INTELLIGENT MODEL FOR IMAGE-BASED RECOMMENDATION SYSTEM
Loading...
Date
Authors
Prateek, Prerna
Journal Title
Journal ISSN
Volume Title
Publisher
East Carolina University
Abstract
Online shopping has developed in parallel with the Internet, and Recommendation Systems have played a pivotal role in its growth. The recommendations are usually provided in two ways: Content-based Filtering and Collaborative Filtering. Both forms of recommendations face the problem of Cold-Start due to an initial lack of information. To overcome this issue, Image-based Recommendation Systems are introduced in order to allow the users to locate products based on similarity of images when purchasing products in categories such as: clothes, shoes, home-decor, kitchen and dining utilities, jewelry, and accessories by mostly viewing images. In this thesis, a Hybrid Model of displaying similar images to that of the product being viewed was developed using Deep Features and Description-based Models. The Hybrid Model displayed a set composed of all images that belong to both Deep Features and Description-based Models. Implementation and comparison of results were performed on 100,000 images of SBU Captioned Photo Dataset.