• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Academic Affairs
    • Thomas Harriot College of Arts and Sciences
    • Biology
    • View Item
    •   ScholarShip Home
    • Academic Affairs
    • Thomas Harriot College of Arts and Sciences
    • Biology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Microbial Carbon Assimilation within the Walls of Deep-sea Hydrothermal Vent Chimneys

    Thumbnail
    View/ Open
    Blumenfeld_ecu_0600M_10471.pdf (3.174Mb)

    Show full item record
    Author
    Blumenfeld, Heather N.
    Abstract
    Carbon is one of the most abundant elements on Earth stored in a multitude of reservoirs and constantly cycled through various processes occurring on our planet. Although it represents only a small percentage of the total carbon on Earth, the biosphere is the most active of all carbon reservoirs. We have a comparatively large knowledge of the surface biosphere and primary production associated with phytoplankton and green plants, as well as respiration of organic compounds. A substantial biosphere, driven by "dark energy" or chemical disequilibria may exist for kilometers beneath the continents and the seafloor. Water-rock reactions at high temperatures mobilize the reducing power of the deep Earth, and upon mixing with seawater produce copious and diverse energy sources which can support autotrophic growth. Several remarkable cases of chemotrophic carbon assimilation have been demonstrated since the discovery of the deep-sea vents more than 30 years ago (e.g. bacterial endosymbionts inhabiting the tube worm trophosome), and the isolation of a number of thermophilic and hyperthermophilic chemolithoautotophs. To date, there are six known pathways of carbon assimilation, including the canonical Calvin Benson-Bassham pathway. All of the most recently discovered pathways have been found in thermophiles and Archaea specifically all likely to occurring at deep-sea hydrothermal vents.  This study seeks to document the occurrence of autotrophic microorganisms in the context of thermal and chemical gradients within the walls of deep-sea vent chimneys. Furthermore, we show that the phylogeny of genes associated with the Calvin Benson-Bassham cycle is associated with the environmental characteristics in which it occurs.  This work has implications for understanding feedbacks between environmental characteristics and carbon assimilation as well as the evolutionary history of carbon fixation pathways. These pathways were likely operative since early in Earth's history, and overlap with conditions which favor the abiotic synthesis of small organic molecules. Research in this realm thus may provide clues to the origins and diversification of carbon fixation pathways as well.  
    URI
    http://hdl.handle.net/10342/3625
    Subject
     Microbiology; Biological oceanography; Geobiology; Calvin cycle; Carbon fixation; CbbM; Biology, Microbiology 
    Date
    2011
    Citation:
    APA:
    Blumenfeld, Heather N.. (January 2011). Microbial Carbon Assimilation within the Walls of Deep-sea Hydrothermal Vent Chimneys (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/3625.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Blumenfeld, Heather N.. Microbial Carbon Assimilation within the Walls of Deep-sea Hydrothermal Vent Chimneys. Master's Thesis. East Carolina University, January 2011. The Scholarship. http://hdl.handle.net/10342/3625. March 07, 2021.
    Chicago:
    Blumenfeld, Heather N., “Microbial Carbon Assimilation within the Walls of Deep-sea Hydrothermal Vent Chimneys” (Master's Thesis., East Carolina University, January 2011).
    AMA:
    Blumenfeld, Heather N.. Microbial Carbon Assimilation within the Walls of Deep-sea Hydrothermal Vent Chimneys [Master's Thesis]. Greenville, NC: East Carolina University; January 2011.
    Collections
    • Biology
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback