• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Division of Health Sciences
    • Brody School of Medicine
    • Cardiovascular Sciences
    • View Item
    •   ScholarShip Home
    • Division of Health Sciences
    • Brody School of Medicine
    • Cardiovascular Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Calcium Dependent CAMTA1 in Adult Stem Cell Commitment to a Myocardial Lineage

    Thumbnail
    View/ Open
    pone.0038454.PMC3371086.pdf (730.9Kb)

    Show full item record
    
    Author
    Muller-Borer, Barbara J.; Esch, Gwyn L.; Aldina, Rob; Woon, Woohyun; Fox, Raymond; Bursac, Nenad; Hiller, Sylvia; Maeda, Nobuyuo; Shepherd, Neal; Jin, Jian Ping; Hutson, Mary; Anderson, Page A. W.; Kirby, Margaret L.; Malouf, Nadia N.
    Abstract
    The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1.
    URI
    http://hdl.handle.net/10342/5425
    Date
    2012
    Citation:
    APA:
    Muller-Borer, Barbara J., & Esch, Gwyn L., & Aldina, Rob, & Woon, Woohyun, & Fox, Raymond, & Bursac, Nenad, & Hiller, Sylvia, & Maeda, Nobuyuo, & Shepherd, Neal, & Jin, Jian Ping, & Hutson, Mary, & Anderson, Page A. W., & Kirby, Margaret L., & Malouf, Nadia N.. (January 2012). Calcium Dependent CAMTA1 in Adult Stem Cell Commitment to a Myocardial Lineage. PLoS ONE, (7:6), p.1-12. Retrieved from http://hdl.handle.net/10342/5425

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Muller-Borer, Barbara J., and Esch, Gwyn L., and Aldina, Rob, and Woon, Woohyun, and Fox, Raymond, and Bursac, Nenad, and Hiller, Sylvia, and Maeda, Nobuyuo, and Shepherd, Neal, and Jin, Jian Ping, and Hutson, Mary, and Anderson, Page A. W., and Kirby, Margaret L., and Malouf, Nadia N.. "Calcium Dependent CAMTA1 in Adult Stem Cell Commitment to a Myocardial Lineage". PLoS ONE. 7:6. (1-12.), January 2012. August 11, 2022. http://hdl.handle.net/10342/5425.
    Chicago:
    Muller-Borer, Barbara J. and Esch, Gwyn L. and Aldina, Rob and Woon, Woohyun and Fox, Raymond and Bursac, Nenad and Hiller, Sylvia and Maeda, Nobuyuo and Shepherd, Neal and Jin, Jian Ping and Hutson, Mary and Anderson, Page A. W. and Kirby, Margaret L. and Malouf, Nadia N., "Calcium Dependent CAMTA1 in Adult Stem Cell Commitment to a Myocardial Lineage," PLoS ONE 7, no. 6 (January 2012), http://hdl.handle.net/10342/5425 (accessed August 11, 2022).
    AMA:
    Muller-Borer, Barbara J., Esch, Gwyn L., Aldina, Rob, Woon, Woohyun, Fox, Raymond, Bursac, Nenad, Hiller, Sylvia, Maeda, Nobuyuo, Shepherd, Neal, Jin, Jian Ping, Hutson, Mary, Anderson, Page A. W., Kirby, Margaret L., Malouf, Nadia N.. Calcium Dependent CAMTA1 in Adult Stem Cell Commitment to a Myocardial Lineage. PLoS ONE. January 2012; 7(6) 1-12. http://hdl.handle.net/10342/5425. Accessed August 11, 2022.
    Collections
    • Cardiovascular Sciences

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback