• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Other Campus Research
    • Open Access
    • View Item
    •   ScholarShip Home
    • Other Campus Research
    • Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity

    Thumbnail
    View/ Open
    eaax8352.full.pdf (7.378Mb)

    Show full item record
    
    Author
    Heden, Timothy D.; Johnson, Jordan M.; Ferrara, Patrick J.; Eshima, Hiroaki; Verkerke, Anthony R. P.; Wentzler, Edward J.; Siripoksup, Piyarat; Narowski, Tara M.; Coleman, Chanel B.; Lin, Chien-Te; Ryan, Terence E.; Reidy, Paul T.; Castro Brás, Lisandra E. de; Karner, Courtney M.; Burant, Charles F.; Maschek, J. Alan; Cox, James E.; Mashek, Douglas G.; Kardon, Gabrielle; Boudina, Sihem; Zeczycki, Tonya N.; Rutter, Jared; Shaikh, Saame Raza; Vance, Jean E.; Drummond, Micah J.; Neufer, P. Darrell; Funai, Katsuhiko
    Abstract
    Exercise capacity is a strong predictor of all-cause mortality. Skeletal muscle mitochondrial respiratory capacity, its biggest contributor, adapts robustly to changes in energy demands induced by contractile activity. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are regulated. Here, we show that exercise training or muscle disuse alters mitochondrial membrane phospholipids including phosphatidylethanolamine (PE). Addition of PE promoted, whereas removal of PE diminished, mitochondrial respiratory capacity. Unexpectedly, skeletal muscle–specific inhibition of mitochondria-autonomous synthesis of PE caused respiratory failure because of metabolic insults in the diaphragm muscle. While mitochondrial PE deficiency coincided with increased oxidative stress, neutralization of the latter did not rescue lethality. These findings highlight the previously underappreciated role of mitochondrial membrane phospholipids in dynamically controlling skeletal muscle energetics and function.
    URI
    http://hdl.handle.net/10342/8234
    Date
    2019-09-11
    Citation:
    APA:
    Heden, Timothy D., & Johnson, Jordan M., & Ferrara, Patrick J., & Eshima, Hiroaki, & Verkerke, Anthony R. P., & Wentzler, Edward J., & Siripoksup, Piyarat, & Narowski, Tara M., & Coleman, Chanel B., & Lin, Chien-Te, & Ryan, Terence E., & Reidy, Paul T., & Castro Brás, Lisandra E. de, & Karner, Courtney M., & Burant, Charles F., & Maschek, J. Alan, & Cox, James E., & Mashek, Douglas G., & Kardon, Gabrielle, & Boudina, Sihem, & Zeczycki, Tonya N., & Rutter, Jared, & Shaikh, Saame Raza, & Vance, Jean E., & Drummond, Micah J., & Neufer, P. Darrell, & Funai, Katsuhiko. (September 2019). Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity. Science Advances, (5:9), p.eaax8352. Retrieved from http://hdl.handle.net/10342/8234

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Heden, Timothy D., and Johnson, Jordan M., and Ferrara, Patrick J., and Eshima, Hiroaki, and Verkerke, Anthony R. P., and Wentzler, Edward J., and Siripoksup, Piyarat, and Narowski, Tara M., and Coleman, Chanel B., and Lin, Chien-Te, and Ryan, Terence E., and Reidy, Paul T., and Castro Brás, Lisandra E. de, and Karner, Courtney M., and Burant, Charles F., and Maschek, J. Alan, and Cox, James E., and Mashek, Douglas G., and Kardon, Gabrielle, and Boudina, Sihem, and Zeczycki, Tonya N., and Rutter, Jared, and Shaikh, Saame Raza, and Vance, Jean E., and Drummond, Micah J., and Neufer, P. Darrell, and Funai, Katsuhiko. "Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity". Science Advances. 5:9. (eaax8352.), September 2019. April 18, 2021. http://hdl.handle.net/10342/8234.
    Chicago:
    Heden, Timothy D. and Johnson, Jordan M. and Ferrara, Patrick J. and Eshima, Hiroaki and Verkerke, Anthony R. P. and Wentzler, Edward J. and Siripoksup, Piyarat and Narowski, Tara M. and Coleman, Chanel B. and Lin, Chien-Te and Ryan, Terence E. and Reidy, Paul T. and Castro Brás, Lisandra E. de and Karner, Courtney M. and Burant, Charles F. and Maschek, J. Alan and Cox, James E. and Mashek, Douglas G. and Kardon, Gabrielle and Boudina, Sihem and Zeczycki, Tonya N. and Rutter, Jared and Shaikh, Saame Raza and Vance, Jean E. and Drummond, Micah J. and Neufer, P. Darrell and Funai, Katsuhiko, "Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity," Science Advances 5, no. 9 (September 2019), http://hdl.handle.net/10342/8234 (accessed April 18, 2021).
    AMA:
    Heden, Timothy D., Johnson, Jordan M., Ferrara, Patrick J., Eshima, Hiroaki, Verkerke, Anthony R. P., Wentzler, Edward J., Siripoksup, Piyarat, Narowski, Tara M., Coleman, Chanel B., Lin, Chien-Te, Ryan, Terence E., Reidy, Paul T., Castro Brás, Lisandra E. de, Karner, Courtney M., Burant, Charles F., Maschek, J. Alan, Cox, James E., Mashek, Douglas G., Kardon, Gabrielle, Boudina, Sihem, Zeczycki, Tonya N., Rutter, Jared, Shaikh, Saame Raza, Vance, Jean E., Drummond, Micah J., Neufer, P. Darrell, Funai, Katsuhiko. Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity. Science Advances. September 2019; 5(9) eaax8352. http://hdl.handle.net/10342/8234. Accessed April 18, 2021.
    Collections
    • Open Access

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback