Transthyretin Aggregation Pathway toward the Formation of Distinct Cytotoxic Oligomers
Loading...
URI
Date
2019-01-10
Access
Authors
Dasari, Anvesh K. R.
Hughes, Robert M.
Wi, Sungsool
Hung, Ivan
Gan, Zhehong
Kelly, Jeffrey W.
Lim, Kwang Hun
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Characterization of small oligomers formed at an early stage of amyloid formation is critical to
understanding molecular mechanism of pathogenic aggregation process. Here we identifed and
characterized cytotoxic oligomeric intermediates populated during transthyretin (TTR) aggregation
process. Under the amyloid-forming conditions, TTR initially forms a dimer through interactions
between outer strands. The dimers are then associated to form a hexamer with a spherical shape, which
serves as a building block to self-assemble into cytotoxic oligomers. Notably, wild-type (WT) TTR tends
to form linear oligomers, while aTTR variant(G53A) prefers forming annular oligomers with pore-like
structures. Structural analyses of the amyloidogenic intermediates using circular dichroism (CD) and
solid-state NMR revealthatthe dimer and oligomers have a signifcant degree of native-like β-sheet
structures (35–38%), but with more disordered regions (~60%)than those of nativeTTR.TheTTR variant
oligomers are also less structured than WT oligomers. The partially folded nature of the oligomeric
intermediates might be a common structural property of cytotoxic oligomers.The higher fexibility of
the dimer and oligomers may also compensate for the entropic loss due to the oligomerization of the
monomers.
Description
Keywords
Citation
DOI
10.1038/s41598-018-37230-1