Repository logo
 

Ground state modulations in the CP N−1 model

dc.contributor.authorFlachi, Antonino
dc.contributor.authorFucci, Guglielmo
dc.contributor.authorNitta, Muneto
dc.contributor.authorTakada, Satoshi
dc.contributor.authorYoshii, Ryosuke
dc.date.accessioned2020-04-13T17:05:45Z
dc.date.available2020-04-13T17:05:45Z
dc.date.issued2019-10-16
dc.description.abstractIn this work we examine a system consisting of a confined one-dimensional arrangement of atoms that we describe by using the 2-dimensional CPN−1 model, restricted to an interval and at finite temperature. We develop a method to obtain the bulk and boundary parts of the one-loop effective action as a function of the effective mass of the fluctuations. The formalism has the advantage of allowing for a systematic analysis of a large class of boundary conditions and to model the (adiabatic) response of the ground state to changes in the boundary conditions. In the case of periodic boundary conditions, we find that inhomogeneous phases are disfavored for intervals of large size. Away from periodic boundary conditions, our numerical results show that the ground state has a generic crystal-like structure that can be modulate by variations of the boundary conditions. The results presented here could be relevant for experimental implementations of nonlinear sigma models and could be tested by lattice numerical simulations.en_US
dc.identifier.doi10.1103/PhysRevD.100.085006
dc.identifier.urihttp://hdl.handle.net/10342/8079
dc.titleGround state modulations in the CP N−1 modelen_US
dc.typeArticleen_US
ecu.journal.issue8en_US
ecu.journal.namePHYSICAL REVIEW Den_US
ecu.journal.pages085006en_US
ecu.journal.volume100en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevD.100.085006.pdf
Size:
253.92 KB
Format:
Adobe Portable Document Format
Description:

Collections