Species And Stage Specific Developmental Toxicity Of Endosulfan Exposure In Hyla Cinerea And Ranitomeya Imitator

Loading...
Thumbnail Image

Date

2015

Access

Authors

Edwards, Matthew K.

Journal Title

Journal ISSN

Volume Title

Publisher

East Carolina University

Abstract

During ontogeny, organisms pass through critical periods of heightened vulnerability to disruptive exogenous agents. In organisms with complex life cycles, these developmental windows result in variable susceptibility across life stages. Consequently, developmental anomalies that occur during early life may carry-over to affect later stages and ultimately individual fitness. This study investigated stage specific and carry-over effects on anuran growth and development following low dose exposure to the insecticide endosulfan. For this purpose, Hyla cinerea and Ranitomeya imitator embryos and larvae were continuously exposed, either individually or in combination, to a gradient of environmentally relevant concentrations of endosulfan (0, 0.1, 1, 10, 100, and 1,000 ng/L) until completion of metamorphosis. Though effects on mortality, deformity, and timing to and condition at multiple developmental points were not significant, observed abnormalities implicated endosulfan exposure. Embryonic R. imitator exposed to endosulfan experienced greater mortality and deformity than did those exposed as larvae, though H. cinerea life stages did not exhibit large differences with either endpoint. These findings indicate that traditional indicators of developmental toxicity may not provide an adequate characterization of pesticide hazards across species and life stages.

Description

Citation

DOI