• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Academic Affairs
    • College of Health and Human Performance
    • Kinesiology
    • View Item
    •   ScholarShip Home
    • Academic Affairs
    • College of Health and Human Performance
    • Kinesiology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    THE ROLE OF LONG-CHAIN ACYL-COENZYME A SYNTHETASE 1 (ACSL-1) IN LIPID METABOLISM IN HUMAN SKELETAL MUSCLE PRIMARY MYOTUBES.

    Thumbnail
    View/ Open
    Ellis_ecu_0600M_10500.pdf (6.589Mb)

    Show full item record
    Author
    Ellis, Rocío Jazmin
    Abstract
    Obesity is considered a major health threat to the U.S. due to being a strong risk factor for developing type 2 diabetes and other metabolic diseases. The prevalence and severity of obesity is even greater among some subpopulations in the U.S. (African-American Women). In this regard, metabolic dysfunction may be associated with an impairment of mitochondrial fatty acid oxidation (mtFAO) which can lead to over accumulation of bioactive lipids such as fatty acyl-CoA species. While reductions in mitochondrial content may be a precipitating variable, reductions in key enzymes that lead to partitioning fatty acids towards mitochondrial oxidation may also be a contributing factor. Recently, reductions of acyl-CoA synthetase (ACS) activity have been identified in skeletal muscle. Long chain acyl-CoA synthetase (ACSL) exists as five different isoforms, the roles of which are to activate fatty acids to acyl-CoAs in the initial step of fatty acid metabolism (synthesis or oxidation). In liver of rodents, ACSL-1 has been thought to direct fatty acids toward mtFAO, but little data exists in human skeletal muscle. The purpose of this study was to understand the potential role of ACSL-1 activity in lipid metabolism in human skeletal muscle. To address the purpose of the study, we employed a model of underexpression/knockdown (UEX/KD) of ACSL-1 in primary human skeletal muscle cells (HSKM). Based on data from our laboratory, ACSL-1 overexpression significantly increased mtFAO in HSKM cells from obese individuals. Therefore, we hypothesized that ACSL-1 UEX/KD would reduce mtFAO in this tissue. To address our hypothesis, we conducted fatty acid oxidation and lipid synthesis experiments following 48 h of lipid exposure in HSKM primary myotubes obtained from percutaneous biopsies of the vastus lateralis transfected with either shRNA (KD) or scrambled RNA (control) plasmid vectors. Results demonstrated that ACSL-1 was significantly reduced (P<0.05) following KD vs. control. However, following ACSL-1 KD, we observed an absence of change in complete (CO2) and acid soluble metabolites (ASM) incomplete metabolites oxidation palmitate. In addition, we also reported no alterations of total lipid synthesis and esterification of acyl-CoA toward MAG, DAG, and TAG synthesis despite the supply of exogenous lipids in our cell model. This is the first report of successful transfection and ACSL-1 KD in HSKM cells. Given the inconsistent findings with our original hypothesis, we now hypothesize the presence of compensatory mechanisms that exist following UEX/KD of ACSL-1 to offset the negative effects of ACSL-1 KD. Alternatives include upregulation of additional ACSL isoforms (e.g., ACSL-5) and/or elevations in peroxisomal activity.  
    URI
    http://hdl.handle.net/10342/3654
    Subject
     Physiology; Science education; Diabetes; Efficiency; Humans; Knockdown; Metabolism; Transfection; Biology, Physiology 
    Date
    2011
    Citation:
    APA:
    Ellis, Rocío Jazmin. (January 2011). THE ROLE OF LONG-CHAIN ACYL-COENZYME A SYNTHETASE 1 (ACSL-1) IN LIPID METABOLISM IN HUMAN SKELETAL MUSCLE PRIMARY MYOTUBES. (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/3654.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Ellis, Rocío Jazmin. THE ROLE OF LONG-CHAIN ACYL-COENZYME A SYNTHETASE 1 (ACSL-1) IN LIPID METABOLISM IN HUMAN SKELETAL MUSCLE PRIMARY MYOTUBES.. Master's Thesis. East Carolina University, January 2011. The Scholarship. http://hdl.handle.net/10342/3654. August 17, 2022.
    Chicago:
    Ellis, Rocío Jazmin, “THE ROLE OF LONG-CHAIN ACYL-COENZYME A SYNTHETASE 1 (ACSL-1) IN LIPID METABOLISM IN HUMAN SKELETAL MUSCLE PRIMARY MYOTUBES.” (Master's Thesis., East Carolina University, January 2011).
    AMA:
    Ellis, Rocío Jazmin. THE ROLE OF LONG-CHAIN ACYL-COENZYME A SYNTHETASE 1 (ACSL-1) IN LIPID METABOLISM IN HUMAN SKELETAL MUSCLE PRIMARY MYOTUBES. [Master's Thesis]. Greenville, NC: East Carolina University; January 2011.
    Collections
    • Kinesiology
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback