• Find People
  • Campus Map
  • PiratePort
  • A-Z
    • About
    • Submit
    • Browse
    • Login
    View Item 
    •   ScholarShip Home
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   ScholarShip Home
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of The ScholarShipCommunities & CollectionsDateAuthorsTitlesSubjectsTypeDate SubmittedThis CollectionDateAuthorsTitlesSubjectsTypeDate Submitted

    My Account

    Login

    Statistics

    View Google Analytics Statistics

    The Tumor Suppressive Effects of T Cell Death-Associated Gene 8 in Blood Cancers

    Thumbnail
    View/ Open
    JUSTUS-DOCTORALDISSERTATION-2017.pdf (37.89Mb)

    Show full item record
    Author
    Justus, Calvin Richard
    Abstract
    In the early twentieth century Otto Warburg recognized a metabolic phenomenon that transpired in cancer cells, currently known as the Warburg Effect. Warburg discovered cancer cells favor glycolysis rather than oxidative phosphorylation for energy production, even in the presence of oxygen. As a result of increased glycolytic flux in cancer cells the tumor microenvironment is acidic. Extracellular acidosis has pleiotropic effects on tumor growth and cancer progression. Therefore, it is important to understand how cancer cells sense extracellular acidosis and respond to it. Cancer cells can sense extracellular acidosis through the proton-sensing G-protein-coupled receptor family, which includes GPR65 (TDAG8), GPR4, GPR68 (OGR1), and GPR132 (G2A). In this study, a bioinformatics analysis revealed T cell death-associated gene 8 (TDAG8) expression is significantly reduced in human hematologic malignancies when compared with normal immune cells and leukocyte-rich tissue. This observation prompts the hypothesis that TDAG8 gene expression is unfavorable for cancer progression of hematologic malignancies. To test the hypothesis, TDAG8 gene expression was restored in U937 acute myeloid leukemia cells. Upon investigation, severe extracellular acidosis inhibited U937 cell proliferation while mild acidosis stimulated it. However, restoration of TDAG8 gene expression reduced U937 cell proliferation. Restoring TDAG8 gene expression in various blood cancer cell lines also reduced tumor growth in severe combined immuno-deficient mice, which correlated with a significant reduction in c-myc oncogene expression. Investigations demonstrated TDAG8 activates G[alpha]13/RhoA signaling to reduce c-myc oncogene expression in U937 cells. G[alpha]13/RhoA signaling is crucial for cell attachment, migration, and metastasis. Consequently, metastasis was investigated with U937 cells. Restoring TDAG8 gene expression reduced U937 cell attachment to matrigel, migration toward a chemoattractant, and metastasis in severe combined immuno-deficient mice. Overall, this dissertation provides evidence that TDAG8 delivers a growth disadvantage to cancer cells of hematologic origin and acts as a contextual tumor suppressor.
    URI
    http://hdl.handle.net/10342/6187
    Subject
     G-protein-coupled receptor; tumor microenvironment; cancer 
    Date
    2017-03-16
    Citation:
    APA:
    Justus, Calvin Richard. (March 2017). The Tumor Suppressive Effects of T Cell Death-Associated Gene 8 in Blood Cancers (Doctoral Dissertation, East Carolina University). Retrieved from the Scholarship. (http://hdl.handle.net/10342/6187.)

    Display/Hide MLA, Chicago and APA citation formats.

    MLA:
    Justus, Calvin Richard. The Tumor Suppressive Effects of T Cell Death-Associated Gene 8 in Blood Cancers. Doctoral Dissertation. East Carolina University, March 2017. The Scholarship. http://hdl.handle.net/10342/6187. March 06, 2021.
    Chicago:
    Justus, Calvin Richard, “The Tumor Suppressive Effects of T Cell Death-Associated Gene 8 in Blood Cancers” (Doctoral Dissertation., East Carolina University, March 2017).
    AMA:
    Justus, Calvin Richard. The Tumor Suppressive Effects of T Cell Death-Associated Gene 8 in Blood Cancers [Doctoral Dissertation]. Greenville, NC: East Carolina University; March 2017.
    Collections
    • Dissertations
    • Internal Medicine
    Publisher
    East Carolina University

    xmlui.ArtifactBrowser.ItemViewer.elsevier_entitlement

    East Carolina University has created ScholarShip, a digital archive for the scholarly output of the ECU community.

    • About
    • Contact Us
    • Send Feedback