• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Division of Health Sciences
    • Brody School of Medicine
    • Anatomy and Cell Biology
    • View Item
    •   ScholarShip Home
    • Division of Health Sciences
    • Brody School of Medicine
    • Anatomy and Cell Biology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    [Delta]-catenin: implications in prostate cancer progression

    Thumbnail
    View/ Open
    Nopparat_ecu_0600E_11142.pdf (5.037Mb)

    Show full item record
    Author
    Nopparat, Jongdee
    Abstract
    Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of cancer death among men in the US. Due to the advances in research, the ability to detect and cure PCa has improved and led to significant reductions in PCa patients' mortality. Therefore, determining and understanding specific molecular mechanisms involved in PCa progression is a pivotal step towards the potentially better and more accurate diagnosis and intervention of PCa in the future. [Delta]-catenin is a unique armadillo (Arm) domain containing protein in that it is neural specific and primarily expressed in the brain. However, [delta]-catenin alterations have been implicated in pathogenesis ranging from neuronal deficits, genetic disorders, to cancers. In particular, [delta]-catenin expression is shown to increase in primary human prostatic adenocarcinomas corresponding with PCa progression. Although overexpressed [delta]-catenin in PCa has been reported over a decade ago, few studies have been undertaken to identify how [delta]-catenin promotes PCa progression and what other significant molecules are relevant to its expression. Studies presented in this dissertation explore the effects of a truncated variant of [delta]-catenin involved in promoting PCa using both in vitro PCa culture systems and in vivo mouse models of PCa. Additionally, we aim to test the hypothesis that [delta]-catenin mutations promote PCa progression by interacting with multiple cancer-specific pathways including β-catenin/LEF-1-mediated transcription and HIF-1α. Information presented in this dissertation demonstrates that ectopic [delta]-catenin gene is susceptible to mutagenesis when overexpressed in PCa cells, CWR22Rv-1 and PC-3, leading to sequence disruptions predicting functional alterations. It is shown that PCa cells overexpressing mutant [delta]-catenin increase β-catenin translocation to the nucleus and HIF-1α; expression when cultured under glucose deprived condition. These results suggest that [delta]-catenin mutations provide a survival advantage upon overgrowth and glucose deprivation over the control cells. Furthermore, we demonstrate that [delta]-catenin mutations promote tumor development in mouse prostate with probasin promoter (ARR₂PB)-driven, prostate specific expression of Myc oncogene. Additional investigations indicate that [delta]-catenin mutations in Myc transgenic mice not only promote β-catenin expression leading to dramatically elevated Myc expression but HIF-1α; is also increased in a [delta]-catenin gene-dosage dependent manner. Overall, we reveal that the introduction β-catenin mutations is an important step in metabolic adaptation by modulating β-catenin and HIF-1α; signaling in order to magnify its tumor promoting effect
    URI
    http://hdl.handle.net/10342/4436
    Subject
     Biology, Molecular; [Delta]-catenin; Glucose deprivation; Prostate--Cancer; Somatic mutations; Transgenic mouse models; δ-catenin; Molecular biology 
    Date
    2014
    Citation:
    APA:
    Nopparat, Jongdee. (January 2014). [Delta]-catenin: implications in prostate cancer progression (Doctoral Dissertation, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/4436.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Nopparat, Jongdee. [Delta]-catenin: implications in prostate cancer progression. Doctoral Dissertation. East Carolina University, January 2014. The Scholarship. http://hdl.handle.net/10342/4436. August 08, 2022.
    Chicago:
    Nopparat, Jongdee, “[Delta]-catenin: implications in prostate cancer progression” (Doctoral Dissertation., East Carolina University, January 2014).
    AMA:
    Nopparat, Jongdee. [Delta]-catenin: implications in prostate cancer progression [Doctoral Dissertation]. Greenville, NC: East Carolina University; January 2014.
    Collections
    • Anatomy and Cell Biology
    • Dissertations
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback