theorem could be stated within
the context of Russell and Whitehead’s system that was
impossible to prove within that system [21]. Gödel’s
Incompleteness Theorem states that there are mathemati-
cal statements that can never be proved, in any consistent
system of axioms such as the arithmetic system.
The need for the distinction between two kinds of col-

lection can be found back in the work of Schroder and
Cantor [22]:
“If we start from the notion of a definite multiplicity of

things, it is necessary, as I discovered, to distinguish two
kinds of multiplicities (by this I always mean definite
multiplicities). For a multiplicity can be such that the
assumption that all of its elements “are together” leads to a
contradiction, so that it is impossible to conceive of the
multiplicity as a unity, as “one finished thing”. Such multi-
plicites I call absolutely infinite or inconsistent multiplici-
ties.... If on the other hand the totality of the elements of a
multiplicity can be thought of without contradiction as
“being together”, so that they can be gathered together into
“one thing”, I call it a consistent multiplicity or a “set”.
Cantor’s conclusions are the ancestors of today’s dis-

tinction between classes and sets, as they appear in the
work of Von Neumann [23]. For von Neumann all sets
are classes, but not all classes are sets. And those classes
that are not sets - the so-called proper classes -cannot
themselves be members [22]. In Von Neumann’s axioma-
tization theory, some major advantages are [22]: There
are extensions for the predicates ‘set’, ‘non-self-mem-
bered set’, ‘well-founded set’, ‘ordinal’. There is a well-
determined collection of all the Zermelo-Fraenkel sets;
and there is a domain for quantification over sets.
Further, the Axiom of Choice is provable in von Neu-
mann’s system. Several issues, both technical and intui-
tive, have been reported with respect to this system. A
discussion can be found in [22], and here we only men-
tion the consequence of this theory, that the concept of
class has no extension (based on the axioms of this sys-
tem, there is no class of all classes, and therefore the

problem has just been pushed back). Therefore the reso-
lution of this paradox remains unresolved.
In mathematical logic, it is suggested that problems

that are essentially the same must be resolved by the
same means, and similar paradoxes should be resolved
by similar means. This is the principle of uniform solu-
tion [281]. Two paradoxes can be thought to be of the
same kind when (at a suitable level of abstraction) they
share a similar internal structure, or because of external
considerations such as the relationships of the paradoxes
[281]. The question rises as to the existence of other
paradoxes that are of the same kind with Russell’s para-
dox. Russell focused more on the underlying structure
of the paradoxes and saw them all as paradoxes of
impredicativity. The “inclosure schema” was proposed
by Priest, as a formal schema that can be used to classify
paradoxes [24]. Although the schema will not be ana-
lyzed in this work, the conclusion is very interesting:
Russell’s paradox is of one kind with the “sorites” para-
dox (the paradox of the “heap”). This paradox was intro-
duced by to Eubulides of Miletus (4th century BC), a
pupil of Euclid, and appears when one considers a heap
of sand, from which grains are removed. Is it still a heap
when only one grain remains? If not, when did it change
from a heap to a non-heap? These two paradoxes are
neighboring paradoxes, and it has been suggested that
we should not just consider the internal structure of the
paradoxes, although that is undoubtedly important, but
we also consider the external relationships–the relation-
ships to other nearby paradoxes [281]. The way nearby
neighbors (paradoxes of one kind) respond or fail to
respond to proposed treatments tells us something
about what makes the whole family tick and about their
structural similarity [281]. The question “when is the
cell dead?” indicates confusion between cessation of
organic coherence and cellular activity. When a cell irre-
vocably loses its organization, it’s dead. The point when
it becomes irrevocably damaged is related to the sorites
problem.
It is known that continuous time Markov processes,

are used for the formulation of stochastic predator prey
models that are based on within individual variation
[25]. Within individual variation, used under the name
of “demographic stochasticity”, has been used in the the-
ory of adaptive dynamics. The theory of adaptive
dynamics aim at describing the dynamics of the domi-
nant trait in a population, that is called the ‘fittest’ trait.
The main approach is through stochastic or individual
centered models which in the limit of large population,
can be transformed into integro-differential equations or
partial differential equations [26]. Stochastic simulations,
using a finite size population, involve extinction phe-
nomenon operating through demographic stochasticity
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which acts drastically on small populations [26]. These
simulations involve a unit for minimal survival popula-
tion size, which corresponds to a single individual. In
general though, typical stochastic and deterministic
simulations do not fit and give rather different behaviors
in terms of branching patterns. It has been observed
that the notion of demographic stochasticity does
not occur in general in deterministic population models,
and an alternative proposed has been proposed in order
to include a similar notion in these models: the notion
of a survival threshold [27], which allows some phenoty-
pical traits of the population to vanish when represented
by too few individuals. In particular, through the investi-
gations of simple and standard Lotka Volterra systems
that describe the time of the distribution of phenotypic
traits in time, it is shown that the inadequacy of determi-
nistic models to handle extinction phenomena through
demographic stochasticity, can be corrected by the intro-
duction of a survival threshold, leading to a mimicking
effect of the extinction probability due to demographic
stochastcity in small sub-populations, while hardly influ-
ences the dynamics of large sub-populations [26]. In this
framework, the above principle implies (at the extreme)
that densities correspond to less than one individual are
undesirable [26], indicating that the link between the
continuous (large populations) and the discrete (small
sub populations), between the existence (survival) and
the vanishing (extinction - demographic stochasticity) is
correlated with the existence of a survival threshold in
the model.
Furthermore, this hybrid approach of survival, as contin-

uous-discrete function with a survival threshold assigned
to a population, raises the following question: Is there an
internal quantization scheme that relates the continuous
models for large populations with survival thresholds to
small populations’ discrete models? The existence of both
features, of continuity and quantization in a single process,
appears in the study of the conditional survival probabil-
ities of a firm (the computation of the conditional survival
probability of the firm from an investor’s point of view,
i.e., given the “investor information”). Callegaro and Sagna
used a quantization procedure, to analyze and compare
the spread curves under complete and partial information
in new and more general settings in their work on applica-
tions to credit risk of optimal quantization methods for
nonlinear filtering. The theory of quantization probability
they used was based on an earlier study of local quantiza-
tion behavior of absolutely continuous probabilities [28].
This study analyzes the Lr quantization error estimates for
Lr(P) codebooks for absolutely continuous probabilities P
and and Voronoi partitions satisfying specific conditions.
But the origins of the theory developed there can be traced
back to electrical engineering and image processing and in
particular in digitizing analog signals and compressing

digital images [29]. Therefore, in the heart of the study of
survival probabilities we find a theory for the quantization
as analog-to-digital conversion and as data compression.
Analog signal is a continuous signal which transmits
information as a response to changes in physical phenom-
enon and uses continuous range of values to represent
information, where digital signals are discrete time signals
generated by digital modulation and use discrete or dis-
continuous values to represent information. The quality of
a quantizer can be measured by the goodness of the result-
ing reproduction of a signal in comparison to the original.
This is accomplished with the definition of a distortion
measure that quantifies cost or distortion resulting from
reproducing the signal, and the consideration of the aver-
age distortion as a measure of the quality of a system, with
smaller average distortion meaning higher quality [29].
This is precisely the framework we adopt in this work

to study and analyze the process of cell survival during
treatment (in our framework). This suggests an organic
connection among an axiomatic system foundation, a
predator prey rate equation and information theoretic
signal processing.

Mathematical modeling scheme
Following [3], biochemical reaction equations were
derived from the following scheme, for the apoptosis/
necrosis pathways. For a given binary reaction i the bio-
chemical equation is represented by one of following
general mass-action paradigms:

A + B
ki←→
k−i

A : B
κi−→ A + P ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[A]
dt

= −ki[A][B] + k−i[A : B] + κi[A : B]

d[S]
dt

= −ki[A][B] + k−i[A : B]

d[A : S]
dt

= ki[A][B] − k−i[A : B]

d[P]
dt

= ki[A : B]

(18)

Where ki, k-i are the reaction rates. For the autophagy
pathway, we follow [4] and the neural network modeling
method as it is described in [4,30]. We use an inter-
mediate modeling strategy that employs nonlinear ODE
to describe protein regulatory networks but is not tied
to specific reaction mechanisms and rate constants.
More precisely, we use ODEs of the form:

dXi

dt
= γi · [F(σWi) − Xi] (19)

Wi = ωi0 +
N∑
j=1

ωijXj (20)

Where Xi is the expression level of a molecular con-

centration 0 ≤ Xi ≤ 1 and F(σWi) =
1

1 + e−σW
is a sig-

moidal function that varies from 0 (when W << − 1
σ
) to
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1 (when W >> − 1
σ
). The parameter s controls the

steepness of the sigmoidal function at its inflection
point. Wi is the net effect on molecule i of all molecules
in the network. The coefficient ωij is less than 0 if mole-
cule j inhibits the expression of molecule i, more than 0
if molecule j activates molecule i, or equal to 0 if there
is no effect of molecule j on molecule i. This equation
has the great advantage that it is subject to all the
powerful analytical and simulation tools of nonlinear
ODEs, yet, in the limit of large s, it behaves like a dis-
crete Boolean network [30]. When s ≫ 1, Xi tends to
flip (on a timescale ≈ g-1) between 0 and 1, and the
dynamical system approximates a Boolean network [30].

Modeling and simulation
A group of rate equations based on a molecular diagram
(Figure 1) can be used to quantitate the time evolution of
the following molecule species in a Type II PDT process:
photosensitizers (Photofrin) in ground state S0, single
and triple excited states S1 and T; oxygen molecules in
triplet grounded and single excited states 3O2 and

1O2.
Death ligand such as TRAIL and TNF; inactive receptor
complex R*;FLICE-like inhibitory protein flip; procas-
pase-8 and procaspase-10, inactive, both as C8, bi-func-
tional apoptosis regulator Bar; (cleaved) active caspase-8
and caspase-10 C8* ; procaspase-3 and procaspase-7,
inactive, both as C3 ; procaspase-6, inactive capsase-6 C6;
(cleaved) active caspase-3 and caspase-7 C3* (Figure 4)
and active caspase-6 C6*; × linked inhibitor of Apoptosis
in the cell XIAP; Poly (ADP-ribose) polymerase PARP

(Figure 5), as DNA damage repair enzyme , here all sub-
strate of active caspase-3 C3*;The BH3 interacting-
domain death agonist Bid as a substrate of cleaved
caspase-8 in its inactive form; the anti-apoptotic protein
Bcl-2 (Figure 6); the Bcl-2-associated × protein in its
inactive form Bax and its active form Bax* ; Bax in the
mitochondrial compartment as Baxm; cytochrome c
inside the mitochondria in the mitochondrial compart-
ment CyCm and cytochrome c release from the mito-
chondria but remaining in mitochondrial compartment
CyCr; cytochrome c in cellular compartment CyC ; sec-
ond mitochondria-derived activator of caspases. Smac
and Smac/Diablo released from the mitochondria but
remaining in mitochondrial compartment, Smacr ; Apop-
tosis activating factor Apaf-1, substrate of CyC, in its
inactive form Apaf1; active form of Apaf-1, Apaf*; inac-
tive form of procaspase- 9 C9; the apoptosome Apop
which is the complex Apaf*:C9; inositol-requiring protein
1 IRE1; JUN N-terminal kinase, JNK; death associated
protein kinase DAPK; Beclin mediator of autophagy
phosphorylated by death associated protein kinase
DAPK, BECN1;the tumor suppressor protein p53; the
intracellular concentration of calcium Ca2+; the protease
Cathepsin Cath and the protease Calpain; the inositol
1,4,5-trisphosphate receptor IP3R or IPR3; Even though
the singlet excited oxygen molecules 1O2 may play a criti-
cal role by themselves, it is well known that other ROS
species are also involved in the cytotoxicity of PDT with
mitochondria as the possible source and target sites. The
1O2 should be interpreted as the representatives of ROS
(Figure 7). The molecular equations, together with the
definitions of coefficients and their values that were used

Figure 4 PARP activation. PARP activation is an immediate cellular
response to metabolic, chemical, or radiation-induced DNA SSB
damage. Upon DNA cleavage by enzymes involved in cell death
(such as caspases), PARP can deplete the ATP of a cell in an
attempt to repair the damaged DNA. ATP depletion in a cell leads
to lysis and cell death. PARP also has the ability to directly induce
apoptosis, via the production of PAR, which stimulates mitochondria
to release AIF. This mechanism appears to be caspase-independent.

Figure 5 Singlet Oxygen. Singlet Oxygen is the most important
cytotoxic agent generated during PDT(it decays after photo
irradiation time). Singlet oxygen is produced during PDT via a
triplet-triplet annihilation reaction between ground state molecular
oxygen (which is in a triplet state) and the excited triplet state of
the photosensitizer.
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to mathematically model the molecular network
described above have been detailed in [3-5] and have pre-
sented by the author in his dissertation thesis (see below
legend of Figure 1). A 70 equation group can be solved to
characterize the main molecular interaction involved in
Type-II PDT. We use the ordinary differential equation
(ODE) stiff solver (ode15s) by MATLAB (The Math-
Works, Natick, MA) to obtain the solution vector as a
function of illumination time t from the start of illumina-
tion at t = 0 to 1800 (s). Experimental verification of
these quantities that describe the levels of all these mole-
cular concentrations can be very difficult if not

impossible and they relate indirectly to the ultimate con-
sequence of PDT for cell killing. In [5] we introduced a
cell killing model that related the molecular concentra-
tions of the singlet oxygen and the unoxidized receptors
to the cell survival ratio, which can be measured with an
in vitro cell model. A system of 70 ODE (ordinary differ-
ential equations) was solved numerically to characterize
the main molecular interactions involved in Type-II
PDT. The output of this equation group is the time
dependent levels of molecular concentrations for the sti-
mulus vector of x(t) = (x1(t), x2(t), x3(t)) corresponding
to singlet oxygen 1O2, cPARP and Caspase 3. The con-
centrations were normalized with respect to their maxi-
mum values and their range is 0[1].
The total time for the simulations was up to 30,000 sec

to monitor post-treatment cell killing. We used the stiff
solver (ode15s) by MATLAB (The Math Works, Natick,
MA) to obtain the solution vector as a function of illumi-
nation and observation times, from the start of illumina-
tion at t = 0 to 1800 (s) (end of illumination time) and
from 1800 to 30,000 (s). Experimental verification of
these quantities that describe the levels of all these mole-
cular concentrations can be very difficult if not impossi-
ble and they relate indirectly to the ultimate consequence
of PDT for cell killing. In [5] we introduced a cell killing
model that related the molecular concentrations of the
singlet oxygen and the unoxidized receptors to the cell
survival ratio, which can be measured with an in vitro
cell model. The same software (MATLAB) is used for
producing the simulations for the decision mechanism of
a single cell model design. The output of the time depen-
dent Blahut Arimoto algorithm is the cell survival prob-
ability (Figure 3). The distortion measure d that
quantifies how disadvantageous a decision y is, in
response to the stimulus vector x = (x1, x2, x3) is defined
by the equation d((x1, x2, x3|y = survival)) = 10 if xi ≥ xth

i
for some i, and d((x1, x2, x3|y = death)) = 10−1 if xi ≥ xth

i
for some i, and a small number otherwise. The thresholds
xth

i for the normalized concentrations were all set to 0.5.
This distortion measure penalizes a cell survival error
more than cell death error for given stimuli, by one order
of magnitude. For the range of the Lagrange multipliers
the equation s = -e-n was used and in the simulations n
varied over a finite set of integers (a sample of n values
from 1 to 20 was taken for the simulations below). The
initial survival probability q0(y = surv) = 1 − q0 was set
equal to 0.9. The treatment parameters for the PDT
model that was introduced in our previous work [5], was
linked to the input of this algorithm.

Discussions
The effort to link biochemical pathways and molecular
interactions to the behavior of whole cells and to infer
causality from statistical correlation in large data sets in

Figure 6 Bcl-2 degradation. ROS initiates the degradation process
of Bcl-2 that could bind to Bax to prevent its activation. At a later
time after the photo-irradiation a post-treatment increase of Bax is
observed.

Figure 7 Caspase 3. Activated Caspase 3 is potent effector of post-
treatment cell apoptosis: For the intrinsic cell death pathway,
apoptosis is triggered by intracellular events such as DNA damage
and oxidative stress. For the extrinsic cell death pathway, apoptosis
is triggered by extracellular stimuli such as TNF and TRAIL. A sharp
increase in the levels of Caspase 3 indicates the beginning of
apoptosis.
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photo-chemotherapy is a matter of considerable diffi-
culty, and to account for all biological variation is a very
challenging goal. The existence of more than one PDT
tissue destruction mechanism in vivo for the treatment
of intraocular retinoblastoma like tumor, has been sug-
gested and documented in [31] where an early direct
cell damage was followed by a subsequent late damage
occurring in the tumor tissue left in situ after treatment,
resulting in a biphasic pattern in the cell survival curve
as a function of time. In [32], experiments on Chinese
hamster cells with phthalocyanine dyes and split light
fluence indicated that cells can repair sublethal photo
cytotoxic damage during the course of several hours.
Although direct cytotoxicity to the tumor cells has been
shown to be relatively small after PDT and to increase
with time after treatment [33], examples of in vitro
mammalian cell curves as functions of exposure time
for different photosensitizer concentrations show that
for an acute high dose treatment (vast majority of PDT
treatments) the cell survival ratio decreases to less than
1% in the course of a few minutes.
Discrepancies may be due to many factors such as

light attenuation passing through the skin resulting in a
relatively lower energy dose to some cells than others or
the fact that the tumor vasculature is a primary target of
PDT. The local micro-environment might have signifi-
cant impact on PDT response. Vascular effects can be
secondary to cell death or conversely, cell death can be
secondary to vascular shutdown. Another factor that
might affect the final outcome is the triggering of the
immune responses, local or systemic.
According to Langton, the ‘logical form’ of an organism

can be separated from its material basis of construction,
and that ‘aliveness’ will be found to be a property of the
former, not of the latter [34]. It is the major assumption in
the field of Artificial Life (AI) that life is a property of the
organization of matter, rather than a property of the mat-
ter itself. Organization reduces uncertainty through a pro-
cess of information collection, management and use.
A conceptual and mechanistic system biology mathemati-
cal model that is based on information theory can yield
valuable insights since cellular behavior cannot be sum-
marized in population averages [35]. The Blahut Arimoto
model has several features that are consistent with the
experimental results. For the parameter s, estimation can
be performed using experimental data, and a range of
values can be recovered. The shapes of the survival curves
and their correlation with the parameter s will depend on
the structure of the rate equations, the type of cell decision
algorithm adopted and the accuracy of the experimental
data. Different values of the parameters will be predictive
of different model curve topologies. Although the origin of
the cell parameter s in a cell population for this biochem-
ical model remains non-identifiable from the biophysics

point of view, high-likelihood predictions can still be made
by appropriate choice and calibration of this parameter.
The survival probability predicted by the rate distortion
function and calculated by the Blahut Arimoto algorithm,
and the variability in the graphs resulting from different
values of the parameters provide a framework for the
interpretation of self-renewal capabilities of the cell and its
ability to generate drug resistance.
The model presented in this report is applicable to the

study of cell killing mechanisms in other cases such as
hydrogen peroxide H2O2 induced cell death in neurode-
generative diseases. Neuronal death observed in neuro-
degenerative disorders has been shown to be related to
free radical damage and the mechanisms by which reac-
tive oxygen species may damage or kill neurons have
been investigated, with a series of experiments designed
to document events associated with H2O2 induced cell
death in primary neuronal culture [36]. Moreover, this
model provides a conceptual frame for the study of
hyperthermia induced cell death. Hyperthermia also
induces apoptosis in a wide range of cancer cells [37].
The way hyperthermia initiates the intrinsic pathway of
apoptosis is yet not completely elucidated, but it is
known to involve the transmission of the temperature
elevation signal to the mitochondrion through proteins
belonging to the Bcl-2 family. Recent preclinical devel-
opments show the importance of heat shock proteins
and other proteins interfering and regulating the intrin-
sic and extrinsic pathways of apoptosis [38]. It has been
suggested that intracellular de novo synthesis and poly-
merization of both RNA- and DNA-molecules as well as
protein synthesis are decreased in vitro at temperatures
between 42 and 45°C in a dose dependent manner.
Whereas RNA- and protein synthesis recover rapidly
after termination of heat exposure, DNA-synthesis is
inhibited for a longer period [39,40]. The heat shock
induces an aggregation of denatured proteins at the
nuclear matrix owed to the insolubility of cellular pro-
teins after heat-induced protein unfolding, entailing an
enhancement of the nuclear protein concentration.
Increase of the nuclear protein content by heat conse-
quently affects several molecular functions (including
DNA-synthesis and -repair) when a certain thermal dose
is exceeded. A variation of the threshold dose among
distinct cell lines is to be expected. Cells are surrounded
by electromagnetic fields and the ion distributions inside
and outside the cells are also at different concentrations
depending on their charge and their type (healthy cells
or tumor cells). Heat is transported by means of the
extracellular space, ionically bound, to the intracellular
space. After the compensation capacity of the cell is
exceeded, it is natural to expect that a very small change
in the temperature within and outside the cell mem-
brane will be sufficient to affect, or block the metabolic
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processes or even to denature the proteins (Celsius 42+,
Koln, Germany, modalities and procedural technologies
for clinical hyperthermia). Now, heat is not a property
of a system or body, but instead is always associated
with a process of some kind, and is synonymous with
heat flow and heat transfer. It has the characteristic
feature that it increases the entropy. According to
Shannon’s theory, entropy measures the information
contained in a message (entropy is often used as a char-
acterization of the information content of a data source).
Assuming that heat increases the conformational
entropy which implies the thermic denaturation of pro-
teins and that heat shock proteins down regulate antiox-
idants and therefore up regulate oxidative stress as
demonstrated by several experimental studies, leading to
lipid peroxidation of the lipid components, a model
similar to one presented above for PDT can be derived
for making binary cell fate decisions (death/survival), as
a result of heat exposure (hyperthermia). There are
some obvious similarities with PDT such that heat toxi-
city is the result of oxidative stress. A computational
model that will be based on information theory (infor-
mation enters the cell in this case in the form of
increasing entropy, a word with informational context
“disorganize”) can be used not only to quantitatively
describe how the heat shock signal is transformed to a
cell death probability (the activation of the thermal
signal processing occurring when any of some prede-
fined molecular stimulants increases higher than a pre-
defined threshold) but also to elucidate the main factors
causing cell death after heat exposure from a qualitative
viewpoint.
Information implies both facts and transmission of

facts. The definition of information is content neutral
and in Shannon’s distortion theory, information is inter-
preted as what reduces uncertainty. It also presupposes
knowledge of a priori probabilities. These probabilities
need to be designed or calculated in a way that they will
reflect the varieties of environmental stimuli. It is impor-
tant to decipher the meaning of information available to
a cell as something that determines its activity. Informa-
tion has no mass, energy, or spatiotemporal extension.
Nevertheless it is a distinct, objective entity. This entity
can be traced through detectable differences. For exam-
ple, the cell, as an information system has the ability to
discriminate and select between cell fates (which is what
we call cell decision making). In fact, the manifestation of
information can be found in the existence of alphabets
(where as alphabet we interpret the set of physical states
that can be realized in some system), the combination of
codes (where as a code we consider a collection of the
letters of alphabets that follow some pattern-words) and
the variety of codes that determine the state of the
system.

In the work of James G. Miller [41] on living systems, it
was postulated that by the information input of its char-
ter or genetic input, or by changes in behavior brought
about by rewards and punishments from its suprasystem,
a system develops a preferential hierarchy of values that
gives rise to decision rules which determine its prefer-
ence for one internal steady-state value rather than
another. This was defined as the purpose of the system,
which will also have an external goal related to its pur-
pose. Therefore the goal of the system is determined by a
system on a higher level. This was confirmed in the study
of a cell model in the work of Perkins and Swain [42]
who characterized cellular decision-making as having
three main tasks: a cell must (1) estimate the state of its
environment by sensing stimuli; (2) make a decision
informed by the consequences of the alternatives; and (3)
perform these functions in a way that maximizes the fit-
ness of the population. Porter and Iglesias suggested the
distortion theory framework, providing a complementary
perspective on decision-making, regarding these three
tasks as a single process. According to Porter and Iglesias
[8], the distortion measure d : defines accurate sensing
(task 1) by how heavily it penalizes small mistakes, and it
quantifies the disadvantages of alternative decisions (task
2); the expected distortion describes how accurate sen-
sing must be (task 1) and how much disadvantage the
cell can afford in making a decision (task 2); the resulting
optimal strategies fulfill task 3 by making choices with
decisiveness proportional to the information available.
The existence of suprasystem that determines the goal of
the system of a cell (which can be either the tumor cell
population for tumor growth or the healthy tissue sur-
rounding the cell performing regulatory functions such
as immune dynamics, angiogenesis, etc. or an unidenti-
fied entity) is reflected on the structure of the distortion
measure. The condition of an “observer” distinguishable
from the system that determines the goal of the system is
a prerequisite for the definition of information in cyber-
netics by Wiener, which is founded on the issues of con-
trol and communication.
A generalization of the concept of mutual information

used in this report is the interaction information. The
“interaction information” [43] is a generalization of the
mutual information, and expresses the amount informa-
tion (redundancy or synergy) bound up in a set of vari-
ables, beyond that which is present in any subset of
those variables:

Q(X, Y, Z) = I(X, Y|Z) − I(X, Y) =
∑
x,y,z

P(x, y, z) · log
P(x, y, z) · P(x) · P(y) · P(z)

P(x, y) · P(y, z) · P(z, x)

Q measures associations between variables, and not the
direction of the transmission: ‘This means that nothing is
gained formally by distinguishing transmitters from recei-
vers, therefore it goes beyond the Shannon framework of
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linear transmissions [44]. An interaction is regularity, a
pattern, a dependence present only in the whole set of
events, but not in any subset. It is symmetric and undir-
ected, so directionality no longer needs to be explained
by, e.g. causality [45]. Positive interaction implies synergy,
and variables has been associated with the non-separabil-
ity of a system in quantum physics [46] and with the
origin of synergy in relationships between neurons [47].
Q measures the amount of influence on the relationship
between × and Y, resulting from the introduction of Z
[45]. It is the amount of information that is common to
all variables but not present in any subset. The interac-
tion information may provide the appropriate framework
for the study of the Radiation induced Bystander effect
(unirradiated cells exhibit irradiated effects as a result of
signals received from nearby irradiated cells), a well-
established consequence of exposure of living cells to
radiation [48]. Although cell to cell communications in
normal and carcinogenic cells have been discussed exten-
sively [49,50], and it is believed that in general cell to cell
regulatory signals are conducted by chemical and electri-
cal signals (Gap Junctional Intercellular Communication
(GJIC) or Distant Signaling Intercellular Communication
(DSIC)) [50], it remains an assumption that these signals
are propagated by a Brownian diffusive motion, because
this yields to relatively satisfactory results in simulations
of bystander effects [50]. To understand the bystander
synergistic effect in the case of radiation, we observe that
if X is a cell state cell (target cell), and Y is some para-
meter that represents radiation, and Z is a cell state
(neighbor cell), Q(X, Y, Z) can be understood as the dif-
ference between the decrease in entropy of Z achieved by
the joint attribute XY (cell irradiation event) and the
expected decrease in entropy with the assumption of
independence between X and Y.

Conclusions
In this study a model of a cell decision mechanism is pro-
posed, which captures certain observed characteristics of
a cell behavior during photo-irradiation and pharmacolo-
gical treatment (Type II PDT) using rate distortion the-
ory to quantify the goals of a binary decision process (cell
survival - cell death). The main components of the model
are, the time dependent distribution of molecular stimuli,
the distortion function (or measure), the conditional
probability of the cell decision strategy, the cell survival
probability, the expected distortion and the rate distor-
tion function which quantifies a limit on how well the
goals can be achieved given the stimulation. The results
are independent of the biological mechanism by which
the cell strategy is implemented and the Blahut Arimoto
algorithm is used to derive optimal pathways. The model
requires knowing the probability distribution of the

stimuli as its input. For a variety of Lagrange multipliers,
there is a corresponding variety of optimal pathways, but
an approximation of the distortion function around
which the pathway is optimized, is possible, based on
algebraic properties of the algorithm (the distortion con-
straint) and numerical and experimental data [8]. Intra-
cellular molecular interactions can be studied with the
purpose of extracting useful conclusions, by using com-
putational methods. In this report we used a previous
developed systems biology model that includes detailed
molecular pathways induced by PDT treatment leading
to cell death, which we coupled to a cell decision making
algorithm that is based on the mutual information
between cell death stimulation and cell response as the
output of a bio molecular communication channel. This
line of research can be relevant to future improvement
and management of cancer treatment methodologies.
The cell survival probability is modeled as the output of
an optimization process of transmitting the death signal
through a communication channel with a possible envir-
onmental and/or inherent distortion. Modeling results
can be compared directly to experimental results that are
based on the levels of measurable molecular concentra-
tions and cell survival ratios, for optimization of the
unknown parameters or/and for design of different in
vitro studies of PDT. This modeling establishes a frame-
work that may also be able to address questions such as
why do cell types, although they share the same genome,
they are in general stable entities represented by different
observable cell fates with certain rules that govern their
molecular dynamics and do not gradually change into
other forms.
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