• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Health Sciences Campus
    • Brody School of Medicine
    • Internal Medicine
    • View Item
    •   ScholarShip Home
    • Health Sciences Campus
    • Brody School of Medicine
    • Internal Medicine
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    The role of PPARγ in carbon nanotube-elicited granulomatous lung inflammation

    Thumbnail
    View/ Open
    1465-9921-14-7.PMC3560264.pdf (2.240Mb)

    Show full item record
    Author
    Huizar, Isham; Malur, Anagha; Patel, Janki; McPeek, Matthew; Dobbs, Larry; Wingard, Christopher J.; Barna, Barbara P.; Thomassen, Mary Jane
    Abstract
    BACKGROUND: Although granulomatous inflammation is a central feature of many disease processes, cellular mechanisms of granuloma formation and persistence are poorly understood. Carbon nanoparticles, which can be products of manufacture or the environment, have been associated with granulomatous disease. This paper utilizes a previously described carbon nanoparticle granuloma model to address the issue of whether peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear transcription factor and negative regulator of inflammatory cytokines might play a role in granulomatous lung disease. PPARγ is constitutively expressed in alveolar macrophages from healthy individuals but is depressed in alveolar macrophages of patients with sarcoidosis, a prototypical granulomatous disease. Our previous study of macrophage-specific PPARγ KO mice had revealed an intrinsically inflammatory pulmonary environment with an elevated pro-inflammatory cytokines profile as compared to wild-type mice. Based on such observations we hypothesized that PPARγ expression would be repressed in alveolar macrophages from animals bearing granulomas induced by MWCNT instillation. METHODS: Wild-type C57Bl/6 and macrophage-specific PPARγ KO mice received oropharyngeal instillations of multiwall carbon nanotubes (MWCNT) (100 μg). Bronchoalveolar lavage (BAL) cells, BAL fluids, and lung tissues were obtained 60 days post-instillation for analysis of granuloma histology and pro-inflammatory cytokines (osteopontin, CCL2, and interferon gamma [IFN-γ] mRNA and protein expression. RESULTS: In wild-type mice, alveolar macrophage PPARγ expression and activity were significantly reduced in granuloma-bearing animals 60 days after MWCNT instillation. In macrophage-specific PPARγ KO mice, granuloma formation was more extensive than in wild-type at 60 days after MWCNT instillation. PPARγ KO mice also demonstrated elevated pro-inflammatory cytokine expression in lung tissue, laser-microdissected lung granulomas, and BAL cells/fluids, at 60 days post MWCNT exposure. CONCLUSIONS: Overall, data indicate that PPARγ deficiency promotes inflammation and granuloma formation, suggesting that PPARγ functions as a negative regulator of chronic granulomatous inflammation.
    URI
    http://hdl.handle.net/10342/5539
    Date
    2013
    Citation:
    APA:
    Huizar, Isham, & Malur, Anagha, & Patel, Janki, & McPeek, Matthew, & Dobbs, Larry, & Wingard, Christopher J., & Barna, Barbara P., & Thomassen, Mary Jane. (January 2013). The role of PPARγ in carbon nanotube-elicited granulomatous lung inflammation. Respiratory Research, 14(1), 7- 7. Retrieved from http://hdl.handle.net/10342/5539

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Huizar, Isham, and Malur, Anagha, and Patel, Janki, and McPeek, Matthew, and Dobbs, Larry, and Wingard, Christopher J., and Barna, Barbara P., and Thomassen, Mary Jane. "The role of PPARγ in carbon nanotube-elicited granulomatous lung inflammation". Respiratory Research. 14:1. (7-7), January 2013. September 26, 2023. http://hdl.handle.net/10342/5539.
    Chicago:
    Huizar, Isham and Malur, Anagha and Patel, Janki and McPeek, Matthew and Dobbs, Larry and Wingard, Christopher J. and Barna, Barbara P. and Thomassen, Mary Jane, "The role of PPARγ in carbon nanotube-elicited granulomatous lung inflammation," Respiratory Research 14, no. 1 (January 2013), http://hdl.handle.net/10342/5539 (accessed September 26, 2023).
    AMA:
    Huizar, Isham, Malur, Anagha, Patel, Janki, McPeek, Matthew, Dobbs, Larry, Wingard, Christopher J., Barna, Barbara P., Thomassen, Mary Jane. The role of PPARγ in carbon nanotube-elicited granulomatous lung inflammation. Respiratory Research. January 2013; 14(1): 7-7. http://hdl.handle.net/10342/5539. Accessed September 26, 2023.
    Collections
    • Internal Medicine

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback