Development of a Finite Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water
Date
2013-08-12
Authors
Sprague, Mark W.
Luczkovich, Joseph J.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We developed a finite difference time domain (FDTD) model for sound propagation using pressure and velocity grids with both three-dimensional Cartesian and two-dimensional cylindrical implementations. Propagation parameters, including water and sediment properties, can vary in each dimension. The cylindrical implementation uses less computation but requires axial symmetry. The three-dimensional implementation allows anisotropic geometries. We can model both steady-state and transient sounds from discrete and distributed sources such as the surface of a vibrating pile. We compare our calculations to those made using a split-step parabolic equation. Applications of this model include calculating the propagation of individual fish sounds, fish aggregation sounds, and distributed sources in very shallow water.
Description
Citation
Sprague, M. W. and Luczkovich, J. J. (2013), "Development of a Finite Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water," in 3rd International Conference on The Effects of Noise on Aquatic Life, 11-16 August 2013, Budapest, Hungary.