Repository logo
 

N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression

dc.contributor.authorFry, Nate J.
dc.contributor.authorLaw, Brittany A.
dc.contributor.authorIlkayeva, Olga R.
dc.contributor.authorCarraway, Kristen R.
dc.contributor.authorHolley, Christopher L.
dc.contributor.authorMansfield, Kyle D.
dc.date.accessioned2020-04-02T18:12:41Z
dc.date.available2020-04-02T18:12:41Z
dc.date.issued2018-07-27
dc.description.abstractThe mRNA modification N6-methyladenosine (m6A) is involved in many post- transcriptional regulatory processes including mRNA stability and translational efficiency. However, it is also imperative to correlate these processes with phenotypic outputs during cancer progression. Here we report that m6A levels are significantly decreased in genetically-defined immortalized and oncogenically-transformed human mammary epithelial cells (HMECs), as compared with their primary cell predecessor. Furthermore, the m6A methyltransferase (METTL3) is decreased and the demethylase (ALKBH5) is increased in the immortalized and transformed cell lines, providing a possible mechanism for this basal change in m6A levels. Although the immortalized and transformed cells showed lower m6A levels than their primary parental cell line, overexpression of METTL3 and METTL14, or ALKBH5 knockdown to increase m6A levels in transformed cells increased proliferation and migration. Remarkably, these treatments had little effect on the immortalized cells. Together, these results suggest that m6A modification may be downregulated in immortalized cells as a brake against malignant progression. Finally, we found that m6A levels in the immortalized and transformed cells increased in response to hypoxia without corresponding changes in METTL3, METTL14 or ALKBH5 expression, suggesting a novel pathway for regulation of m6A levels under stress.en_US
dc.identifier.doi10.18632/oncotarget.25782
dc.identifier.urihttp://hdl.handle.net/10342/7784
dc.titleN6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progressionen_US
dc.typeArticleen_US
ecu.journal.issue58en_US
ecu.journal.nameOncotargeten_US
ecu.journal.pages31231-31243en_US
ecu.journal.volume9en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
oncotarget-09-31231.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
Description:

Collections