• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • ECU Main Campus
    • Thomas Harriot College of Arts and Sciences
    • Biology
    • View Item
    •   ScholarShip Home
    • ECU Main Campus
    • Thomas Harriot College of Arts and Sciences
    • Biology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Responses of Leaf Litter Breakdown Rates and Microbial Enzyme Activity to Salinity in North Carolina Wetlands

    Thumbnail
    View/ Open
    Korn_ecu_0600O_11251.pdf (1.888Mb)

    Show full item record
    Author
    Korn, Patrick R.
    Abstract
    Sea-level rise and human activities are causing the increase of salinity in coastal freshwater wetlands. Increased salinity in some wetlands has been found to accelerate leaf litter decomposition, an important driver of nutrient availability and carbon sequestration. Research at Timberlake Observatory for Wetland Restoration (TOWeR) and two reference wetlands in eastern North Carolina has documented periods of increased salinity associated with drought. Here, I examined breakdown rates of leaf litter from common wetland tree species (Nyssa biflora and Liquidambar styraciflua) in TOWeR and two reference wetlands. I also examined macroinvertebrate abundance and microbial enzyme activity on the litterbags. Leaf breakdown and microbial activity was also measured in a microcosm experiment that exposed microbial inoculums from both reference wetlands to high and low salinities. Microbial extracellular enzyme activity for the acquisition of carbon (beta-glucosidase, BG), nitrogen (N-acetylglucosaminidase, NAG, and leucine aminopeptidase, LAP), phosphorus (acid phosphatase, AP), sulfate (arylsulfatase, AS), and the breakdown of phenol groups (phenol oxidase, PO) was obtained using standard fluorometric (absorbance for PO). Leaf litter breakdown rates, as well as BG, NAG, LAP, PO, and AP activity were expected to increase with higher salinity, while the activity of AS and macroinvertebrate abundance was expected to decrease. During the 29 weeks of the field experiment, salinity incursion was not as prevalent as in previous years; reaching conductivities of 111.59 and 1863.37 [mu] S cm⁻¹ for the sites with the lowest and highest respectively. Despite the lack of a large change in salinity, I observed a tripling of field leaf litter breakdown rate (from 0.001±0.0001 d⁻¹ to 0.0029±0.0001 d⁻¹) and a linear increase of breakdown rates with increasing conductivity across the sites (R²=0.84 p=0.027). Microcosm breakdown rates were higher than field breakdown rates (0.0026±0.007 d⁻¹ to 0.0033±0.0006 d⁻¹) and did not correspond with salinity but did have a strong negative linear relationship with the amount of dissolved organic carbon (DOC) available (R²=0.96 p=0.006). Enzyme activity increased in response to increased salinity in the field and microcosm experiment but responses were not consistent between lab and field and overall were low compared to literature values. Macroinvertebrate presence was low, only being present in 49 out of 315 litter bags, and did not correlate to salinity or increased breakdown rates. Overall, the lack of consistent results between field and microcosm suggest that small changes in salinity are unlikely to lead to major changes in leaf decomposition and microbial enzyme activity. 
    URI
    http://hdl.handle.net/10342/4548
    Subject
     Ecology; Biology; Environmental sciences; Breakdown; Dissolved organic carbon; Leaf litter; Microbial enzyme activity; Salinity; Wetlands; Biology, Ecology 
    Date
    2014
    Citation:
    APA:
    Korn, Patrick R.. (January 2014). Responses of Leaf Litter Breakdown Rates and Microbial Enzyme Activity to Salinity in North Carolina Wetlands (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/4548.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Korn, Patrick R.. Responses of Leaf Litter Breakdown Rates and Microbial Enzyme Activity to Salinity in North Carolina Wetlands. Master's Thesis. East Carolina University, January 2014. The Scholarship. http://hdl.handle.net/10342/4548. September 21, 2023.
    Chicago:
    Korn, Patrick R., “Responses of Leaf Litter Breakdown Rates and Microbial Enzyme Activity to Salinity in North Carolina Wetlands” (Master's Thesis., East Carolina University, January 2014).
    AMA:
    Korn, Patrick R.. Responses of Leaf Litter Breakdown Rates and Microbial Enzyme Activity to Salinity in North Carolina Wetlands [Master's Thesis]. Greenville, NC: East Carolina University; January 2014.
    Collections
    • Biology
    • Master's Theses
    • North Carolina Collection
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback