Repository logo
 

Neuron-derived transthyretin modulates astrocytic glycolysis in hormone-independent manner

This item will be available on:

Authors

Zawiślak, Alina
Jakimowicz, Piotr
McCubrey, James A.
Rakus, Dariusz

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

It has been shown that neurons alter the expression of astrocytic metabolic enzymes by secretion of until now unknown molecule(s) into extracellular fluid. Here, we present evidence that neuron-derived transthyretin (TTR) stimulates expression of glycolytic enzymes in astrocytes which is reflected by an increased synthesis of ATP. The action of TTR is restricted to regulatory enzymes of glycolysis: phosphofructokinase P (PFKP) and pyruvate kinase M1/M2 isoforms (PKM1/2). The regulation of PFK and PKM expression by TTR is presumably specific for brain tissue and is independent of the role of TTR as a carrier protein for thyroxine and retinol. TTR induced expression of PKM and PFK is mediated by the cAMP/PKA-dependent pathway and is antagonized by the PI3K/Akt pathway. Our results provide the first experimental evidence for action of TTR as a neuron-derived energy metabolism activator in astrocytes and describe the mechanisms of its action. The data presented here suggest that TTR is involved in a mechanism in which neurons stimulate degradation of glycogen-derived glucosyl units without significant modulation of glucose uptake by glial cells.

Description

Keywords

Citation

item.page.doi

10.18632/oncotarget.22542

Collections