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Abstract: A new and noncontact approach of multispectral reflectance imaging has been 
developed to inversely determine the absorption coefficient of μa, the scattering coefficient of 
μs and the anisotropy factor g of a turbid target from one measured reflectance image. The 
incident beam was profiled with a diffuse reflectance standard for deriving both measured and 
calculated reflectance images. A GPU implemented Monte Carlo code was developed to 
determine the parameters with a conjugate gradient descent algorithm and the existence of 
unique solutions was shown. We noninvasively determined embedded region thickness in 
heterogeneous targets and estimated in vivo optical parameters of nevi from 4 patients 
between 500 and 950nm for melanoma diagnosis to demonstrate the potentials of quantitative 
reflectance imaging. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction

Quantitative characterization of turbidity attracts intense research interests for tasks ranging 
from materials analysis to disease diagnosis [1, 2]. Imaging reflected light at multiple 
wavelengths provides an approach of big data (> 104 signals) for such characterization. 
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Benefits include noninvasive and noncontact nature of measurement and simplicity of 
instrumentation given rapid progress in sensor technology. Most approaches of reflectance 
imaging realized to date, however, rely on pattern analysis to characterize targets for 
recognition and classification [3–9]. While these methods require no modeling of light-matter 
interaction, their applications depend sensitively on configurations of illumination and 
detection. Simplified models based on Beer-Lambert law or diffusion approximations have 
been developed to inversely determine optical parameters of absorption coefficient μa and 
reduced scattering coefficient μs’ [10–17]. Improvement with the radiative transfer (RT) 
theory has been reported for inverse determination of μa, scattering coefficient μs and 
anisotropy factor g of homogeneous turbid samples [18, 19]. Despite these advances, optical 
model based reflectance imaging is far from the point for translation into practical systems to 
characterize turbidity according to the RT theory [1]. First, accurate and fast general-purpose 
methods need to be established for imaging system calibration and modeling spatial 
distribution of reflected light that allow robust inverse solutions. It is also critically important 
to develop effective algorithms for determination of μa, μs and g from the measured image. 
Finally, a new method should have the capacity to determine spatial distribution of optical 
and size parameters in heterogeneous turbid targets, which is necessary in applications 
including diagnosis and delineate normal and cancerous tissues. 

In this report, we present a new approach of reflectance imaging that combines 
multispectral image acquisition, RT theory based Monte Carlo (MC) simulations of light 
transport [20–23], graphics processing unit (GPU) implementation of MC simulation [24, 25] 
and a conjugate gradient [26, 27] based inverse algorithm to retrieve a set of target parameters 
P. The axial-symmetric Henyey–Greenstein function pHG(cosθ) was used as the scattering
phase function that is fully characterized by the anisotropy factor g [1]. Thus the optical
parameters of a turbid target can be collectively represented by the notation P = {μa, μs, g} for
a homogeneous phantom or P = {μa1, μs1, g1, μa2, μs2, g2} for a 2-zone heterogeneous
phantom. Furthermore, size parameters like thickness D for an embedded zone in the 2-zone
phantoms can be included in the inverse determination to yield morphology information. To
validate the new method, measurements with homogeneous turbid phantoms have been
carried out for comparison with the parameters of thin disk samples made of similar materials
by a method of integrating sphere measurement and MC based inverse algorithm [28].
Multispectral reflectance images have been acquired from 4 patients suspected of cutaneous
melanoma to estimate optical parameters and examine their potentials for cancer diagnosis.

2. Methods

2.1 Measurement of reflectance and profile images 

A multispectral system has been constructed to image light reflected from a target illuminated 
with an 175W xenon fiber optic light source (ASB-XE-175EX, Spectral Products). The beam 
output from the fiber was collimated and incident on the target with 2w = 14mm in diameter 
and about 2° in diverging angle. A steel stencil S of stripes lines was inserted in front of the 
collimating lens L to change the incident beam profile from top-hat to a grating pattern, as 
shown in Fig. 1. Interference filters of 10nm in bandwidth were assembled on two rotating 
wheels to produce monochromatic illumination between 500 to 950nm for phantom study in 
steps of around 20nm. A camera lens of 25mm in focal length and 20mm in aperture diameter 
A was used to relay the light distribution at the target surface to the sensor of a cooled 14-bit 
cooled CCD camera (KX32ME, Apogee Instruments). The illumination arm was set at an 
incident angle of θ0 from the normal of target surface while the imaging arm was oriented 
along the normal to reduce contribution of specular reflection. 

The imaging system was first aligned by adjusting h in Fig. 1(a) to ensure a conjugate 
relation between the object plane of z = 0 at the target surface and the image plane of camera 
sensor, which yielded the maximum contrast in acquired images with the grating pattern. 
Then reflection images Ir(x, y; λ) were acquired from a sample target at selected wavelengths 
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where (x, y) are the pixel coordinates of the camera sensor corresponding to the target surface 
of (x, y, 0) in the field-of-view (FOV). Afterward, the target was replaced with a diffuse 
reflectance standard to measure the incident beam profile as Is(x, y; λ). Two standards were 
used with calibrated reflectance Rs(λ) centered at 40% or 80% supplied by vendor (SRS-40-
020, SRS-80-020, Labsphere). In each multispectral measurement, background images of 
Irb(x, y) or Isb(x, y) were also acquired with the incident beam blocked. The measured 
reflectance images Rm(x, y; λ) and beam profile images Sm(x, y; λ) were obtained as follows 
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where Imax, s = max[Is(x, y; λ)−Isb(x, y)] is used to normalize both Ir and Is. The measured 
images were further cropped and pixel binned to produce a 30mm FOV divided into a 
101x101 grid for simulation described below. Figures 1(b) to 1(d) present photos of 
reflectance standard, phantoms and examples of Ir(x, y; λ) and Is(x, y; λ) before binning. 

Fig. 1. (a) Schematic of reflectance imaging and phantom: I: iris; S: stencil; L: collimating 
lens; WF: wavelength filter wheels; w: beam radius; CL: camera lens; A: lens aperture 
diameter; h: lens-target distance; (b) photos of (from left to right): two homogeneous phantoms 
of light and dark appearances, an 80% diffuse reflectance standard and a melanoma phantom; 
(c) reflection images of a homogeneous phantom of light appearance (Ir: left) and an 80%
diffuse reflectance standard (Is: right) at θ0 = 45° and λ = 620nm without stencil for top-hat
beam profile; (d) similar as (c) with stencil for grating beam profile. Bars = 10mm for photos
in (b) and (c).

2.2 Calculation of reflectance images by Monte Carlo simulation 

Modeling of light transport in a turbid target to obtain calculated reflectance image was 
carried out with an individual photon tracking MC (iMC) code by tracking individual photons 
according to the RT theory. The code has been developed on the basis of previous ones [20–
25, 28, 29] that tracks photons in the finite volume of the target as depicted in Fig. 1(a). The 
iMC code was validated against the numerical solution of RT equation in the cases of 
homogeneous turbid phantoms [1] (data not shown). With the individual photon tracking 
design, the iMC code can be implemented for parallel computing by GPU and perturbation 
based inverse determination of optical parameters [24, 25]. 

We briefly describe the logic flow of the iMC code here for simulation of reflectance 
imaging with details of the algorithm and validation results given elsewhere [20, 24, 28, 29]. 
It first imports the measured profile Sm(x, y; λ) of the incident beam to generate a proportional 
photon density distribution ρi(x, y, 0_; λ) at each grid point of the target surface or air-side of 
x-y plane at z = 0. Photons of total number N0 are injected into the phantom to represent the
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incident beam. N0 needs to be large enough so that the pixel variances in calculated 
reflectance images are less than 1%. After removing specularly reflected photons from N0 by 
the Fresnel equation for unpolarized light, a total pathlength La is obtained for each of 
remaining photons to be tracked in the turbid target before its first entry. The probability 
density of the {La} set is an exponential function characterized by μa. Individual photon 
tracking then starts by updating free pathlength Ls,i + 1 by another exponential probability 
density function by μs and propagation direction by pHG(cosθ) of single parameter g after ith 
scattering event [24, 29]. Tracking ends for a photon when either its accumulated pathlength 
Ls exceeds La or it exits the target. At each interface between air and the target or different 
zones of a heterogeneous target, the same Fresnel equation is used to determine the fate of 
tracked photon for reflection or refraction [23]. The refractive index n of the target was set to 
a constant value of n = 1.40 based on the measured value at λ = 633nm for the silicone-based 
phantoms used in this study. The n values were determined using a coherent reflectance 
method [30] between 500 and 950nm and its variation in the range was found to be less than 
4%. 

The diffusely reflected photon density ρr(x, y, 0_; P) was determined from photons exiting 
the target on the air side where P is the optical parameter set as P = {μa, μs, g} for 
homogeneous phantoms and P = (μa1, μs1, g1; μa2, μs2, g2) for 2-zone heterogeneous phantoms. 
Those photons registered for ρr need to locate inside the FOV defined by the camera lens at z 
= −h and the solid angle of viewing ΔΩ(x, y, h) subtended by the lens of numerical aperture 
NA = sinα, as marked in Fig. 1(a). With ρi and ρr, we define the calculated reflectance image 
Rc(x, y, -h; λ, P) as 

max,

( , , ; )
( , , ; , ) ,

( )
− = r

c
s

x y h P
R x y h P

ρλ
ρ λ
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where 
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In deriving Eq. (3), we assumed that the diffuse reflectance standard behaves as an ideal 
Lambertian reflector which is a very good approximation for small viewing angles [31, 32]. 
We verified the Lambertian behavior of the diffuse reflectance standards by measurement of 
the reflected light intensity recorded at the center region of the CCD sensor as a function of 
cosθ0 for 40° ≤ θ0 ≤ 80°, which was found to be linear with a slope proportional to the 
calibrated reflectance as expected. 

2.3 Sample preparation and patient imaging 

Two types of silicone based turbid suspensions with light and dark appearance have been 
prepared for making phantoms with TiO2 powders (213581000, Acros Organics) and different 
concentrations of brown pigment powders (Pbr7, Kama Pigments) mixed in silicone polymer 
(RTV615A, MG Chemicals). The suspensions were stirred for 1 week to ensure homogeneity 
before casting and curing. Homogeneous turbid phantoms were prepared in cylindrical shaped 
molds of 40mm in outside diameter and 10mm in thickness. Multiple thin disk copies were 
made for each homogeneous phantom out of the same suspension with 18mm in diameter and 
0.1 to 1mm in thickness for integrating sphere based measurements to determine their optical 
parameter set P [28]. In this method, the collimated transmittance was first measured with 
four thin disks of different thickness to determine the attenuation coefficient μt = μa + μs. This 
was followed by the measurement of diffuse reflectance and transmittance from one disk 
sample. Finally, a MC code developed for the integrating sphere method was used to 
determined P = (μa, μs, g) at different wavelengths [28]. These data allow calibration of the 
reflectance imaging method for P measurement with the homogeneous phantoms. 
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Heterogeneous phantoms of melanoma have also been made with the same two 
suspensions. The light suspensions were first cast into a mold to prepare host phantoms, each 
of which has the same outside diameter and thickness as the homogenous phantoms and a 
cylindrically shaped cavity of 8mm in diameter and variable depth Dm at the center. After 
curing, the dark suspension was filled into the cavity as the embedded region and pressed 
with a cover glass to ensure that the completed phantoms have flat surfaces and contain no 
visible air bubbles. Heterogeneous phantoms of three different Dm were selected for this study 
to investigate the feasibility of reflectance imaging method for noninvasive determination of 
Dm. Figure 1(b) shows one heterogeneous and two homogenous turbid phantoms. 

To further examine the clinical potentials, we have acquired multispectral images from 4 
patients of dysplastic melanocytic nevi in the Leo W. Jenkins Cancer Center under an IRB 
protocol approved by Brody school of Medicine, East Carolina University. For patient 
imaging, the interference filter wheels were replaced by a long-pass filter with the edge at 
500nm and one of two liquid-crystal-tunable-filters (LCTF, VIS-07-20-STD-110, NIR-07-20-
STD-110, CRI) of 10nm bandwidth to rapidly tune the wavelengths of incident beam during 
imaging with 15nm stepsizes. Figure 2(a) shows the patient imaging system with the incident 
beam angle of θ0 = 45°. To reduce motion of FOV during imaging, a locking device was 
developed that consists of an optical window of 25mm in diameter at the end of illumination 
arm and a holding ring taped on the imaged skin site of patient as shown in Fig. 2(b). Before 
imaging, the optical window was coated with a very thin layer of clear ultrasound gel to 
ensure no-air contact with the patient skin. Each of illumination and imaging arms included a 
linear polarizer for acquiring cross-polarized reflection images of Ir(x, y; λ) to reduce the light 
backscattered from superficial skin layers [33]. 

Fig. 2. (a) The reflectance imaging unit for patient imaging; (b) a holding ring taped on a 
patient’s back. 

3. Results

3.1 Effects of imaging parameters on the calculated reflectance image Rc 

The measured and calculated reflectance images, Rm and Rc, defined in Eqs. (1) and (3), differ 
by the planes of light or photon distributions. The former was collected with the camera lens 
at z = -h and the latter was calculated at z = 0_. Since the imaging process in this study is 
noncoherent in nature and far from the diffraction limit, we assumed that the point-spread 
function of camera lens is shift-invariant and distortion-free. Hence the difference between 
Rm and Rc is mainly due to the variation of solid angle ΔΩ(x, y, h) across FOV. While Rc can 
be simulated at z = -h by eliminating the diffusely reflected photons exiting at (x, y, 0_) 
outside ΔΩ(x, y, h), such an approach reduces significantly the registered photon numbers 
because of the very small solid angle ratio of ΔΩ(x, y, h)/2π, about 10−4 for h≥400mm, and 
requires large values of N0 to reduce the pixel variances of Rc. To improve simulation speed, 
we investigated the h dependence of Rc(x, y)|h = Rc(x, y, -h; λ, P) of homogeneous phantoms 
for both beam profiles of top-hat and grating. The effects of incident angle θ0 from 0° to 45°, 
beam radius w, lens aperture diameter A and optical parameter P have also been investigated 
on Rc with two sets of examples presented in Fig. 3. 
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In Fig. 3(a), linear profiles of Rc(x, y)|h collected by a camera lens were plotted against the 
x-axis with an ideal top-hat beam incident on a homogeneous phantom with θ0 = 0°. For h = 
0.2mm, the profile is obviously limited by the lens aperture of A = 10mm. But as h exceeds 
16mm, Rc(x,0)|h profiles become alike and the peak pixel value ratio of Rc(0,0)|h/ Rc(0, 0)|h = 

0.2mm approaches to a constant of S = 1.60, as shown in Fig. 1(c). Similar results were obtained 
with grating beam profile as shown in Fig. 1(b) but S value increases to 1.86 as θ0 increases to 
45°. Collectively, these data show clearly that the image pattern is nearly independent of h for 
values larger than 100mm while the peak value of Rc increases with h monotonically in Fig. 
3(c) with a slope approaching to 0. Consequently, we define a scaling constant S = Rc(x, 
y)|h/Rc(x, y)|h = 0 for h = 400 mm for obtaining Rc(x, y, -h; λ, P) by S·Rc(x, y, 0_; λ, P). Figures 
3(a) and 3(b) display scaling examples for both incident beam profiles. We also studied the 
dependence of the S on different P and found the relative change of S to be less than 5% in 
the concerned parameter ranges (data not shown). Based on these results, MC simulations of 
Rc(x, y; 0_; λ, P) for this study were carried out at h = 0 and then scaled to h = 400mm by 
multiplying with S = 1.86 for θ0 = 45° before comparison to Rm. This method drastically 
reduces the required values of N0 by 4 orders of magnitude to about 1x108 and simulation 
time. 

 

Fig. 3. The linear profiles of Rc(x, y)|h calculated with homogeneous phantoms and collected 
by the camera lens at different h represented by solid lines: (a) P = (μa = 1.00mm−1, μs = 
5.00mm−1, g = 0.75), θ0 = 0°, w = 12.5mm, ideal top-hat incident beam profile and A = 10mm; 
symbols represent S·Rc(x, 0) of h = 0.2mm with S = 1.60; (b) P = (μa = 0.50mm−1, μs = 
1.80mm−1, g = 0.60), θ0 = 45°, w = 10mm, grating incident beam profile Sm(x, y; λ) acquired 
from a dark phantom at λ = 620nm and A = 18mm; symbols represent S·Rc(0, y) with S = 
1.86; (c) h dependence of peak pixels of Rc in (a) at x = 0, y = 0 and in (b) at x = 0, y = 
−5.0mm. Other parameters: N0 ranging between 1x108 and 1x1012. The lines in (c) are for 
visual guide. 

3.2 Rapid simulation of the reflectance image Rc by GPU implementation 

The iMC code for Rc(x, y, 0_; λ, P) has been implemented in a CUDA (8.0, Nvidia) enabled 
GPU version for parallel executions on a GPU board (Tesla K20, Nvidia), which is denoted 
as iMC-GPU. In this code, photons injected into the target were tracked with a single-
instruction-multiple-threads (SIMT) design. Compared to the single-instruction multiple-data 
(SIMD) paradigm, SIMT executes the programmatically equal code as different threads on 
GPU cores concurrently with data branching [34] using statistically independent sequences of 
random numbers. To improve performance, we grouped individual photon tracking to the 
SIMT based streaming architects. Before tracking starts, the total pathlength La were obtained 
for all injected photons which were then sorted into groups of similar La. The threads for 
tracking photons in the same group were submitted to and processed in the same streaming 
multiprocessor (SM) of the K20 boards that include 13 SMs of total 2496 cores. Each SM can 
handle up to 1920 threads or 10 threads per core. With this and other improvements over our 
earlier version [24], the current iMC-GPU code can have a speedup ranging between 30 to 50 
relative to the single-CPU-core execution on a CPU of 3.4GHz (i7-3770, Intel). For N0 = 
1x108, the wall-clock time for iMC-GPU simulation of one reflectance image of Rc of a 
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homogeneous phantom were 2.3s and 49s with P = (0.64mm−1, 0.66mm−1, 0.96) and 
(0.0088mm−1, 1.29mm−1, 0.36), respectively. 

3.3 Study of the uniqueness of inverse solutions and the effect of the beam profile 

The goal of reflectance imaging is to determine inversely the optical parameter set P and 
thickness of an embedded region from Rm(x, y; λ). The inverse problem is defined here as an 
optimization problem for searching the minimum value δmin of an objective function δ for 
given λ and n = 1.40. The function δ given below is defined as the mean error between the 
measured and calculated images 
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where Rc(x, y, -h; λ, P) = SRc(x, y, 0_; λ, P) as discussed in subsection 3.1 and the sum is 
taken over all pixels located at target surface of (x, y, 0_) with a weighing factor H and Np is 
the total number of pixels with H = 1. The factor H is set to 0 if the pixel value of Rm is less 
than 5% of the maximum pixel value and 1 otherwise to exclude very low valued pixels that 
are in the peripheral region of the FOV because of low incident irradiance. 

 

Fig. 4. The contour plots of the objective function δ with μt = 1.66mm−1 for the plots on the left 
and a = 0.760 for the plots on the right. The measure images Rm(x, y; λ) were obtained from a 
dark homogeneous phantom with θ0 = 45° and λ = 620nm of grating or top-hat beam profile. 

For inverse solutions to converge or δ ≤ δmin, we found that it is critical to use the beam 
profile image Sm(x, y; λ) measured with a diffuse reflectance standard for calculating. The use 
of Sm instead of an analytical function and the same normalization scheme for Rm and Rc was 
essential for the inverse problems to have unique solutions. We first investigated the effect of 
incident beam profiles on the functional form of δ in the parameter space of (μt, a, g) with a = 
μs/μt as the scattering albedo. Two profiles of top-hat and grating were investigated which are 
shown in Figs. 1(c) and 1(d). At each value of μt about 200 images of Rc were calculated with 
different values of a = μs/μt and g to obtain a contour plot of δ against one measured image 
Rm. 

With different μt we found that a unique solution or single minimum of δ exists for both 
beam profiles and Fig. 4 presents contour plots as examples for each profile. As can be seen 
from these plots that the grating profile produces a slightly steeper slope for δ to descend to 
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δmin and the parameter values obtained there are closer to the values determined by the 
integrating sphere based method. We attribute the advantage of grating profile over the top-
hat to the larger variation in the reflectance values which makes δ more sensitive to the 
parameter change. For this reason, we chose the grating profile for subsequent study with 
phantoms while for patient imaging the top-hat profile was used for less sensitivity of Rm to 
patient’s motion. To examine the convergence of the inverse algorithm with grating profile of 
incident beam, we also investigated the landscape of δ in the parameter space for additional 
homogeneous phantoms at selected wavelengths. About 2000 reflectance images were 
calculated in about 12 steps along each axis of (μt, a, g) to generate each two-dimensional 
contour map plot of δ shown in Fig. 5 against each Rm measured with a phantom of light 
appearance. By these data, we confirmed that a unique minimum exists for δ for the surveyed 
ranges of the parameters for either light or dark phantoms. These results indicate that the 
objective function δ depends most sensitively on a, less on g and least on μt. 

 

Fig. 5. The contour plots of δ obtained with the reflectance image measured from a light 
phantom sample with an incident beam of grating profile at θ0 = 45° and λ = 500nm. 

3.4 Determination of P for homogeneous samples 

For homogeneous phantoms, a nonlinear conjugate gradient (CG) algorithm [26, 27] was 
adopted to obtain P = (μa, μs, g) from Rm(x, y; λ) by iterated iMC-GPU simulations. In this 
algorithm, the solution P was obtained by iterating a trial solution vector of pk = (μak, μsk, gk) 
of the following recurrence until δ ≤ δmin 

 1 ,k k k kα+ = +p p d  (6) 

where k = 0,1,… is the iteration index, αk > 0 is the stepsize of iteration and δmin was set to 
0.1. The search direction for kth iteration dk is given by 
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where gk = ∇δk is the gradient of δ in the parameter space and βk is a scalar update parameter 
to ensure convergence in a nonlinear inverse problem. 

Initially introduced in [26], the following form of βk was employed in our study [27] 
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where the superscript T indicates transpose and yk = gk + 1− gk. After the direction dk is 
obtained, a strong Wolfe line search was performed to find αk that satisfies the conditions 
below [27], 

( ) ( ) ,T
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and 

( ) ,T T
k k k k k kα σ+ ≤ −g p d d g d (10)

where 0 < ρ < σ < 1. Using the above CG algorithm, we iterated GPU-iMC simulations with σ 
= 2ρ = 0.5 after tests. The initial solution p0 for each homogeneous phantom at the first 
wavelength was set to those determined by the integrating sphere method on the thin disk 
copies of the same suspension materials as the imaging phantoms. With P determined at the 
first wavelength, the set was used as p0 for successive wavelengths. It took about 100 to 200 
iMC-GPU simulations to converge at δ ≤ δmin for the first wavelength and about 30 to 60 for 
each of subsequent wavelengths. Local search was performed at selected wavelengths to 
confirm that the minimum value of δ is reached at the converged parameter values. 

Figure 6 presents the mean values and standard deviations of optical parameters of the two 
homogeneous phantoms at 25 wavelengths selected with the interference filters based on 
three measurements. It also contains the values of the same parameters determined from the 
thin disk copies of the same suspensions for each phantom by the integrating sphere method 
for comparison and validation of the reflectance imaging method. The results show good 
agreements on values of μa between the two sets of samples which is mainly determined by 
the molecular absorption of the phantom materials. The increased discrepancies on μs and g 
indicate different structures inside the two sets of phantom and thin disk samples on the scales 
of wavelength that could be due to the variations of embedded air micro-bubbles and actual 
distribution of TiO2 particles. Still the wavelength dependence of P yields similar trends on μs 
and reduced scattering coefficient μs’ = (1-g)μs. Taken together, data in Fig. 6 suggest that the 
approach of reflectance imaging and MC based inverse solutions is valid and can be used to 
determine optical parameter set P of turbid phantoms. 

Fig. 6. The wavelength dependence of P = (μa, μs, g) and μs’ = μs(1-g) of homogeneous 
phantoms and thin disk copies made of dark and light suspensions determined by the methods 
of reflectance imaging (RI) and integrating sphere (IS). The error bars represent standard 
deviations of three measurements and lines are for visual guide. 
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3.5 Noninvasive determination of embedded region thickness 

A key potential application for the reflectance imaging approach described here is the 
noninvasive diagnosis and staging of superficial lesions such as dysplastic nevi and malignant 
melanoma. In current melanoma staging system the Breslow’s thickness or tumor thickness 
plays a central role, which can only be determined through examination of biopsied tissues 
[35]. To examine this possibility, we performed imaging measurement on the 2-zone 
heterogeneous phantoms that were made of the two suspensions identical to those for 
homogeneous phantoms. 

Reflectance images Rm were acquired at selected wavelengths from each heterogeneous 
phantom followed by obtaining calculated image Rc with the optical parameters presented in 
Fig. 6 for the two zones and variable D for the zone 2 or the embedded region. Both zones in 
a heterogeneous phantom are of cylindrical shapes with the zone 1 or the host region being of 
40mm in outside diameter and 10mm in thickness and zone 2 embedded in the center of the 
host with 8mm in diameter and variable thickness D. The thickness of the embedded zone 1, 
made of dark suspensions, was controlled to be Dm = 0.6, 1.2 and 1.7 ± 0.1 mm for each of 
the three phantoms. Figure 7 presents the dependence of δ on D for the three heterogeneous 
phantoms at different wavelengths. The thickness D of the zone 1 determined from Rm 
yielded values close to the measured values for Dm = 0.6 and 1.2mm while the difference 
increases for Dm = 1.7mm. Furthermore, the values of D determined from Rm at different 
wavelengths cluster around Dm. These results demonstrate the new approach of reflectance 
imaging has the potential for noninvasive determination of dark zone thickness. The accuracy 
of Dm determination could be increased by averaging D values over multiple wavelengths. 

Fig. 7. The objective function δ versus the thickness D of the embedded region in 
heterogeneous phantoms with reflectance images acquired at different wavelengths. The 
vertical lines and blue arrows indicate the measured thickness Dm and uncertainty and color 
lines are for visual guide. 

3.6 In vivo estimation of optical parameters of melanocytic nevi 

Multispectral reflectance imaging and parameter estimation have been performed on 4 
patients with melanocytic nevi to test the feasibility for pathological diagnosis. The patients 
were selected from those suspected of dysplastic nevi and/or melanoma and were prescribed 
for biopsy. All 4 patients were male Caucasians of fair skin complexion with ages ranging 
from 31 to 72 years old. Reflection images Ir were acquired with p-polarizer in the 
illumination arm and s-polarizer in the imaging arm before biopsy and typically lasted about 
25 minutes for each patient. After patient imaging, beam profile images Is were acquired with 
the diffuse reflectance standard of Rs = 40%. The two sets of images were then processed to 
obtain reflectance images Rm at 31 wavelengths between 500 and 950nm for each patient. 
Figure 8 presents the reflectance images at selected wavelengths from two patients. 
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Fig. 8. Examples of cross-polarized reflectance images acquired at wavelengths as marked on 
each image in the unit of nm. Top row: from patient B with pathology grade 1; bottom row: 
from patient D with pathology grade 4. 

After imaging, each imaged lesion was excised surgically with a margin of about 3mm 
and the excised tissue was fixed in formalin and embedded in paraffin. Tissue slides were 
stained with hematoxylin and eosin (H&E) for histopathology grading after vertical 
sectioning. The severity of each lesion was graded on a standard scale of 0 to 8 based on the 
Clark’s level of invasion [35]: 0 for benign lesion, 1 for mild dysplasia, 2 for moderate 
dysplasia, 3 for severe dysplasia, 4 for melanoma in situ, 5 for invasive melanoma within 
1mm from junction, 6 for invasive melanoma between 1 and 2mm, 7 for invasive melanoma 
between 2 and 4mm and 8 for invasive melanoma beyond 4mm, all from the epidermis-
dermis junction. 

 

Fig. 9. The wavelength dependence of optical parameters of nevus determined from the 
measured reflectance image Rm of 4 patients with melanocytic nevi. The pathology grades are 
noted in parentheses. 

For this part of study, we modified a previous iMC code for two-layer skin modeling [20] 
by a voxel based photon tracking design to handle the irregular shape of the nevi. The 
melanocytic nevus was treated as the zone 3 of heterogeneous tissues in FOV, with the zone 1 
and 2 designated as semi-infinite epidermis and dermis layers respectively. Consequently, the 
optical parameter set for an imaged skin target consists of 9 parameters given by P = {μa1, μs1, 
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g1; μa2, μs2, g2; μa3, μs3, g3}, where the parameter sets of 1, 2 and 3 refer to epidermis, dermis 
and nevus, respectively. Furthermore, the thickness of the epidermis layer was set to Dep = 
0.1mm and that of the nevus Dn to a value consistent with the pathology grade to reduce the 
complexity of the inverse problems of determining P. Compared to the iMC code for 
modeling 2-zone phantoms, the modified iMC-voxel code took about 5-fold longer time to 
complete. 

While the above optical model of skin nevus is reasonably accurate, GPU implementation 
of the iMC-voxel code requires substantial resources to complete reconstruction to achieve 
memory reduction and efficient thread management. Additional difficulty exists in applying 
the CG algorithm with iMC based forward calculations in the high dimensional space of 9 
optical parameters. Instead, we simplified the inverse determination by minimizing the 
objective function δ sequentially in the order of 9 parameters arranged in P followed with a 
limited local search in the subspace of {μa3, μs3, g3} for the nevus. This allows estimation of 
the optical parameters for each imaged nevus with computational times drastically reduce to 
less than 5 hours per wavelength. In Fig. 9 we presented the estimated optical parameters of 
the nevus for 4 patients with a stepsize of 30nm in wavelengths. From these initial results, one 
can see that both absorption coefficient μa3 and anisotropy factor g3 in the near-infrared region 
appear to have larger differences between the patients of low grades and those of high grades. 
The increased μa3 and decreased g3 values for patients of grade 4 and 5 are consistent with the 
variation of the contrasts in the measured images of Rm as shown in Fig. 8, where the nevi 
exhibit increased degree of darkness for λ > 700nm. 

4. Discussion 

Light penetrating into and emanating from a turbid target in backward scattering directions 
carries rich information for turbidity characterization. In this report, we present an approach 
of multispectral reflectance imaging for determining optical and depth parameters of turbid 
targets within the framework of the RT theory, where the sample can be “non-diffusive” or of 
low values of a and g. The new approach utilizes an incoherent light source for illumination 
of the target and can be used to determine μa, μs and g of a target from one reflectance image 
at a selected wavelength. Calibration of the measured and calculated reflectance images with 
the same beam profile image is critical for convergence of the inverse solution. Development 
of an accurate and rapid MC method is also important to form a well-posted inverse problem 
and solve in real times. The imaging approach for optical parameter determination has been 
validated against a well-established integrating sphere method on homogeneous phantoms. 
Currently, we are investigating combination of a diffusion solution for reflectance imaging 
and perturbation to replace iMC-GPU based calculations of Rc for further reduction in 
computational time during iterations [24, 36]. In additional to accuracy, significant reduction 
in Rc calculation time should enable the new approach of reflectance imaging for 
spectrophotometric determination of optical parameters within minutes. 

One significant use of the reflectance imaging approach is to realize noncontact and 
noninvasive optical biopsy for diagnosis and staging of lesions. For this purpose, we 
performed measurement of thickness of an embedded region in heterogeneous phantoms and 
in vivo estimation of optical parameters of nevi in patients. It is widely recognized that the 
thickness of a penetrating pigmented nevus in the skin provides the key indicator for 
diagnosis of a malignant melanoma and patient’s prognosis [35]. With limited searches in 
parameter pace, our results presented in Figs. 7 and 9 illustrate the possibility of thickness 
measurement and the optical parameter set of concerned tissues within the RT theory. The 
large differences in Fig. 9 between the values of g by the two patient groups of low and high 
lesion grades are particularly interesting in exhibiting the diagnosis value of anisotropy factor 
or scattered light distribution. It therefore calls for the necessity to apply RT theory instead of 
various diffusion approximations for taking the advantages of big data nature of imaging 
measurement. Needless to say, the patient data here are of very limited to carry statistical 
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significance and additional studies are required to obtain conclusive results. While not proved 
yet, it is plausible that the reflectance imaging approach described here could be markedly 
improved from sequential 3D inverse searches for optical parameters of different zones in a 
heterogeneous target to a simultaneous inverse search in a 7D or 10D space of optical and 
thickness parameters. 
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