• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Other Campus Research
    • Open Access
    • View Item
    •   ScholarShip Home
    • Other Campus Research
    • Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard

    Thumbnail
    View/ Open
    Main Article (424.8Kb)

    Show full item record
    Author
    Clough, Lisa M.
    Abstract
    We assessed the digestibility and utilization of ice algae and phytoplankton by the shallow, subtidal benthos in Ny Ålesund (Kongsfjord) on Svalbard (79°N, 12°E) using chlorophyll a(chl a), essential fatty acids (EFAs) and stable isotopes as tracers of food consumption and assimilation. Intact benthic communities in sediment cores and individuals of dominant benthic taxa were given ice algae, phytoplankton, 13C-enriched ice algae or a no food addition control for 19 to 32 d. Ice algae and phytoplankton had significantly different isotopic signatures and relative concentrations of fatty acids. In the food addition cores, sediment concentrations of chl aand the EFA C20:5(n-3) were elevated by 80 and 93%, respectively, compared to the control after 12 h, but decreased to background levels by 19 d, suggesting that both ice algae and phytoplankton were rapidly consumed. Whole core respiration rates in the ice algae treatments were 1.4 times greater than in the other treatments within 12 h of food addition. In the ice algae treatment, both suspension and deposit feeding taxa from 3 different phyla (Mollusca, Annelida and Sipuncula) exhibited significant enrichment in δ13C values compared to the control. Deposit feeders (15% uptake), however, exhibited significantly greater uptake of the 13C-enriched ice algae tracer than suspension feeders (3% uptake). Our study demonstrates that ice algae are readily consumed and assimilated by the Arctic benthos, and may be preferentially selected by some benthic species (i.e. deposit feeders) due to their elevated EFA content, thus serving as an important component of the Arctic benthic food web.
    URI
    http://hdl.handle.net/10342/8854
    Subject
    Ice algae · Phytoplankton · Food quality · Arctic benthos · Climate change · Stable isotopes · Essential fattyacids · Svalbard
    Date
    2006-04-03
    Citation:
    APA:
    Clough, Lisa M.. (April 2006). Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. , (), - . Retrieved from http://hdl.handle.net/10342/8854

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Clough, Lisa M.. "Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard". . . (), April 2006. September 30, 2023. http://hdl.handle.net/10342/8854.
    Chicago:
    Clough, Lisa M., "Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard," , no. (April 2006), http://hdl.handle.net/10342/8854 (accessed September 30, 2023).
    AMA:
    Clough, Lisa M.. Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. . April 2006; (): . http://hdl.handle.net/10342/8854. Accessed September 30, 2023.
    Collections
    • Open Access

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback