• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Academic Affairs
    • College of Health and Human Performance
    • Kinesiology
    • View Item
    •   ScholarShip Home
    • Academic Affairs
    • College of Health and Human Performance
    • Kinesiology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    Comparison of Scaled vs. Ultrasound Based Musculoskeletal Models on Knee Muscle Moments During Single-Leg Squatting

    Thumbnail
    View/ Open
    Pope_ecu_0600M_10719.pdf (5.240Mb)

    Show full item record
    Author
    Pope, John R.
    Abstract
    Muscles produce force, resulting in moments about a joint, causing movement of the body. Muscle forces are estimated with a Hill-type model incorporating four parameters; optimal fiber length (OFL), tendon slack length, physiological cross sectional area (PCSA), pennation angle, and maximal isometric force (F[superscript]max) scaled to individual subjects. Purpose: The purpose of this study was to determine if subject specific musculotendon parameters estimated in vivo using ultrasound would better estimate moments produced about a joint compared to previous scaling methods. Methods: 7 recreationally active and resistance trained males and females with no history of lower extremity injury participated. Subjects performed single-leg squats while kinematic, kinetic, and muscle activation data was recorded. Two models for each subject were used in SIMM to estimate knee moments, activations, and muscle forces: scaled (SC) and ultrasound-based (US). Ultrasound imaging of the primary knee muscles were used to derive subject-specific muscle parameters. Scaled muscle parameters were scaled from the model's generic muscle parameter values. Results: The scaled model produced approximately 50% more error compared to the ultrasound model (RMSE: US= 2.71Nm vs. SC= 6.08 Nm) when comparing inverse dynamics knee moments to each model. EMG analysis showed less error in the ultrasound vs. scaled models when compared to experimental muscle activation (RMSE: US= 0.16 mV ± .07, SC= 0.23 mV ± .09) (p< .05). Hamstring activation error was not statistically different between models (RMSE: US= 0.13 mV ± .07 vs. SC= 0.11 mV ± .04) (p> .05). Correlations between model and experimental EMG were weak to modest in both models for all muscles [Quadriceps: (US r= 0.50 mV ± .45, p< 0.01, SC r= 0.55 mV ± .27, p<0.01), Hamstrings: (US r= 0.44 mV ± .25, p< 0.01; SC r= 0.23 mV ± .30, p< .01)] Conclusion: Advances in methodologies used in the field of biomechanical musculoskeletal modeling could be applied to a variety of pathological patients enabling researchers and physicians to better understand how pathology relates with muscle function. More research is warranted in the attempt of deriving a more physiological relevant muscle modeling technique.
    URI
    http://hdl.handle.net/10342/3952
    Subject
     Biomechanics; Musculoskeletal system; Ultrasounds 
    Date
    2012
    Citation:
    APA:
    Pope, John R.. (January 2012). Comparison of Scaled vs. Ultrasound Based Musculoskeletal Models on Knee Muscle Moments During Single-Leg Squatting (Master's Thesis, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/3952.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Pope, John R.. Comparison of Scaled vs. Ultrasound Based Musculoskeletal Models on Knee Muscle Moments During Single-Leg Squatting. Master's Thesis. East Carolina University, January 2012. The Scholarship. http://hdl.handle.net/10342/3952. March 03, 2021.
    Chicago:
    Pope, John R., “Comparison of Scaled vs. Ultrasound Based Musculoskeletal Models on Knee Muscle Moments During Single-Leg Squatting” (Master's Thesis., East Carolina University, January 2012).
    AMA:
    Pope, John R.. Comparison of Scaled vs. Ultrasound Based Musculoskeletal Models on Knee Muscle Moments During Single-Leg Squatting [Master's Thesis]. Greenville, NC: East Carolina University; January 2012.
    Collections
    • Kinesiology
    • Master's Theses
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback