Deep Sequencing Reveals Transcriptome Re-Programming of Cells to the Elicitation with Methyl Jasmonate

Loading...
Thumbnail Image

Date

2013

Access

Authors

Sun, Guiling
Yang, Yanfang
Xie, Fuliang
Wen, Jian-Fan
Wu, Jianqiang
Wilson, Iain W.
Tang, Qi
Liu, Hongwei
Qiu, Deyou

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Background Plant cell culture represents an alternative source for producing high-value secondary metabolites including paclitaxel (Taxol®), which is mainly produced in Taxus and has been widely used in cancer chemotherapy. The phytohormone methyl jasmonate (MeJA) can significantly increase the production of paclitaxel, which is induced in plants as a secondary metabolite possibly in defense against herbivores and pathogens. In cell culture, MeJA also elicits the accumulation of paclitaxel; however, the mechanism is still largely unknown. Methodology/Principal Findings To obtain insight into the global regulation mechanism of MeJA in the steady state of paclitaxel production (7 days after MeJA addition), especially on paclitaxel biosynthesis, we sequenced the transcriptomes of MeJA-treated and untreated Taxus × media cells and obtained ∼ 32.5 M high quality reads, from which 40,348 unique sequences were obtained by de novo assembly. Expression level analysis indicated that a large number of genes were associated with transcriptional regulation, DNA and histone modification, and MeJA signaling network. All the 29 known genes involved in the biosynthesis of terpenoid backbone and paclitaxel were found with 18 genes showing increased transcript abundance following elicitation of MeJA. The significantly up-regulated changes of 9 genes in paclitaxel biosynthesis were validated by qRT-PCR assays. According to the expression changes and the previously proposed enzyme functions, multiple candidates for the unknown steps in paclitaxel biosynthesis were identified. We also found some genes putatively involved in the transport and degradation of paclitaxel. Potential target prediction of miRNAs indicated that miRNAs may play an important role in the gene expression regulation following the elicitation of MeJA. Conclusions/Significance Our results shed new light on the global regulation mechanism by which MeJA regulates the physiology of Taxus cells and is helpful to understand how MeJA elicits other plant species besides Taxus.

Description

Citation

PLoS ONE; 8:4 p. 1-13

DOI

10.1371/journal.pone.0062865

Collections