Repository logo
 

Dissecting Convolutional Neural Networks

dc.access.optionOpen Access
dc.contributor.advisorDing, Junhua
dc.contributor.authorWhitaker, Justin Daniel
dc.contributor.departmentComputer Science
dc.date.accessioned2019-06-18T13:25:48Z
dc.date.available2019-06-18T13:25:48Z
dc.date.created2018-05
dc.date.issued2019-06-12
dc.date.submittedMay 2018
dc.date.updated2019-06-14T13:22:41Z
dc.degree.departmentComputer Science
dc.degree.disciplineComputer Science
dc.degree.grantorEast Carolina University
dc.degree.levelUndergraduate
dc.degree.nameBS
dc.description.abstractI examined the hidden layers of a convolutional neural network for MNIST handwritten digit classification. I found that it is possible to view how backpropagation affects nodes in the activation maps of hidden layers by visualizing their outputs as images across training epochs. This can allow one to look inside the black box of neural networks and to gain a deeper understanding of their mechanics.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10342/7293
dc.publisherEast Carolina University
dc.subjectmachine learning
dc.subjectneural network
dc.subjectconvolutional
dc.subjectsupervised learning
dc.titleDissecting Convolutional Neural Networks
dc.typeHonors Thesis
dc.type.materialtext

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
WHITAKER-HONORSTHESIS-2018.pdf
Size:
485.16 KB
Format:
Adobe Portable Document Format

Collections