Repository logo
 

Label-free classification of cultured cells through diffraction imaging

dc.contributor.authorDong, Ke
dc.contributor.authorFeng, Yuanming
dc.contributor.authorJacobs, Kenneth M.
dc.contributor.authorLu, Jun Q.
dc.contributor.authorBrock, R. Scott
dc.contributor.authorYang, Li V.
dc.contributor.authorBertrand, Fred E.
dc.contributor.authorFarwell, Mary A.
dc.contributor.authorHu, Xin-Hua
dc.date.accessioned2016-06-27T18:45:12Z
dc.date.available2016-06-27T18:45:12Z
dc.date.issued2011-05
dc.description.abstractAutomated classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. We have investigated this possibility experimentally and numerically using a diffraction imaging approach. A fast image analysis software based on the gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images. The results of GLCM analysis and subsequent classification demonstrate the potential for rapid classification among six types of cultured cells. Combined with numerical results we show that the method of diffraction imaging flow cytometry has the capacity as a platform for high-throughput and label-free classification of biological cells.en_US
dc.identifier.citationBiomedical Optics Express; 2:6 p. 1717-1726en_US
dc.identifier.doi10.1364/BOE.2.001717
dc.identifier.issn2156-7085
dc.identifier.pmidpmc3114236en_US
dc.identifier.urihttp://hdl.handle.net/10342/5774
dc.relation.urihttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114236/en_US
dc.titleLabel-free classification of cultured cells through diffraction imagingen_US
dc.typeArticleen_US
ecu.journal.issue6en_US
ecu.journal.nameBiomedical Optics Expressen_US
ecu.journal.pages1717-1726en_US
ecu.journal.volume2en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1717.PMC3114236.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

Collections