Repository logo
 

Quantitative acoustic differentiation of cryptic species illustrated with King and Clapper rails

dc.contributor.authorStiffler, Lydia L.
dc.contributor.authorSchroeder, Katie M.
dc.contributor.authorAnderson, James T.
dc.contributor.authorMcRae, Susan B.
dc.contributor.authorKatzner, Todd E.
dc.date.accessioned2020-04-02T19:16:11Z
dc.date.available2020-04-02T19:16:11Z
dc.date.issued2018-10-14
dc.description.abstractReliable species identification is vital for survey and monitoring programs. Recently, the development of digital technology for recording and analyzing vocalizations has assisted in acoustic surveying for cryptic, rare, or elusive species. However, the quantitative tools that exist for species differentiation are still being refined. Using vocalizations recorded in the course of ecological studies of a King Rail (Rallus elegans) and a Clapper Rail (Rallus crepitans) population, we assessed the accuracy and effectiveness of three parametric (logistic regression, discriminant function analysis, quadratic discriminant function analysis) and six nonparametric (support vector machine, CART, Random Forest, k‐nearest neighbor, weighted k‐nearest neighbor, and neural networks) statistical classification methods for differentiating these species by their kek mating call. We identified 480 kek notes of each species and quantitatively characterized them with five standardized acoustic parameters. Overall, nonparametric classification methods outperformed parametric classification methods for species differentiation (nonparametric tools were between 57% and 81% accurate, parametric tools were between 57% and 60% accurate). Of the nine classification methods, Random Forest was the most accurate and precise, resulting in 81.1% correct classification of kek notes to species. This suggests that the mating calls of these sister species are likely difficult for human observers to tell apart. However, it also implies that appropriate statistical tools may allow reasonable species‐level classification accuracy of recorded calls and provide an alternative to species classification where other capture‐ or genotype‐based survey techniques are not possible.en_US
dc.identifier.doi10.1002/ece3.4711
dc.identifier.urihttp://hdl.handle.net/10342/7815
dc.titleQuantitative acoustic differentiation of cryptic species illustrated with King and Clapper railsen_US
dc.typeArticleen_US
ecu.journal.nameEcology and Evolutionen_US
ecu.journal.pages12821–12831en_US
ecu.journal.volume8en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ece3.4711.pdf
Size:
767.56 KB
Format:
Adobe Portable Document Format
Description:

Collections