• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Academic Affairs
    • Thomas Harriot College of Arts and Sciences
    • Chemistry
    • View Item
    •   ScholarShip Home
    • Academic Affairs
    • Thomas Harriot College of Arts and Sciences
    • Chemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    KINETIC MODELING OF DISSOLUTION AND CRYSTALLIZATION OF BATCH REACTIONS WITH IN SITU SPECTROSCOPIC MEASUREMENTS

    Thumbnail
    View/ Open
    Hsieh_ecu_0600M_10791.pdf (7.445Mb)
    Thesis (2.120Mb)

    Show full item record
    Author
    Hsieh, Chun H.
    Abstract
    The use of Process Analytical Technology (PAT) recommended by the Food and Drug Administration (FDA) has significantly increased during the past years in the design, control and monitoring of pharmaceutical or chemical manufacturing processes. Nowadays, PAT is also commonly used in Good Manufacturing Practices (GMPs). Some PAT techniques employ on-line fiber-optic sensors to acquire non-destructive measurements of physical properties. In this thesis we demonstrated that these methods can also be used to obtain kinetic information of dissolved and solid fractions of molecular substances in slurries in real time.  The main objective of this project was to develop a comprehensive model for DuPont's sulfonylurea coupling reaction for monitoring purposes (e.g. detect process upsets, detect endpoints, and forecast changes). The comprehensive model will allow us to estimate the kinetics of the reaction, the kinetics of dissolution, and the kinetics of crystallization.  Before such a complex model can be developed, it was necessary to conduct experiments in a simpler system (e.g. salicylic acid in water-ethanol mixtures). These experiments were designed so the process of dissolution and the process of crystallization could be observed independently of one another and independently of chemical reactions. Consequently, we were able to elucidate an appropriate model for each process in our small-scale semi-batch reactor.  For the simpler system, this study used attenuated total reflectance ultra-violet visible (ATR UV-vis) spectroscopy for kinetic modeling of the dissolution and crystallization of salicylic acid in ethanol-water. The dissolution model, which relied on a power-law equation, was obtained by adding aliquots of an ethanol-water mixture into a salicylic acid slurry. Near-infrared (NIR) diffuse reflectance spectroscopy was used to detect and quantify the solid fraction present in a slurry. Using a Partial Least-Squares (PLS) calibration, we were able to verify and validate the kinetic model. A temperature probe was also used to monitor heat changes involved in these experiments.  
    URI
    http://hdl.handle.net/10342/4005
    Subject
     Chemistry; ATR UV-Vis spectroscopy; Kinetic modeling; NIR reflectance spectroscopy; Nonlinear fitting; Process analytical technology; Slurries 
    Date
    2012
    Citation:
    APA:
    Hsieh, Chun H.. (January 2012). KINETIC MODELING OF DISSOLUTION AND CRYSTALLIZATION OF BATCH REACTIONS WITH IN SITU SPECTROSCOPIC MEASUREMENTS (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/4005.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Hsieh, Chun H.. KINETIC MODELING OF DISSOLUTION AND CRYSTALLIZATION OF BATCH REACTIONS WITH IN SITU SPECTROSCOPIC MEASUREMENTS. Master's Thesis. East Carolina University, January 2012. The Scholarship. http://hdl.handle.net/10342/4005. March 03, 2021.
    Chicago:
    Hsieh, Chun H., “KINETIC MODELING OF DISSOLUTION AND CRYSTALLIZATION OF BATCH REACTIONS WITH IN SITU SPECTROSCOPIC MEASUREMENTS” (Master's Thesis., East Carolina University, January 2012).
    AMA:
    Hsieh, Chun H.. KINETIC MODELING OF DISSOLUTION AND CRYSTALLIZATION OF BATCH REACTIONS WITH IN SITU SPECTROSCOPIC MEASUREMENTS [Master's Thesis]. Greenville, NC: East Carolina University; January 2012.
    Collections
    • Chemistry
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback