• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Academic Affairs
    • College of Engineering and Technology
    • Computer Science
    • View Item
    •   ScholarShip Home
    • Academic Affairs
    • College of Engineering and Technology
    • Computer Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Using Synchronized Audio Mapping to Predict Velar and Pharyngeal Wall Locations during Dynamic MRI Sequences

    Thumbnail
    View/ Open
    Rahimian_ecu_0600M_10985.pdf (1.234Mb)

    Show full item record
    Author
    Rahimian, Pooya
    Abstract
    Automatic tongue, velum (i.e., soft palate), and pharyngeal movement tracking systems provide a significant benefit for the analysis of dynamic speech movements. Studies have been conducted using ultrasound, x-ray, and Magnetic Resonance Images (MRI) to examine the dynamic nature of the articulators during speech. Simulating the movement of the tongue, velum, and pharynx is often limited by image segmentation obstacles, where, movements of the velar structures are segmented through manual tracking. These methods are extremely time-consuming, coupled with inherent noise, motion artifacts, air interfaces, and refractions often complicate the process of computer-based automatic tracking. Furthermore, image segmentation and processing techniques of velopharyngeal structures often suffer from leakage issues related to the poor image quality of the MRI and the lack of recognizable boundaries between the velum and pharynx during contact moments. Computer-based tracking algorithms are developed to overcome these disadvantages by utilizing machine learning techniques and corresponding speech signals that may be considered prior information. The purpose of this study is to illustrate a methodology to track the velum and pharynx from a MRI sequence using the Hidden Markov Model (HMM) and Mel-Frequency Cepstral Coefficients (MFCC) by analyzing the corresponding audio signals. Auditory models such as MFCC have been widely used in Automatic Speech Recognition (ASR) systems. Our method uses customized version of the traditional approach for audio feature extraction in order to extract visual feature from the outer boundaries of the velum and the pharynx marked (selected pixel) by a novel method, The reduced audio features helps to shrink the search space of HMM and improve the system performance.   Three hundred consecutive images were tagged by the researcher. Two hundred of these images and the corresponding audio features (5 seconds) were used to train the HMM and a 2.5 second long audio file was used to test the model. The error rate was measured by calculating minimum distance between predicted and actual markers. Our model was able to track and animate dynamic articulators during the speech process in real-time with an overall accuracy of 81% considering one pixel threshold. The predicted markers (pixels) indicated the segmented structures, even though the contours of contacted areas were fuzzy and unrecognizable.  
    URI
    http://hdl.handle.net/10342/4229
    Subject
     Computer science; Hidden Markov model; Machine learning; Mel-frequency cepstral coefficients 
    Date
    2013
    Citation:
    APA:
    Rahimian, Pooya. (January 2013). Using Synchronized Audio Mapping to Predict Velar and Pharyngeal Wall Locations during Dynamic MRI Sequences (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/4229.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Rahimian, Pooya. Using Synchronized Audio Mapping to Predict Velar and Pharyngeal Wall Locations during Dynamic MRI Sequences. Master's Thesis. East Carolina University, January 2013. The Scholarship. http://hdl.handle.net/10342/4229. July 07, 2022.
    Chicago:
    Rahimian, Pooya, “Using Synchronized Audio Mapping to Predict Velar and Pharyngeal Wall Locations during Dynamic MRI Sequences” (Master's Thesis., East Carolina University, January 2013).
    AMA:
    Rahimian, Pooya. Using Synchronized Audio Mapping to Predict Velar and Pharyngeal Wall Locations during Dynamic MRI Sequences [Master's Thesis]. Greenville, NC: East Carolina University; January 2013.
    Collections
    • Computer Science
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback